Genetic Variability in Molecular Responses to Chemical Exposure

Chapter
Part of the Experientia Supplementum book series (EXS, volume 101)

Abstract

Individuals differ in their response to environmental exposures. In the following, we describe examples and paradigms of studying heritable differences in response to exposure—commonly known as “gene–environment interaction” or “ecogenetics”—and their relation to disease etiology and susceptibility. Our discussion is framed in three parts. In the first, we describe replicated examples of studies that have typified the field, single genetic variant, and exposure associations to disease. Second, we describe how studies have scaled up search for interaction using genome-wide measurement modalities, bioinformatics, and model organisms. Finally, we discuss a more comprehensive representation of chemical exposures as the “envirome” and how we may use the envirome to examine interplay between genetics and the environment.

Keywords

Gene–environment interactions Pharmacogenetics Ecogenetics Single nucleotide polymorphism (Non-)synonymous variant Phase I/II biotransformation Paraoxonase Epigenetic variant Genome-wide association study Gene–environment-wide interaction study Environment-wide association study Comparative Toxicogenomics Database Systems genetics Envirome Toxome 

Notes

Acknowledgments

C.J.P. was funded by the National Library of Medicine (T15 LM 007033).

References

  1. 1.
    NICHD (2010) Phenylketonuria. National Institute of Child Health and Human Development, National Institutes of Health (NIH), Bethesda, MD. Online available at http://www.nichd.nih.gov/health/topics/phenylketonuria.cfm
  2. 2.
    Garrod A (1902) Alkaptonuria. Lancet: 653–656Google Scholar
  3. 3.
    Garrod A (1931) The inborn factors in disease: an essay. Clarendon, Oxford, UKGoogle Scholar
  4. 4.
    Motulsky AG (1957) Drug reactions, enzymes, and biochemical genetics. J Am Med Assoc 165:835–837PubMedCrossRefGoogle Scholar
  5. 5.
    International HapMap Consortium (2005) A haplotype map of the human genome. Nature 437:1299–1320CrossRefGoogle Scholar
  6. 6.
    Kidd JM, Cooper GM, Donahue WF, Hayden HS, Sampas N, Graves T, Hansen N, Teague B, Alkan C, Antonacci F et al (2008) Mapping and sequencing of structural variation from eight human genomes. Nature 453:56–64PubMedCrossRefGoogle Scholar
  7. 7.
    Ellegren H (2004) Microsatellites: simple sequences with complex evolution. Nat Rev Genet 5:435–445PubMedCrossRefGoogle Scholar
  8. 8.
    NCBI (2010) dbSNP. Short Genetic Variations. National Center for Biotechnology Information. Online available at http://www.ncbi.nlm.nih.gov/projects/SNP/
  9. 9.
    Tost J (2008) Epigenetics. Caister Academic, NorfolkGoogle Scholar
  10. 10.
    Reik W, Dean W, Walter J (2001) Epigenetic reprogramming in mammalian development. Science 293:1089–1093PubMedCrossRefGoogle Scholar
  11. 11.
    Sasaki H, Matsui Y (2008) Epigenetic events in mammalian germ-cell development: reprogramming and beyond. Nat Rev Genet 9:129–140PubMedCrossRefGoogle Scholar
  12. 12.
    Whitelaw NC, Whitelaw E (2008) Transgenerational epigenetic inheritance in health and disease. Curr Opin Genet Dev 18:273–279PubMedCrossRefGoogle Scholar
  13. 13.
