Male Reprotoxicity and Endocrine Disruption

  • Sarah Campion
  • Natasha Catlin
  • Nicholas Heger
  • Elizabeth V. McDonnell
  • Sara E. Pacheco
  • Camelia Saffarini
  • Moses A. Sandrof
  • Kim Boekelheide
Part of the Experientia Supplementum book series (EXS, volume 101)

Abstract

Mammalian reproductive tract development is a tightly regulated process that can be disrupted following exposure to drugs, toxicants, endocrine-disrupting chemicals (EDCs), or other compounds via alterations to gene and protein expression or epigenetic regulation. Indeed, the impacts of developmental exposure to certain toxicants may not be fully realized until puberty or adulthood when the reproductive tract becomes sexually mature and altered functionality is manifested. Exposures that occur later in life, once development is complete, can also disrupt the intricate hormonal and paracrine interactions responsible for adult functions, such as spermatogenesis. In this chapter, the biology and toxicology of the male reproductive tract is explored, proceeding through the various life stages including in utero development, puberty, adulthood, and senescence. Special attention is given to the discussion of EDCs, chemical mixtures, low-dose effects, transgenerational effects, and potential exposure-related causes of male reproductive tract cancers.

Keywords

Androgen insensitivity syndrome Bisphenol A Chemical mixtures Cryptorchidism Diethylstilbestrol Endocrine-disrupting chemicals Hypospadias Low-dose effects Phthalates Testicular dysgenesis syndrome Testicular germ cell tumors Transgenerational effects Vinclozolin 

