Steric Sea-Level Change and its Impact on the Gravity Field caused by Global Climate Change

  • Sabine Roedelsperger
  • Michael Kuhn
  • Oleg Makarynskyy
  • Carl Gerstenecker
Part of the Pageoph Topical Volumes book series (PTV)


It is sometimes assumed that steric sea-level variations do not produce a gravity signal as no net mass change, thus no change of ocean bottom pressure is associated with it. Analyzing the output of two CO2 emission scenarios over a period of 2000 years in terms of steric sea-level changes, we try to quantify the gravitational effect of steric sea-level variations. The first scenario, computed with version 2.6 of the Earth System Climate Model developed at the University of Victoria, Canada (UVic ESCM), is implemented with a linear CO2 increase of 1% of the initial concentration of 365 ppm and shows a globally averaged steric effect of 5.2 m after 2000 years. In the second scenario, computed with UVic ESCM version 2.7, the CO2 concentration increases quasi-exponentially to a level of 3011 ppm and is hold fixed afterwards. The corresponding globally averaged steric effect in the first 2000 years is 2.3 m. We show, due to the (vertical) redistribution of ocean water masses (expansion or contraction), the steric effect results also in a small change in the Earth’s gravity field compared to usually larger changes associated with net mass changes. Maximum effects for computation points located on the initial ocean surface can be found in scenario 1, with the effect on gravitational attraction and potential ranging from 0.0 to −0.7·10−5 m s−2 and −3·10−3 to 6·10−3 m2 s−2, respectively. As expected, the effect is not zero but negligible for practical applications.