    Bollati V, Baccarelli A (2010) Environmental epigenetics. Heredity 105:105–112PubMedCrossRefGoogle Scholar
  14. 14.
    Esteller M (2008) Epigenetics in cancer. New Engl J Med 358:1148–1159PubMedCrossRefGoogle Scholar
  15. 15.
    Baccarelli A, Wright RO, Bollati V, Tarantini L, Litonjua AA, Suh HH, Zanobetti A, Sparrow D, Vokonas PS, Schwartz J (2009) Rapid DNA methylation changes after exposure to traffic particles. Am J Respir Crit Care Med 179:572–578PubMedCrossRefGoogle Scholar
  16. 16.
    Rusiecki JA, Baccarelli A, Bollati V, Tarantini L, Moore LE, Bonefeld-Jorgensen EC (2008) Global DNA hypomethylation is associated with high serum-persistent organic pollutants in Greenlandic Inuit. Environ Health Perspect 116:1547–1552PubMedCrossRefGoogle Scholar
  17. 17.
    Tarantini L, Bonzini M, Apostoli P, Pegoraro V, Bollati V, Marinelli B, Cantone L, Rizzo G, Hou L, Schwartz J, Bertazzi PA, Baccarelli A (2008) Effects of particulate matter on genomic DNA methylation content and iNOS promoter methylation. Environ Health Perspect 117:217–222PubMedGoogle Scholar
  18. 18.
    Wright RO, Schwartz J, Wright RJ, Bollati V, Tarantini L, Park SK, Hu H, Sparrow D, Vokonas P, Baccarelli A (2010) Biomarkers of lead exposure and DNA methylation within retrotransposons. Environ Health Perspect 118:790–795PubMedCrossRefGoogle Scholar
  19. 19.
    Baccarelli A, Bollati V (2009) Epigenetics and environmental chemicals. Curr Opin Pediatr 21:243–251PubMedCrossRefGoogle Scholar
  20. 20.
    Khoury MJ, Beaty TH, Cohen B (1993) Fundamentals of genetic epidemiology. Oxford University Press, New York, NYGoogle Scholar
  21. 21.
    Khoury MJ, Adams MJ Jr, Flanders WD (1988) An epidemiologic approach to ecogenetics. Am J Hum Genet 42:89–95PubMedGoogle Scholar
  22. 22.
    Siemiatycki J, Thomas DC (1981) Biological models and statistical interactions: an example from multistage carcinogenesis. Int J Epidemiol 10:383–387PubMedCrossRefGoogle Scholar
  23. 23.
    Rothman K, Greenland S, Lash T (2008) Modern epidemiology, 3rd edn. Lippincott Williams & Wilkins, Philadelphia, PAGoogle Scholar
  24. 24.
    Phornphutkul C, Introne WJ, Perry MB, Bernardini I, Murphey MD, Fitzpatrick DL, Anderson PD, Huizing M, Anikster Y, Gerber LH, Gahl WA (2002) Natural history of alkaptonuria. New Engl J Med 347:2111–2121PubMedCrossRefGoogle Scholar
  25. 25.
    Nelson D (2009) The cytochrome P450 homepage. Hum Genomics 4:59–65PubMedGoogle Scholar
  26. 26.
    Nebert DW, Dalton TP, Okey AB, Gonzalez FJ (2004) Role of aryl hydrocarbon receptor-mediated induction of the CYP1 enzymes in environmental toxicity and cancer. J Biol Chem 279:23847–23850PubMedCrossRefGoogle Scholar
  27. 27.
    Badawi AF, Cavalieri EL, Rogan EG (2001) Role of human cytochrome P450 1A1, 1A2, 1B1, and 3A4 in the 2-, 4-, and 16α-hydroxylation of 17β-estradiol. Metabolism 50:1001–1003PubMedCrossRefGoogle Scholar
  28. 28.
    Kellermann G, Shaw CR, Luyten-Kellerman M (1973) Aryl hydrocarbon hydroxylase inducibility and bronchogenic carcinoma. N Engl J Med 289:934–937PubMedCrossRefGoogle Scholar
  29. 29.
    Crofts F, Taioli E, Trachman J, Cosma GN, Currie D, Toniolo P, Garte SJ (1994) Functional significance of different human CYP1A1 genotypes. Carcinogenesis 15:2961–2963PubMedCrossRefGoogle Scholar
  30. 30.
