Soil bacteria, nitrite and the skin

  • David R. Whitlock
  • Martin Feelisch

Abstract

Little is known about the composition of the skin microbiome and its potential significance for health and disease in the context of the ‘hygiene hypothesis’. We here propose that mammals evolved with a dermal microflora that contributed to the regulation of body physiology by providing nitrite from commensal ammonia-oxidising bacteria in response to ammonia released during sweating. We further hypothesise that modern skin hygiene practices have led to a gradual loss of these bacteria from our skin. Together with other lifestyle-related changes associated with an insufficient bodily supply with nitrite and depletion of other nitric oxide(NO)-related species, a condition we here define as ‘nitropenia’, this has led to a perturbation of cellular redox signalling which manifests as dysregulated immunity and generalised inflammation. If proven correct, this scenario would provide an additional evolutionary rationale and a mechanistic basis for the simultaneous rises in prevalence of a number of seemingly unrelated chronic illnesses over the last 3–4 decades.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hjern A, Rasmussen F, Johansson M, Aberg N (1999) Migration and atopic disorder in Swedish conscripts. Pediatr Allergy Immunol 10: 209–215CrossRefPubMedGoogle Scholar
  2. 2.
    Daniels SR (2006) The consequences of childhood overweight and obesity. Future Child 16: 47–67CrossRefPubMedGoogle Scholar
  3. 3.
    Kemp A, Björkstén B (2003) Immune deviation and the hygiene hypothesis: A review of the epidemiological evidence. Pediatr Allergy Immunol 14: 74–80CrossRefPubMedGoogle Scholar
  4. 4.
    Rook GA (2009) Review series on helminths, immune modulation and the hygiene hypothesis: the broader implications of the hygiene hypothesis Immunology 126: 3–11CrossRefPubMedGoogle Scholar
  5. 5.
    Gao Z, Tseng CH, Pei Z, Blaser MJ (2007) Molecular analysis of human forearm superficial skin bacterial biota. Proc Natl Acad Sci USA 104: 2927–2932CrossRefPubMedGoogle Scholar
  6. 6.
    Grice EA, Kong HH, Renaud G, Young AC; NISC Comparative Sequencing Program, Bouffard, GG, Blakesley RW, Wolfsberg TG, Turner ML, Segre JA (2008) A diversity profile of the human skin microbiota. Genome Res 18: 1043–1050CrossRefPubMedGoogle Scholar
  7. 7.
    Janssen-Heininger YM, Mossman BT, Heintz NH, Forman HJ, Kalyanaraman B, Finkel T, Stamler JS, Rhee SG van der Vliet A (2008) Redox-based regulation of signal tranduction: principles, pitfalls, and promises. Free Radic Biol Med 45(1): 1–17CrossRefPubMedGoogle Scholar
  8. 8.
    Jansson EA, Huang L, Malkey R, Govoni, M, Nihlén, C, Olsson A, Stensdotter M, Petersson J, Holm L, Weitzberg E, Lundberg JO (2008) A mammalian functional nitrate reductase that regulates nitrite and nitric oxide homeostasis. Nat Chem Biol 4: 411–417CrossRefPubMedGoogle Scholar
  9. 9.
    Bryan NS, Fernandez BO, Bauer SM, Garcia-Saura MF, Milsom AB, Rassaf T, Maloney RE, Bharti A, Rodriguez J, Feelisch M (2005) Nitrite is a signaling molecule and regulator of gene expression in mammalian tissues. Nat Chem Biol 1: 290–297CrossRefPubMedGoogle Scholar
  10. 10.
    Webb AJ, Patel N, Loukogeorgakis S, Okorie M, Aboud Z, Misra S, Rashid R, Miall P, Deanfield J, Benjamin N, MacAllister R, Hobbs AJ, Ahluwalia A (2008), Acute blood pressure lowering, vasoprotective, and, antiplatelet properties of dietary nitrate via bioconversion to nitrite. Hypertension 51: 784–790CrossRefPubMedGoogle Scholar
  11. 11.