Key Words

Global warming climate model sea level change steric effect gravity field change 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson, E.G. (1976), The effect of topography on solutions of Stokes’ problem, Unisurv. Report S.14, School of Surveying and Spatial Information Systems, University of New South Wales, Australia, 252 pages.Google Scholar
  2. Antonov, J.I., Levitus, S., and Boyer, T.P. (2002), Steric sea-level variations during 1957–1994: Importance of salinity, J. Geophys. Res. 107(C12). doi: 10.1029/2001JC000964.Google Scholar
  3. Antonov, J.I., Levitus, S., and Boyer, T.P. (2005), Thermosteric sea level rise, 1955–2003, Geophys. Res. Lett. 32, L12602. doi:10.1029/2005GL023112.CrossRefGoogle Scholar
  4. Baur, O., Kuhn, M., and Featherstone, W.E. (submitted), GRACE-derived ice-mass variations and their effect on global sea-level change patterns. J. Geophys. res.Google Scholar
  5. Bindoff, N.L., Willebrand, J., Artale, V., Cazenave, A., Gregory, J., Gulev, S., Hanawa, K., Le Quéré, C., Levitus, S., Nojiri, Y., Shum, C.K., Talley, L.D., Unnikrishnan, A. (2007), Observations: Oceanic climate change and sea level, In Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor, and H.L. Miller, eds.) (Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA).Google Scholar
  6. Cazenave, A., and Nerem, R.S. (2004), Present-day sea level change: Observations and causes, Rev. Geophys. 42, RG3001. doi: 10.1029/2003RG000139.CrossRefGoogle Scholar
  7. Church, J.A., White, N.J., Coleman, R., Lambeck, K., and Mitrovica, J.X. (2004), Estimates of the regional distribution of sea-level rise over the 1950 to 2000 period, J. Clim. 17(13), 2609–2625.CrossRefGoogle Scholar
  8. Church, J.A., and White, N.J. (2006), A 20th century acceleration in global sea-level rise, Geophys. Res. Lett. 33, L01602. doi: 10.1029/2005GL024826.CrossRefGoogle Scholar
  9. Douglas, C.D., and Peltier, W.R. (2002), The puzzle of global sea-level rise, Physics Today 55(3), 35–40.CrossRefGoogle Scholar
  10. Farrell, W.E., and Clark, J.A. (1976), On postglacial sea level, Geophys. J. R. astr. Soc. 46, 647–667.Google Scholar
  11. Heck, B., and Seitz, K. (2006), A comparison of the tesseroid, prism and point-mass approaches for mass reductions in gravity field modeling, J. Geodesy, doi: 10.1007/S00190-006-0094-0.Google Scholar
  12. Heiskanen, W.A., and Moritz, H., Physical Geodesy (W.H. Freeman and Company, USA, 1967), 364 pages.Google Scholar
  13. Holgate, S.J., and Woodworth, P.L. (2004), Evidence for enhanced coastal sea-level rise during the 1990s, Geophys. Res. Lett. 31, L07305. doi: 10.1029/2004GL019626.CrossRefGoogle Scholar
  14. Houghton, J. T., Global Warming, The Complete Briefing, Third Edition (University Press, Cambridge, 2004).Google Scholar
  15. Ishii, M., Kimoto, M., Sakamoto, K., and Iwasaki, S. (2006), Steric sea-level changes estimated from historical ocean subsurface temperature and salinity analysis, J. Oceanog. 62(2), 155–170.CrossRefGoogle Scholar
  16. Keeling, C.D., and Whorf, T.P. (2005), Atmospheric CO 2 records from sites in the SIO air sampling network. In: Trends: A Compendium of Data on Global Change. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tenn., USA.Google Scholar
  17. Kuhn, M. (2000), Geoidbestimmung unter Verwendung verschiedener Dichtehypothesen. Deutsche Geodätische Kommission, Reihe C, Heft 520, München.Google Scholar
  18. Kuhn, M. (2003), Geoid determination with density hypothesis from isostatic models and geological information, J. Geodesy 77, 50–65.CrossRefGoogle Scholar
  19. Kuhn, M., Featherstone, W.E., Makarynskyy, O., and Keller, W., Changes in the Earth’s gravity field, global sea-level and land-ocean distribution from a simulated total melt of polar ice sheets, Global Planet Change, submitted.Google Scholar
  20. Landerer, F.W., Jungclaus, J.H., and Marotzke, J. (2005), Regional dynamic and steric sea-level change in response to the IPCC-A1B scenario, J. Phys. Oceanog., in press.Google Scholar
  21. Lombard, A. et al. (2006), Perspectives on present-day sea-level change: A tribute to Christian le Provost, Ocean Dyn. 56(5–6). doi: 10.1007/sl0236-005-0046-x.Google Scholar
  22. Makarynskyy, O., Kuhn, M., and Featherstone, W.E. (2005), Modelling future sea-level change under greenhouse warming scenarios with an Earth System Model of intermediate complexity. In Gravity, Geoid and Space Missions Jekeli, C., Bastos, L., Fernandez J., (eds.), IAG Symposia 129 (Springer Berlin, Heidelberg, New York, 2005) pp. 260–265.Google Scholar
  23. Makarynskyy, O., Kuhn, M., Eatherstone W.E. (2007), Long-term sea level projections with two versions of a global climate model of intermediate complexity and corresponding changes to the Earth’s gravity field, Comp. Geosci., 33(8), 1036–1051. doi: 10.1016/j.cageo.2006.11.003.CrossRefGoogle Scholar
  24. MathWorks (2002), Matlab, Version 6.5 Release 13, The MathWorks, Inc.Google Scholar
  25. Meehl, G.A., Stocker, T.F., Collins, W.D., Friedlingstein, P., Gaye, A.T., Gregory, J.M., Kitoh, A., Knutti, R., Murphy, J.M., Noda, A., Raper, S.C.B., Watterson, I.G., Weaver, A.J., and Zhao, Z.-C. (2007), Global Climate Projections. In Climate Change 2007: The Physical Science Basis. Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M., Miller, H.L., (Eds.), Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, USA.Google Scholar
  26. Meier, M.F., and Wahr, J.M. (2002), Sea level is rising: Do we know why? Proc. Nat. Acad. Sci. 99(10), pp. 6524–6526.CrossRefGoogle Scholar
  27. Nagy, D., Papp, G., and Benedek, J. (2000), The gravitational potential and its derivatives for the prism, J. Geodesy 74, 552–560.CrossRefGoogle Scholar
  28. Solomon, S., Qin, D., Manning, M., Alley, R.B., Berntsen, T., Bindoff, N.L., Chen, Z., Chidthaisong, A., Gregory, J.M., Hegerl, G.C., Heimann, M., Hewitson, B., Hoskins, B.J., Joos, F., Jouzel, J., Kattsov, V., Lohmann, U., Matsuno, T., Molina, M., Nicholls, N., Overpeck, J., Raga, G., Ramaswamy, V., Ren, J., Rusticucci, M., Somerville, R., Stocker, T.F., Whetton, P., Wood, R.A., and Wratt, D. (2007), Technical Summary. In Climate Change 2007: The Physical Science Basis. Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M., Miller, H.L., (Eds.), Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, USA, pp. 19–91.Google Scholar
  29. Torge, W., Geodäsie (Walter de Gruyter GmbH & Co KG, Berlin 2003), 369 pages.Google Scholar
  30. Weaver, A.J., Eby, M., Wiebe, C.E., Bitz, C.M., Duffy, P.B., Ewen, T.L., Fanning, A.F., Holland, M.M., MacFadyen, A., Matthews, H.D., Meissner, K.J., Saenko, O., Schmittner, A., Wang, H., and Yoshimori, M. (2001), The UVic Earth System Climate Model: Model description, climatology, and applications to past, present and future climates, Atmosphere-Ocean 39(4), 361–428.Google Scholar
  31. Willis, J.K., Roemmich, D., and Cornuelle, B. (2004), Interannual variability in upper-ocean heat content, temperature and thermosteric expansion on global scales, J. Geophys. Res. 109, C12036. doi: 10.1029/2003JC002260.CrossRefGoogle Scholar

Copyright information

© Birkhäuser Verlag, Basel 2008

Authors and Affiliations

  • Sabine Roedelsperger
    • 1
  • Michael Kuhn
    • 2
  • Oleg Makarynskyy
    • 2
    • 3
  • Carl Gerstenecker
    • 1
  1. 1.Institute of Physical GeodesyDarmstadt University of TechnologyDarmstadtGermany
  2. 2.Western Australian Centre for Geodesy and The Institute for Geoscience ResearchCurtin University of TechnologyPerthAustralia
  3. 3.Asia-Pacific Applied Science AssociatesPerthAustralia

Personalised recommendations