    Chen J, Stampfer MJ, Hough HL, Garcia-Closas M, Willett WC, Hennekens CH, Kelsey KT, Hunter DJ (1998) A prospective study of N-acetyltransferase genotype, red meat intake, and risk of colorectal cancer. Cancer Res 58:3307–3311PubMedGoogle Scholar
  31. 31.
    Chan AT, Tranah GJ, Giovannucci EL, Willett WC, Hunter DJ, Fuchs CS (2005) Prospective study of N-acetyltransferase-2 genotypes, meat intake, smoking and risk of colorectal cancer. Int J Cancer 115:648–652PubMedCrossRefGoogle Scholar
  32. 32.
    Garcia-Closas M, Malats N, Silverman D, Dosemeci M, Kogevinas M, Hein DW, Tardon A, Serra C, Carrato A, Garcia-Closas R, Lloreta J, Castano-Vinyals G, Yeager M, Welch R, Chanock S, Chatterjee N, Wacholder S, Samanic C, Tora M, Fernandez F, Real FX, Rothman N (2005) NAT2 slow acetylation, GSTM1 null genotype, and risk of bladder cancer: results from the Spanish Bladder Cancer Study and meta-analyses. Lancet 366:649–659PubMedCrossRefGoogle Scholar
  33. 33.
    Vineis P, Marinelli D, Autrup H, Brockmoller J, Cascorbi I, Daly AK, Golka K, Okkels H, Risch A, Rothman N, Sim E, Taioli E (2001) Current smoking, occupation, N-acetyltransferase-2 and bladder cancer: a pooled analysis of genotype-based studies. Cancer Epidemiol Biomarkers Prev 10:1249–1252PubMedGoogle Scholar
  34. 34.
    Hein DW, Doll MA, Fretland AJ, Leff MA, Webb SJ, Xiao GH, Devanaboyina US, Nangju NA, Feng Y (2000) Molecular genetics and epidemiology of the NAT1 and NAT2 acetylation polymorphisms. Cancer Epidemiol Biomarkers Prev 9:29–42PubMedGoogle Scholar
  35. 35.
    Gilliland FD, Li YF, Saxon A, Diaz-Sanchez D (2004) Effect of glutathione-S-transferase M1 and P1 genotypes on xenobiotic enhancement of allergic responses: randomised, placebo-controlled crossover study. Lancet 363:119–125PubMedCrossRefGoogle Scholar
  36. 36.
    Minelli C, Granell R, Newson R, Rose-Zerilli MJ, Torrent M, Ring SM, Holloway JW, Shaheen SO, Henderson JA (2010) Glutathione-S-transferase genes and asthma phenotypes: a human genome epidemiology (HuGE) systematic review and meta-analysis including unpublished data. Int J Epidemiol 39:539–562PubMedCrossRefGoogle Scholar
  37. 37.
    Benhamou S, Lee WJ, Alexandrie AK, Boffetta P, Bouchardy C, Butkiewicz D, Brockmoller J, Clapper ML, Daly A, Dolzan V et al (2002) Meta- and pooled analyses of the effects of glutathione S-transferase M1 polymorphisms and smoking on lung cancer risk. Carcinogenesis 23:1343–1350PubMedCrossRefGoogle Scholar
  38. 38.
    Denissenko MF, Pao A, Tang M, Pfeifer GP (1996) Preferential formation of benzo[a]pyrene adducts at lung cancer mutational hotspots in P53. Science 274:430–432PubMedCrossRefGoogle Scholar
  39. 39.
    Talmud PJ (2007) Gene-environment interaction and its impact on coronary heart disease risk. Nutr Metab Cardiovasc Dis 17:148–152PubMedCrossRefGoogle Scholar
  40. 40.
    Hines LM, Stampfer MJ, Ma J, Gaziano JM, Ridker PM, Hankinson SE, Sacks F, Rimm EB, Hunter DJ (2001) Genetic variation in alcohol dehydrogenase and the beneficial effect of moderate alcohol consumption on myocardial infarction. N Engl J Med 344:549–555PubMedCrossRefGoogle Scholar
  41. 41.