    Petersson J, Phillipson M, Jansson EA, Patzak A, Lundberg JO, Holm L (2007) Dietary nitrate increases gastric mucosal blood flow and mucosal defense. Am J Physiol Gastrointest Liver Physiol 292: G718–724CrossRefPubMedGoogle Scholar
  12. 12.
    Dykhuizen RS, Frazer R, Duncan C, Smith CC, Golden M, Benjamin N, Leifert C (1996) Antimicrobial effect of acidified nitrite on gut pathogens: importance of dietary nitrate in host defense. Antimicrob Agents Chemother 40: 1422–1425PubMedGoogle Scholar
  13. 13.
    Lundberg JO, Weitzberg E, Gladwin MT (2008) The nitrate-nitrite-nitric oxide pathway in physiology and therapeutics. Nat Rev Drug Discov 7: 156–167CrossRefPubMedGoogle Scholar
  14. 14.
    Stewart V (1998) Nitrate respiration in relation to facultative metabolism in enterobacteria. Microbiol Rev 52: 190–232Google Scholar
  15. 15.
    Lundberg JO, Weitzberg E, Cole JA, Benjamin N (2004) Nitrate, bacteria, and human health. Nat Rev Microbiol 2: 593–602CrossRefPubMedGoogle Scholar
  16. 16.
    Butler AR, Feelisch M (2008) Therapeutic uses of inorganic nitrite and nitrate: from the past to the future. Circulation 117: 2151–2159CrossRefPubMedGoogle Scholar
  17. 17.
    Esch T, Stefano GB, Fricchione GL, Benson H (2002) Stress-related diseases — a potential role for nitric oxide. Mex Sci Monit 8: RA 103–118Google Scholar
  18. 18.
    Vuppugalla R, Mehvar R (2004) Short-term inhibitory effects of nitric oxide on cytochrome P450-mediated drug metabolism time dependency and reversibility profiles in isolated perfused rat livers. Drug Metab Dispos 32: 1446–1454CrossRefPubMedGoogle Scholar
  19. 19.
    Zangar RC, Davydov DR, Verma S (2004) Mechanisms that regulate production of reactive oxygen species by cytochrome P450. Toxicol Appl Pharmacol 199: 316–331CrossRefPubMedGoogle Scholar
  20. 20.
    Rius J, Guma M, Schachtrup C, Akassoglou K, Zinkernagel AS, Nizet V, Johnson RS, Haddad GG, Karin M (2008) NF-kappaB links innate immunity to the hypoxic response through transcriptional regulation of HIF-1 alpha. Nature 453: 807–811CrossRefPubMedGoogle Scholar
  21. 21.
    Guzik TJ, Korbut R, Adamek-Guzik T (2003) Nitric oxide and superoxide in inflammation and immune regulation. J Physiol Pharmacol 54: 469–487PubMedGoogle Scholar
  22. 22.
    Feelisch M (2008) The chemical biology of nitric oxide-an outsider’s reflections about its role in osteoarthritis. Osteoarthritis Cartilage 16(Suppl 2): S3–S13CrossRefPubMedGoogle Scholar
  23. 23.
    A Ramsay. The Great Unwashed’ — The Working Classes and Personal Hygiene, circa 1840–1914. Leeds History First, Volume 5 2007–08 (Undergraduate Essay) http:// www.leeds.ac.uk/history/studentlife/e-journal/Anna_Ramsay.pdf (accessed 02/23/09)Google Scholar
  24. 24.
    An PG (2004) Helping the poor emerge from “Urban barbarism to civic civilization”: Public bathhouses in America, 1890–1915. Yale J Biol Med 77: 133–141PubMedGoogle Scholar
  25. 25.
    Edwards HR (1962) Competition and monopoly in the British soap industry, Oxford: Clarendon Press, cited in: Mokyr J, Stein R (1997) Science, health, and household technology: The effect of the Pasteur Revolution in consumer demand (Bresnahan TF and Gordon RJ, eds) (1997) The Economics of New Goods, Studies in Income and Wealth, Vol. 58, Chicago and London: The University of Chicago PressGoogle Scholar
  26. 26.
