It is the goal of ordinal theoretic proof theory to reduce the consistency of theories for formalising mathematical proofs to the well-foundedness of ordinal notation systems. In order to obtain a satisfactory solution to the consistency problem, this reduction needs to be supplemented by a second step, namely by proofs of the well-foundedness of the ordinal notation systems in ‘safe’ theories, for which one has an argument that everything shown in these theories is valid. Because of Gödel’s incompleteness theorem, a mathematical correctness proof can prove only relative correctness, but never provide an absolute proof of correctness. In order to obtain an argument which provides absolute trust, the only possibility is to have a philosophical correctness argument. Although there are other theories that could serve as such safe theories, the theories for which such arguments have best been worked out at present are extensions of Martin-Löf type theory (MLTT).


Type Theory Proof Theory Logical Framework Elimination Rule Introduction Rule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Birkhäuser Verlag AG 2008

Authors and Affiliations

  • Anton Setzer
    • 1
  1. 1.Department of Computer ScienceSwansea UniversityEngland

Personalised recommendations