On Nichols Algebras with Generic Braiding

  • Nicolás Andruskiewitsch
  • Iván Ezequiel Angiono
Part of the Trends in Mathematics book series (TM)

Abstract

We extend the main result of [AS3] to braided vector spaces of generic diagonal type using results of Heckenberger.

Keywords

Quantized enveloping algebras Nichols algebras automorphisms of non-commutative algebras 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [AS1]
    N. Andruskiewitsch and H.-J. Schneider, Finite quantum groups and Cartan matrices. Adv. Math 54, 1–45 (2000).CrossRefMathSciNetGoogle Scholar
  2. [AS2]
    N. Andruskiewitsch and H.-J. Schneider, Pointed Hopf Algebras, in “New directions in Hopf algebras”, 1–68, Math. Sci. Res. Inst. Publ. 43, Cambridge Univ. Press, Cambridge, 2002.Google Scholar
  3. [AS3]
    N. Andruskiewitsch and H.-J. Schneider, A characterization of quantum groups. J. Reine Angew. Math. 577, 81–104 (2004).MathSciNetMATHGoogle Scholar
  4. [A]
    I. Angiono, Álgebras de Nichols sobre grupos abelianos, Tesis de licenciatura, Univ. Nac. de La Plata (2007). Available at http://www.mate.uncor.edu/angiono.Google Scholar
  5. [B]
    N. Bourbaki, Groupes et algèbres de Lie, Chapitres 4, 5 et 6, Hermann, Paris, 1968.MATHGoogle Scholar
  6. [Ha]
    M. Hall, A basis for free Lie rings and higher commutators in free groups, Proc. Am. Math. Soc., 1, 575–581 (1950).CrossRefMATHGoogle Scholar
  7. [H1]
    I. Heckenberger, The Weyl groupoid of a Nichols algebra of diagonal type, Inventiones Math. 164, 175–188 (2006).CrossRefMathSciNetMATHGoogle Scholar
  8. [H2]
    I. Heckenberger, Weyl equivalence for rank 2 Nichols algebras of diagonal type, Ann. Univ. Ferrara — Sez. VII — Sc. Mat., vol. LI, pp. 281–289 (2005).MathSciNetGoogle Scholar
  9. [H3]
    I. Heckenberger, Rank 2 Nichols algebras with finite arithmetic root system. Algebr. Represent. Theory, to appear.Google Scholar
  10. [Kh]
    V. Kharchenko, A quantum analog of the Poincaré-Birkhoff-Witt theorem, Algebra and Logic, 38, (1999), 259–276.CrossRefMathSciNetGoogle Scholar
  11. [K]
    V. Kac, Infinite-dimensional Lie algebras, 3rd Edition, Cambridge University Press, Cambridge, 1990.MATHGoogle Scholar
  12. [R1]
    M. Rosso, Quantum groups and quantum shuffles, Invent. Math. 133 (1998), 399–416.CrossRefMathSciNetMATHGoogle Scholar
  13. [R2]
    M. Rosso, Lyndon words and Universal R-matrices, talk at MSRI, October 26, 1999, available at http://www.msri.org; Lyndon basis and the multiplicative formula for R-matrices, preprint (2003).
  14. [Se]
    V. Serganova, On generalizations of root systems, Commun. Algebra 24 (1996), 4281–4299.CrossRefMathSciNetMATHGoogle Scholar
  15. [Sh]
    A.I. Shirshov, On free Lie rings, Mat. Sb., 45(87), No. 2, 113–122 (1958).MathSciNetGoogle Scholar
  16. [U]
    S. Ufer, PBW bases for a class of braided Hopf algebras, J. Alg. 280 (2004) 84–119.CrossRefMathSciNetMATHGoogle Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 2008

Authors and Affiliations

  • Nicolás Andruskiewitsch
    • 1
  • Iván Ezequiel Angiono
    • 1
  1. 1.Facultad of Matemática, Astronomía y FísicaUniversidad Nacional of Córdoba CIEM — CONICETCórdobaArgentina

Personalised recommendations