    Geels F (2005) Co-evolution of technology and society: The transition in water supply and personal hygiene in the Netherlands (1850–1930) — a case study in multi-level perspective. Technology in Society 27: 363–397CrossRefGoogle Scholar
  27. 27.
    Smith Z, McCaig AE, Stephen JR, Embley TM, Prosser JI (2001) Species diversity of uncultured and cultured populations of soil and marine ammonia oxidizing bacteria. Microb Ecol 42: 228–237CrossRefPubMedGoogle Scholar
  28. 28.
    Francis CA, Roberts KJ, Beman JM, Santoro AE, Oakley BB (2005) Ubiquity and diversity of ammonia-oxidizing archaea in water columns and sediments of the ocean. Proc Natl Acad Sci USA 102: 14683–14688CrossRefPubMedGoogle Scholar
  29. 29.
    Brusilow SW, Gordes EH (1968) Ammonia secretion in sweat. Am J Physiol 214: 513–517PubMedGoogle Scholar
  30. 30.
    Hooper AB, Terry KR (1074) Photoinactivation of ammonia oxidation in Nitrosomonas. J Bacteriol 119: 899–906Google Scholar
  31. 31.
    Adelman S, Taylor CR, Heglund NC (1975) Sweating on paws and palms: what is its function? Am J Physiol 229: 1400–1402PubMedGoogle Scholar
  32. 32.
    Weller R, Ormerod AD, Hobson RP, Benjamin NJ (1998) A randomized trial of acidified nitrite cream in the treatment of tinea pedis. J Am Acad Dermatol 38: 559–563CrossRefPubMedGoogle Scholar
  33. 33 Öhman H, Vahlquist A (1998) The pH gradient over the stratum corneum differs in X-linked recessive and autosomal dominant ichthyosis: A clue to the molecular origin of the “Acid Skin Mantle”? J Invest Dermatol 111: 674–677CrossRefPubMedGoogle Scholar
  34. 34.
    Chikakane K, Takahashi H (1995) Measurement of skin pH and its significance in cutaneous diseases. Clin Dermatol 13: 299–306CrossRefPubMedGoogle Scholar
  35. 35.
    Rothfork JM, Timmins GS, Harris MN, Chen X, Lusis AJ, Otto M, Cheung AL, Gresham HD (2004) Inactivation of a bacterial, virulence pheromone by phagocyte-derived oxidants: New role for the NADPH oxidase in host defense. Proc Natl Acad Sci USA 101: 13867–13872CrossRefPubMedGoogle Scholar
  36. 36.
    Schlag S, Nerz C, Birkenstock TA, Altenberend F, Götz F (2007) Inhibition of staphylococcal biofilm formation by nitrite. J Bacteriol 189: 7911–7919CrossRefPubMedGoogle Scholar
  37. 37.
    Barraud N, Hassett DJ, Hwang SH, Rice SA, Kjelleberg S, Webb JS (2006) Involvement of nitric oxide in biofilm dispersal of Pseudomonas aeruginosa. J Bacteriol 188: 7344–7353CrossRefPubMedGoogle Scholar
  38. 38.
    Blumer M, Chase T, Watson SW (1969) Fatty acids in the lipids of marine and terrestrial nitrifying bacteria. J Bacteriol 99: 366–370PubMedGoogle Scholar
  39. 39.
    Hooper AB (1969) Biochemical basis, of obligate autotrophy in Nitrosomonas europaea J Bacteriol 97: 776–779PubMedGoogle Scholar
  40. 40.
    M Schaechter, G Mendoff, D Schlessinger, eds (1989) Mechanisms of Microbial Disease. Williams & Wilkins, Baltimore, MD, USAGoogle Scholar
  41. 41.
    Lipponen MT, Suutari MH, Martikainen PJ (2002) Occurrence of nitrifying bacteria and nitrification in Finnish drinking water distribution systems. Water Res 36: 4319–4329CrossRefPubMedGoogle Scholar
  42. 42.