    De Oliveira e Silva ER, Foster D, McGee Harper M, Seidman CE, Smith JD, Breslow JL, Brinton EA (2000) Alcohol consumption raises HDL cholesterol levels by increasing the transport rate of apolipoproteins A-I and A-II. Circulation 102:2347–2352PubMedCrossRefGoogle Scholar
  42. 42.
    Chen J, Giovannucci EL, Hunter DJ (1999) MTHFR polymorphism, methyl-replete diets and the risk of colorectal carcinoma and adenoma among U.S. men and women: an example of gene-environment interactions in colorectal tumorigenesis. J Nutr 129:560S–564SPubMedGoogle Scholar
  43. 43.
    Klerk M, Verhoef P, Clarke R, Blom HJ, Kok FJ, Schouten EG (2002) MTHFR 677C→T polymorphism and risk of coronary heart disease: a meta-analysis. J Am Med Assoc 288:2023–2031CrossRefGoogle Scholar
  44. 44.
    Roffman JL, Weiss AP, Deckersbach T, Freudenreich O, Henderson DC, Purcell S, Wong DH, Halsted CH, Goff DC (2007) Effects of the methylenetetrahydrofolate reductase (MTHFR) C677T polymorphism on executive function in schizophrenia. Schizophr Res 92:181–188PubMedCrossRefGoogle Scholar
  45. 45.
    van Beynum IM, Kapusta L, den Heijer M, Vermeulen SH, Kouwenberg M, Daniels O, Blom HJ (2006) Maternal MTHFR 677C>T is a risk factor for congenital heart defects: effect modification by periconceptional folate supplementation. Eur Heart J 27:981–987PubMedCrossRefGoogle Scholar
  46. 46.
    Jacques PF, Bostom AG, Williams RR, Ellison RC, Eckfeldt JH, Rosenberg IH, Selhub J, Rozen R (1996) Relation between folate status, a common mutation in methylenetetrahydrofolate reductase, and plasma homocysteine concentrations. Circulation 93:7–9PubMedCrossRefGoogle Scholar
  47. 47.
    Lewis SJ, Ebrahim S, Davey Smith G (2005) Meta-analysis of MTHFR 677C→T polymorphism and coronary heart disease: does totality of evidence support causal role for homocysteine and preventive potential of folate? Br Med J 331:1053CrossRefGoogle Scholar
  48. 48.
    Lonn E (2008) Homocysteine-lowering B vitamin therapy in cardiovascular prevention–Wrong again? J Am Med Assoc 299:2086–2087CrossRefGoogle Scholar
  49. 49.
    Wald DS, Wald NJ, Morris JK, Law M (2006) Folic acid, homocysteine, and cardiovascular disease: judging causality in the face of inconclusive trial evidence. Br Med J 333:1114–1117CrossRefGoogle Scholar
  50. 50.
    Gaidukov LA, Aharoni A, Khersonsky O, Tawfik DS (2008) Serum paraoxonase PON1 and its interactions with HDL. FASEB J 22(Suppl): 811.1Google Scholar
  51. 51.
    Costa LG, Cole TB, Furlong CE (2003) Polymorphisms of paraoxonase (PON1) and their significance in clinical toxicology of organophosphates. J Toxicol Clin Toxicol 41:37–45PubMedCrossRefGoogle Scholar
  52. 52.
    Ginsberg G, Neafsey P, Hattis D, Guyton KZ, Johns DO, Sonawane B (2009) Genetic polymorphism in paraoxonase 1 (PON1): population distribution of PON1 activity. J Toxicol Environ Health B Crit Rev 12:473–507PubMedCrossRefGoogle Scholar
  53. 53.
    Sanghera DK, Aston CE, Saha N, Kamboh MI (1998) DNA polymorphisms in two paraoxonase genes (PON1 and PON2) are associated with the risk of coronary heart disease. Am J Hum Genet 62:36–44PubMedCrossRefGoogle Scholar
  54. 54.
    Wheeler JG, Keavney BD, Watkins H, Collins R, Danesh J (2004) Four paraoxonase gene polymorphisms in 11212 cases of coronary heart disease and 12786 controls: meta-analysis of 43 studies. Lancet 363:689–695PubMedCrossRefGoogle Scholar
  55. 55.
