Is Critical 2D Percolation Universal?

  • Vincent Beffara
Part of the Progress in Probability book series (PRPR, volume 60)

Abstract

The aim of these notes is to explore possible ways of extending Smirnov’s proof of Cardy’s formula for critical site-percolation on the triangular lattice to other cases (such as bond-percolation on the square lattice); the main question we address is that of the choice of the lattice embedding into the plane which gives rise to conformal invariance in the scaling limit. Even though we were not able to produce a complete proof, we believe that the ideas presented here go in the right direction.

Keywords

Percolation Conformal invariance Complex structure 

Mathematics Subject Classification (2000)

82B43 32G15 82B27 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Michel Bauer and Denis Bernard, Conformal field theories of stochastic Loewner evolutions, Comm. Math. Phys. 239 (2003), no. 3, 493–521.MATHCrossRefMathSciNetGoogle Scholar
  2. [2]
    Vincent Beffara, Quantitative estimates for the incipient infinite cluster of 2D percolation, in preparation.Google Scholar
  3. [3]
    -Cardy’s formula on the triangular lattice, the easy way, Universality and Renormalization (Hia Binder and Dirk Kreimer eds.) Fields Institute Communications, vol. 50, The Fields Institute, 2007, pp. 39–45.Google Scholar
  4. [4]
    Itai Benjamini and Oded Schramm, Conformal invariance of Voronoi percolation, comm. Math. Phys., 197 (1998), no. 1, 75–107.MATHCrossRefMathSciNetGoogle Scholar
  5. [5]
    Béla Bollobás and Oliver Riordan, Percolation, Cambridge University Press, 2006.Google Scholar
  6. [6]
    John Cardy, Critical percolation in finite geometries, J. Phys. A 25 (1992), L201–L206.MATHCrossRefMathSciNetGoogle Scholar
  7. [7]
    -Conformal invariance in percolation, self-avoiding walks, and related problems, Ann. Henri Poincaré 4 (2003), no. suppl. 1, S371–S384.MATHCrossRefMathSciNetGoogle Scholar
  8. [8]
    Geoffrey Grimmett, Percolation, second ed., Grundlehren der mathematischen Wissenschaften, vol. 321, Springer-Verlag, Berlin, 1999.MATHGoogle Scholar
  9. [9]
    Galin L. Jones, On the Markov chain central limit theorem, Probability Surveys 1 (2004), 299–320.CrossRefMathSciNetGoogle Scholar
  10. [10]
    Harry Kesten, Percolation theory for mathematicians, Progress in Probability and Statistics, vol. 2, Birkhäuser Boston, Mass., 1982.Google Scholar
  11. [11]
    -The incipient infinite cluster in two-dimensional percolation, Probab. Theory Related Fields 73 (1986), no. 3, 369–394.MATHCrossRefMathSciNetGoogle Scholar
  12. [12]
    R.P. Langlands, C. Pichet, Ph. Pouliot, and Y. Saint-Aubin, On the universality of crossing probabilities in two-dimensional percolation, J. Statist. Phys., 67 (1992), no. 3-4, 553–574.MATHCrossRefMathSciNetGoogle Scholar
  13. [13]
    Robert Langlands, Yves Pouillot and Yves Saint-Aubin, Conformal invariance in two-dimensional percolation, Bulletin of the A.M.S., 30 (1994), 1–61.MATHCrossRefGoogle Scholar
  14. [14]
    Oded Schramm, Scaling limits of loop-erased random walks and uniform spanning tress Israel Journal of Mathematics 118 (2000), 221–288.MATHCrossRefMathSciNetGoogle Scholar
  15. [15]
    Stanislav Smirnov, Critical percolation in the plane: Conformal invariance. Cardy’s formula, scaling limits, C.R. Acad. Sci. Paris Sér I Math. 333 (2001), no. 3, 239–244.MATHGoogle Scholar
  16. [16]
    -Critical percolation in the plane. I. Conformal invariance and Cardy’s formula. II. Continuum scaling limit, http://www.math.kth.se/stas/papers/percol.ps, 2001.Google Scholar
  17. [17]
    Stanislav Smirnov and Wendelin Werner, Critical exponents for two-dimensional percolation, Mathematical Research Letters 8 (2001), 729–744.MATHMathSciNetGoogle Scholar
  18. [18]
    Kenneth Stephenson, Introduction to circle packing, Cambridge University Press, 2005.Google Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 2008

Authors and Affiliations

  • Vincent Beffara
    • 1
  1. 1.CNRS-UMPAEcole normale supérieure de LyonLyon cedex 07France

Personalised recommendations