    Chain P, Lamerdin J, Larimer F, Regala W, Lao V, Land M, Hauser L, Hooper A, Klotz M, Norton J, Sayavedra-Soto L, Arciero D, Hommes N, Whittaker M, Arp D (2003) Complete genome sequence of the ammonia-oxidizing bacterium and obligate chemolithoautotroph Nitrosomonas europaea. J Bacteriol 185: 2759–2773CrossRefPubMedGoogle Scholar
  43. 43.
    Brandt KK, Hesselsoe M, Roslev P, Henriksen K, Sorensen J (2001) Toxic effects of linear alkylbenzene sulfonate on metabolic activity, growth rate, and microcolony formation of Nitrosomonas and Nitrosospira strains. Appl Environ Microbiol 67: 2489–2498CrossRefPubMedGoogle Scholar
  44. 44.
    Könneke M, Bernhard AE, de la Torre JR, Walker CB, Waterbury JB, Stahl DA (2005) Isolation of an autotrophic ammonia-oxidizing marine archaeon. Nature 437: 543–546CrossRefPubMedGoogle Scholar
  45. 45.
    Stucker M, Struk A, Altmeyer P, Herde M, Baumgart H, Lubbers DW (2002) The cutaneous uptake of atmospheric oxygen contributes significantly to the oxygen supply of human dermis and epidermis. J Physiol 538: 985–994CrossRefPubMedGoogle Scholar
  46. 46.
    Zhang CL, Ye Q, Huang Z, Li W, Chen J, Song Z, Zhao W, Bagwell C, Inskeep WP, Ross C, Gao, L, Wiegel J, Romanek CS, Shock EL, Hedlund BP (2008) Global occurrence of archaeal amoA genes in terrestrial hot springs. Appl Environ Microbiol 74: 6417–6426CrossRefPubMedGoogle Scholar
  47. 47.
    Weidler GW, Dornmayr-Pfaffenhuemer M, Gerbl FW, Heinen W, Stan-Lotter H (2007) Communities of archaea and bacteria in a subsurface radioactive thermal spring in the Austrian Central Alps, and evidence of ammonia-oxidizing Crenarchaeota. Appl Environ Microbiol 73: 259–270CrossRefPubMedGoogle Scholar
  48. 48.
    Liu X, Miller MJS, Joshi MS, Sadowska-Krowicka H, Clark DA, Lancaster Jr JR (1998) Diffusion-limited reaction of free nitric oxide with erythrocytes. J Biol Chem 273: 18709–18713CrossRefPubMedGoogle Scholar
  49. 49.
    Niedbala W, Cai B, Liew FY (2006) Role of nitric oxide in the regulation of T cell functions. Ann Rheum Dis 65(Suppl 3): iii37–40CrossRefPubMedGoogle Scholar
  50. 50.
    Niedbala W, Cai B, Liu H, Pitman N, Chang L, Liew FY (2007) Nitric oxide induces CD4+CD25+ Foxp3 regulatory T cells from CD4+CD25 T cells via p53, IL-2, and OX40. Proc Natl Acad Sci USA 104: 15478–15483CrossRefPubMedGoogle Scholar
  51. 51.
    Harris NL, Watt V, Ronchese F, Le Gros G (2002) Differential T cell function and fate in lymph node and nonlymphoid tissues. J Exp Med 195: 317–326CrossRefPubMedGoogle Scholar
  52. 52.
    Whitlock D (2004) NO production on human skin from sweat-derived urea by commensal autotrophic ammonia oxidizing bacteria. Nitric Oxide 11: 130 (abstract)Google Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 2009

Authors and Affiliations

  • David R. Whitlock
    • 1
  • Martin Feelisch
    • 2
  1. 1.Nitroceutic LLCDoverUSA
  2. 2.Clinical Sciences Research Institute, Warwick Medical SchoolThe University of WarwickCoventryUK

Personalised recommendations