    Manthripragada AD, Costello S, Cockburn MG, Bronstein JM, Ritz B (2010) Paraoxonase 1, agricultural organophosphate exposure, and Parkinson disease. Epidemiology 21:87–94PubMedCrossRefGoogle Scholar
  56. 56.
    Polonikov AV, Ivanov VP, Solodilova MA (2009) Genetic variation of genes for xenobiotic-metabolizing enzymes and risk of bronchial asthma: the importance of gene-gene and gene-environment interactions for disease susceptibility. J Hum Genet 54:440–449PubMedCrossRefGoogle Scholar
  57. 57.
    Le Marchand L, Hankin JH, Wilkens LR, Pierce LM, Franke A, Kolonel LN, Seifried A, Custer LJ, Chang W, Lum-Jones A, Donlon T (2001) Combined effects of well-done red meat, smoking, and rapid N-acetyltransferase 2 and CYP1A2 phenotypes in increasing colorectal cancer risk. Cancer Epidemiol Biomarkers Prev 10:1259–1266PubMedGoogle Scholar
  58. 58.
    Maier LA (2002) Genetic and exposure risks for chronic beryllium disease. Clin Chest Med 23:827–839PubMedCrossRefGoogle Scholar
  59. 59.
    Hirschhorn JN, Daly MJ (2005) Genome-wide association studies for common diseases and complex traits. Nat Rev Genet 6:95–108PubMedCrossRefGoogle Scholar
  60. 60.
    McCarthy MI, Abecasis GR, Cardon LR, Goldstein DB, Little J, Ioannidis JPA, Hirschhorn JN (2008) Genome-wide association studies for complex traits: consensus, uncertainty and challenges. Nat Rev Genet 9:356–369PubMedCrossRefGoogle Scholar
  61. 61.
    Pearson TA, Manolio TA (2008) How to interpret a genome-wide association study. J Am Med Assoc 299:1335–1344CrossRefGoogle Scholar
  62. 62.
    Crowley JJ, Sullivan PF, McLeod HL (2009) Pharmacogenomic genome-wide association studies: lessons learned thus far. Pharmacogenomics 10:161–163PubMedCrossRefGoogle Scholar
  63. 63.
    Liu JZ, Tozzi F, Waterworth DM, Pillai SG, Muglia P, Middleton L, Berrettini W, Knouff CW, Yuan X, Waeber G et al (2010) Meta-analysis and imputation refines the association of 15q25 with smoking quantity. Nat Genet 42:436–440PubMedCrossRefGoogle Scholar
  64. 64.
    The Tobacco and Genetics Consortium (2010) Genome-wide meta-analyses identify multiple loci associated with smoking behavior. Nat Genet 42:441–447CrossRefGoogle Scholar
  65. 65.
    Thorgeirsson TE, Gudbjartsson DF, Surakka I, Vink JM, Amin N, Geller F, Sulem P, Rafnar T, Esko T, Walter S et al (2010) Sequence variants at CHRNB3-CHRNA6 and CYP2A6 affect smoking behavior. Nat Genet 42:448–453PubMedCrossRefGoogle Scholar
  66. 66.
    Khoury MJ, Wacholder S (2009) Invited commentary: from genome-wide association studies to gene-environment-wide interaction studies―challenges and opportunities. Am J Epidemiol 169:227–230, discussion 234–225PubMedCrossRefGoogle Scholar
  67. 67.
    Thomas D (2010) Gene-environment-wide association studies: emerging approaches. Nat Rev Genet 11:259–272PubMedCrossRefGoogle Scholar
  68. 68.
    Romanoski CE, Lee S, Kim MJ, Ingram-Drake L, Plaisier CL, Yordanova R, Tilford C, Guan B, He A, Gargalovic PS, Kirchgessner TG, Berliner JA, Lusis AJ (2010) Systems genetics analysis of gene-by-environment interactions in human cells. Am J Hum Genet 86:399–410PubMedCrossRefGoogle Scholar
  69. 69.
