A Quantum Dot with Impurity in the Lobachevsky Plane

  • V. Geyler
  • P. Šťovíček
  • M. Tušek
Part of the Operator Theory: Advances and Applications book series (OT, volume 188)


The curvature effect on a quantum dot with impurity is investigated. The model is considered on the Lobachevsky plane. The confinement and impurity potentials are chosen so that the model is explicitly solvable. The Green function as well as the Krein Q-function are computed.


Quantum dot Lobachevsky plane point interaction spectrum 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    J. Brüning, V. Geyler, and I. Lobanov, Spectral Properties of a Short-range Impurity in a Quantum Dot, J. Math. Phys. 46 (2004), 1267–1290.CrossRefGoogle Scholar
  2. [2]
    A. Comtet, On the Landau levels on the hyperbolic plane, Ann. Physics 173 (1987), 185–209.CrossRefMathSciNetGoogle Scholar
  3. [3]
    M. Antoine, A. Comtet and S. Ouvry, Scattering on a hyperbolic torus in a constant magnetic field, J. Phys. A: Math. Gen. 23 (1990), 3699–3710.zbMATHCrossRefMathSciNetGoogle Scholar
  4. [4]
    O. Lisovyy, Aharonov-Bohm effect on the Poincaré disk, J. Math. Phys. 48 (2007), 052112.Google Scholar
  5. [5]
    H. Bateman and A. Erdélyi, Higher Transcendental Functions III. McGraw-Hill Book Company, 1955.Google Scholar
  6. [6]
    J. Merxner and F.V. Schäfke, Mathieusche Funktionen und Sphäroidfunktionen. Springer-Verlag, 1954.Google Scholar
  7. [7]
    M.F. Rañada and M. Santader, On Harmonic Oscillators on the Two-dimensional Sphere S 2 and the Hyperbolic Plane H 2, J. Math. Phys. 43 (2002), 431–451.zbMATHCrossRefMathSciNetGoogle Scholar
  8. [8]
    N. Dunford and J.T. Schwartz, Linear Operators. Part II: Spectral theory. Self Adjoint Operators in Hilbert Space. Wiley-Interscience Publication, 1988.Google Scholar
  9. [9]
    J. Weidmann, Linear Operators in Hilbert Spaces. Springer, 1980.Google Scholar
  10. [10]
    S. Albeverio, F. Gesztesy, R. Høegh-Krohn and H. Holden, Solvable Models in Quantum Mechanics. Springer-Verlag, 1988.Google Scholar
  11. [11]
    J. Brüning, V. Geyler, and K. Pankrashkin, Spectra of Self-adjoint Extensions and Applications to Solvable Schrödinger Operators, arXiv:math-ph/0611088 (2007).Google Scholar
  12. [12]
    M. Reed, and B. Simon, Methods of Modern Mathematical Physics II. Academic Press, 1975.Google Scholar
  13. [13]
    J. Brüning, V. Geyler, and K. Pankrashkin, On-diagonal Singularities of the Green Function for Schrödinger Operators, J. Math. Phys. 46 (2005), 113508.Google Scholar
  14. [14]
    F.A. Berezin, and M.A. Shubin, The Schrödinger Equation. Kluwer Academic Publishers, 1991.Google Scholar
  15. [15]
    P. Šťovíček, and M. Tušek, On the Harmonic Oscillator on the Lobachevsky Plane, Russian J. Math. Phys. 14 (2007), 401–405.Google Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 2008

Authors and Affiliations

  • V. Geyler
    • 1
  • P. Šťovíček
    • 2
  • M. Tušek
    • 2
  1. 1.Department of MathematicsMordovian State UniversitySaranskRussia
  2. 2.Department of Mathematics Faculty of Nuclear SciencesCzech Technical UniversityPragueCzech Republic

Personalised recommendations