Advertisement

On Nori’s Fundamental Group Scheme

  • Hélène Esnault
  • Phùng Hô Hai
  • Xiaotao Sun
Part of the Progress in Mathematics book series (PM, volume 265)

Abstract

The aim of this note is to give a structure theorem on Nori’s fundamental group scheme of a proper connected variety defined over a perfect field and endowed with a rational point.

Keywords

Fundamental group scheme Tannaka duality finite bundles 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    P. Deligne and J. Milne, Tannakian Categories, Lectures Notes in Mathematics 900, 101–228, Springer-Verlag (1982).MathSciNetCrossRefGoogle Scholar
  2. [2]
    P. Deligne, Catégories tannakiennes, The Grothendieck Festschrift, Vol. II, 111–195, Progr. Math. 87, Birkhäuser (1990).MathSciNetGoogle Scholar
  3. [3]
    H. Esnault and P.H. Hai, The Gauß-Manin connection and Tannaka duality, International Mathematics Research Notices 93878 (2006), 1–35.CrossRefMathSciNetGoogle Scholar
  4. [4]
    A. Grothendieck, Revêtements étales et groupe fondamental, SGA 1, Lect. Notes in Mathematics 224 (1970), Springer Verlag.Google Scholar
  5. [5]
    N. Katz, On the calculation of some differential Galois groups, Invent. math. 87 (1987), 13–61.zbMATHCrossRefMathSciNetGoogle Scholar
  6. [6]
    H. Langer and U. Stuhler, Vektorbündel auf Kurven und Darstellungen der algebraischen Fundamentalgruppe, Math. Z. 156 (1977), 73–83.CrossRefMathSciNetGoogle Scholar
  7. [7]
    V.B. Mehta and S. Subramanian, On the fundamental group scheme, Invent. math. 148 (2002), 143–150.zbMATHCrossRefMathSciNetGoogle Scholar
  8. [8]
    M. Nori, On the representation of the fundamental group, Compositio math. 33 (1976), 29–41.zbMATHMathSciNetGoogle Scholar
  9. [9]
    M. Nori, The fundamental group scheme, Proc. Indian Acad. Sci. 91 (1982), 73–122.zbMATHMathSciNetGoogle Scholar
  10. [10]
    S. Ramanan and A. Ramanathan, Some remarks on the instability flag, Tohoku Math. Journal 36 (1984), 269–291.zbMATHCrossRefMathSciNetGoogle Scholar
  11. [11]
    M. Raynaud, Sections de fibrés vectoriels sur une courbe, Bull. Soc. Math. France 110 (1982), 103–125.zbMATHMathSciNetGoogle Scholar
  12. [12]
    N. Saavedra-Rivano, Catégories Tannakiennes, Lectures Notes in Mathematics 265, Springer-Verlag (1972).Google Scholar
  13. [13]
    W.C. Waterhouse, Introduction to affine group schemes, Graduate Texts in Mathematics 66, Springer-Verlag (1979).Google Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 2007

Authors and Affiliations

  • Hélène Esnault
    • 1
  • Phùng Hô Hai
    • 1
  • Xiaotao Sun
    • 2
  1. 1.Universität Duisburg-Essen MathematikEssenGermany
  2. 2.Academy of Mathematics and Systems ScienceChinese Academy of SciencesBeijingP.R. of China

Personalised recommendations