    Audouze K, Juncker AS, Roque FJ, Krysiak-Baltyn K, Weinhold N, Taboureau O, Jensen TS, Brunak S (2010) Deciphering diseases and biological targets for environmental chemicals using toxicogenomics networks. PLoS Comput Biol 6:e1000788PubMedCrossRefGoogle Scholar
  70. 70.
    Patel C, Butte A (2010) Predicting environmental chemical factors associated with disease-related gene expression data. BMC Med Genomics 3:17PubMedCrossRefGoogle Scholar
  71. 71.
    Gohlke JM, Thomas R, Zhang Y, Rosenstein MC, Davis AP, Murphy C, Becker KG, Mattingly CJ, Portier CJ (2009) Genetic and environmental pathways to complex diseases. BMC Syst Biol 3:46PubMedCrossRefGoogle Scholar
  72. 72.
    Barrett T, Troup DB, Wilhite SE, Ledoux P, Rudnev D, Evangelista C, Kim IF, Soboleva A, Tomashevsky M, Edgar R (2007) NCBI GEO: mining tens of millions of expression profiles―database and tools update. Nucleic Acids Res 35:D760–765PubMedCrossRefGoogle Scholar
  73. 73.
    Lage K, Karlberg EO, Storling ZM, Olason PI, Pedersen AG, Rigina O, Hinsby AM, Tumer Z, Pociot F, Tommerup N, Moreau Y, Brunak S (2007) A human phenome-interactome network of protein complexes implicated in genetic disorders. Nat Biotechnol 25:309–316PubMedCrossRefGoogle Scholar
  74. 74.
    Davis AP, Murphy CG, Saraceni-Richards CA, Rosenstein MC, Wiegers TC, Mattingly CJ (2009) Comparative Toxicogenomics Database: a knowledgebase and discovery tool for chemical-gene-disease networks. Nucleic Acids Res 37:D786–792PubMedCrossRefGoogle Scholar
  75. 75.
    Rebhan M, Chalifa-Caspi V, Prilusky J, Lancet D (1997) GeneCards: integrating information about genes, proteins and diseases. Trends Genet 13:163PubMedCrossRefGoogle Scholar
  76. 76.
    Keiser MJ, Roth BL, Armbruster BN, Ernsberger P, Irwin JJ, Shoichet BK (2007) Relating protein pharmacology by ligand chemistry. Nat Biotechnol 25:197–206PubMedCrossRefGoogle Scholar
  77. 77.
    Tanya MT, Kiran M, Albert VS, Andrew CE, Ioannis MS, Masahiro K, James PP, Ripatti S, Daniel IC, Cristen JW et al (2010) Biological, clinical and population relevance of 95 loci for blood lipids. Nature 466:707CrossRefGoogle Scholar
  78. 78.
    Park JH, Wacholder S, Gail MH, Peters U, Jacobs KB, Chanock SJ, Chatterjee N (2010) Estimation of effect size distribution from genome-wide association studies and implications for future discoveries. Nat Genet 42:570–575PubMedCrossRefGoogle Scholar
  79. 79.
    Goldstein DB (2009) Common genetic variation and human traits. N Engl J Med 360:1696–1698PubMedCrossRefGoogle Scholar
  80. 80.
    Yang J, Benyamin B, McEvoy BP, Gordon S, Henders AK, Nyholt DR, Madden PA, Heath AC, Martin NG, Montgomery GW, Goddard ME, Visscher PM (2010) Common SNPs explain a large proportion of the heritability for human height. Nat Genet 42:565–569PubMedCrossRefGoogle Scholar
  81. 81.
    Marmot MG, Smith GD, Stansfeld S, Patel C, North F, Head J, White I, Brunner E, Feeney A (1991) Health inequalities among British civil servants: the Whitehall II study. Lancet 337:1387–1393PubMedCrossRefGoogle Scholar
  82. 82.
    Schwartz D, Collins F (2007) Medicine. Environmental biology and human disease. Science 316:695–696PubMedCrossRefGoogle Scholar
  83. 83.
    Anthony JC, Eaton WW, Henderson AS (1995) Looking to the future in psychiatric epidemiology. Epidemiol Rev 17:240–242PubMedGoogle Scholar
  84. 84.
    Human Toxome Project (2010) Environmental Working Group, Commonweal EWG. Online available at http://www.ewg.org/sites/humantoxome/
  85. 85.
    Wild CP (2005) Complementing the genome with an “exposome”: the outstanding challenge of environmental exposure measurement in molecular epidemiology. Cancer Epidemiol Biomarkers Prev 14:1847–1850PubMedCrossRefGoogle Scholar
  86. 86.
    Pereira MA, Burns FJ, Albert RE (1979) Dose response for benzo[a]pyrene adducts in mouse epidermal DNA. Cancer Res 39:2556–2559PubMedGoogle Scholar
  87. 87.
    Pereira MA, Lin LH, Chang LW (1981) Dose-dependency of 2-acetylaminofluorene binding to liver DNA and hemoglobin in mice and rats. Toxicol Appl Pharmacol 60:472–478PubMedCrossRefGoogle Scholar
  88. 88.
    Lamb J, Crawford ED, Peck D, Modell JW, Blat IC, Wrobel MJ, Lerner J, Brunet JP, Subramanian A, Ross KN, Reich N, Hieronymus H, Wei G, Armstrong SA, Haggarty SJ, Clemons PA, Wei R, Carr SA, Lander ES, Golub TR (2006) The Connectivity Map: using gene-expression signatures to connect small molecules, genes, and disease. Science 313:1929–1935PubMedCrossRefGoogle Scholar
  89. 89.
    Idaghdour Y, Czika W, Shianna KV, Lee SH, Visscher PM, Martin HC, Miclaus K, Jadallah SJ, Goldstein DB, Wolfinger RD, Gibson G (2010) Geographical genomics of human leukocyte gene expression variation in southern Morocco. Nat Genet 42:62–67PubMedCrossRefGoogle Scholar
  90. 90.
    McEwen BS (1998) Stress, adaptation, and disease: allostasis and allostatic load. Ann NY Acad Sci 840:33–44PubMedCrossRefGoogle Scholar
  91. 91.
    Seeman TE, McEwen BS, Rowe JW, Singer BH (2001) Allostatic load as a marker of cumulative biological risk: MacArthur studies of successful aging. Proc Natl Acad Sci USA 98:4770–4775PubMedCrossRefGoogle Scholar
  92. 92.
    Miller GE, Chen E, Fok AK, Walker H, Lim A, Nicholls EF, Cole S, Kobor MS (2009) Low early-life social class leaves a biological residue manifested by decreased glucocorticoid and increased proinflammatory signaling. Proc Natl Acad Sci USA 106:14716–14721PubMedCrossRefGoogle Scholar
  93. 93.
    Patel C, Bhattacharya J, Butte A (2010) An environment-wide association study (EWAS) to type 2 diabetes. PLoS One 5:e10746Google Scholar
  94. 94.
    Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L, Sargent M, Gill SR, Nelson KE, Relman DA (2005) Diversity of the human intestinal microbial flora. Science 308:1635–1638PubMedCrossRefGoogle Scholar
  95. 95.
    Gill SR, Pop M, DeBoy RT, Eckburg PB, Turnbaugh PJ, Samuel BS, Gordon JI, Relman DA, Fraser-Liggett CM, Nelson KE (2006) Metagenomic analysis of the human distal gut microbiome. Science 312:1355–1359PubMedCrossRefGoogle Scholar
  96. 96.
    Ioannidis J, Loy EY, Poulton R, Chia KS (2009) Researching genetic versus nongenetic determinants of disease: a comparison and proposed unification. Sci Transl Med 1:8CrossRefGoogle Scholar
  97. 97.
    Lang IA, Galloway TS, Scarlett A, Henley WE, Depledge M, Wallace RB, Melzer D (2008) Association of urinary bisphenol A concentration with medical disorders and laboratory abnormalities in adults. J Am Med Assoc 300:1303–1310CrossRefGoogle Scholar

Copyright information

© Springer Basel AG 2012

Authors and Affiliations

  1. 1.Department of MedicineStanford UniversityStanfordUSA

Personalised recommendations