References

  1. 1.
    Barker DJ (1995) Fetal origins of coronary heart disease. Br Med J 311:171–174CrossRefGoogle Scholar
  2. 2.
    Barker DJ (1997) Maternal nutrition, fetal nutrition, and disease in later life. Nutrition 13:807–813PubMedCrossRefGoogle Scholar
  3. 3.
    Lumey LH, Stein AD, Kahn HS, Romijn JA (2009) Lipid profiles in middle-aged men and women after famine exposure during gestation: the Dutch Hunger Winter Families Study. Am J Clin Nutr 89:1737–1743PubMedCrossRefGoogle Scholar
  4. 4.
    Heijmans BT, Tobi EW, Stein AD, Putter H, Blauw GJ, Susser ES, Slagboom PE, Lumey LH (2008) Persistent epigenetic differences associated with prenatal exposure to famine in humans. Proc Natl Acad Sci USA 105:17046–17049PubMedCrossRefGoogle Scholar
  5. 5.
    Painter RC, de Rooij SR, Bossuyt PM, Simmers TA, Osmond C, Barker DJ, Bleker OP, Roseboom TJ (2006) Early onset of coronary artery disease after prenatal exposure to the Dutch famine. Am J Clin Nutr 84:322–327; quiz 466–327PubMedGoogle Scholar
  6. 6.
    de Rooij SR, Painter RC, Phillips DI, Osmond C, Michels RP, Godsland IF, Bossuyt PM, Bleker OP, Roseboom TJ (2006) Impaired insulin secretion after prenatal exposure to the Dutch famine. Diabetes Care 29:1897–1901PubMedCrossRefGoogle Scholar
  7. 7.
    Painter RC, Roseboom TJ, Bleker OP (2005) Prenatal exposure to the Dutch famine and disease in later life: an overview. Reprod Toxicol 20:345–352PubMedCrossRefGoogle Scholar
  8. 8.
    Cooper RL (2009) Current developments in reproductive toxicity testing of pesticides. Reprod Toxicol 28:180–187PubMedCrossRefGoogle Scholar
  9. 9.
    US-EPA (1996) Guidelines for reproductive toxicity risk assessment. U.S. Environmental Protection Agency, Office of Research and Development, Washington DC; EPA/630/R-96/009Google Scholar
  10. 10.
    US-EPA (1998) Health effects test guidelines, OPPTS 870.3800, reproduction and fertility effects. U.S. Environmental Protection Agency, Washington DC; EPA 712-C-98-208Google Scholar
  11. 11.
    Blazak WF, Treinen KA, Juniewicz PE (1993) Application of testicular sperm head counts in the assessment of male reproductive toxicity. In: Chapin RE, Heindel JJ (eds) Methods in toxicology: male reproductive toxicology. Academic, San Diego, CA, pp 86–94Google Scholar
  12. 12.
    Council NR (2007) Toxicity testing in the 21st century: a vision and a strategy. National Academy, Washington DCGoogle Scholar
  13. 13.
    Lebaron MJ, Rasoulpour RJ, Klapacz J, Ellis-Hutchings RG, Hollnagel HM, Gollapudi BB (2010) Epigenetics and chemical safety assessment. Mutat Res 705:83–95PubMedCrossRefGoogle Scholar
  14. 14.
    Chapin RE, Stedman DB (2009) Endless possibilities: stem cells and the vision for toxicology testing in the 21st century. Toxicol Sci 112:17–22PubMedCrossRefGoogle Scholar
  15. 15.
    Huston JM, Nation T, Balic A, Southwell BR (2009) The role of the gubernaculums in the descent and undescent of the testis. Ther Adv Urol 1:115–121CrossRefGoogle Scholar
  16. 16.
    Wilson CA, Davies DC (2007) The control of sexual differentiation of the reproductive system and brain. Reproduction 133:331–359PubMedCrossRefGoogle Scholar
  17. 17.
    Barsoum I, Yao HH (2006) The road to maleness: from testis to Wolffian duct. Trends Endocrinol Metab 17:223–228PubMedCrossRefGoogle Scholar
  18. 18.
    Capel B (2000) The battle of the sexes. Mech Dev 92:89–103PubMedCrossRefGoogle Scholar
  19. 19.
    Hannema SE, Hughes IA (2007) Regulation of Wolffian duct development. Horm Res 67:142–151PubMedCrossRefGoogle Scholar
  20. 20.
    Koopman P, Gubbay J, Vivian N, Goodfellow P, Lovell-Badge R (1991) Male development of chromosomally female mice transgenic for Sry. Nature 351:117–121PubMedCrossRefGoogle Scholar
  21. 21.
    Gilbert SF (2006) Developmental biology. Sinauer Associates, Sunderland, MAGoogle Scholar
  22. 22.
    Lovell-Badge R (1992) The role of Sry in mammalian sex determination. Ciba Found Symp 165:162–179; discussion 179–182PubMedGoogle Scholar
  23. 23.
    Palmer SJ, Burgoyne PS (1991) In situ analysis of fetal, prepubertal and adult XX–XY chimaeric mouse testes: Sertoli cells are predominantly, but not exclusively, XY. Development 112:265–268PubMedGoogle Scholar
  24. 24.
    Merchant-Larios H, Moreno-Mendoza N (2001) Onset of sex differentiation: dialog between genes and cells. Arch Med Res 32:553–558PubMedCrossRefGoogle Scholar
  25. 25.
    Sekido R, Bar I, Narvaez V, Penny G, Lovell-Badge R (2004) SOX9 is up-regulated by the transient expression of SRY specifically in Sertoli cell precursors. Dev Biol 274:271–279PubMedCrossRefGoogle Scholar
  26. 26.
    DiNapoli L, Capel B (2008) SRY and the standoff in sex determination. Mol Endocrinol 22:1–9PubMedCrossRefGoogle Scholar
  27. 27.
    Matsuzawa-Watanabe Y, Inoue J, Semba K (2003) Transcriptional activity of testis-determining factor SRY is modulated by the Wilms’ tumor 1 gene product, WT1. Oncogene 22:7900–7904PubMedCrossRefGoogle Scholar
  28. 28.
    Luo X, Ikeda Y, Parker KL (1994) A cell-specific nuclear receptor is essential for adrenal and gonadal development and sexual differentiation. Cell 77:481–490PubMedCrossRefGoogle Scholar
  29. 29.
    Kreidberg JA, Sariola H, Loring JM, Maeda M, Pelletier J, Housman D, Jaenisch R (1993) WT-1 is required for early kidney development. Cell 74:679–691PubMedCrossRefGoogle Scholar
  30. 30.
    Burgoyne PS, Buehr M, McLaren A (1988) XY follicle cells in ovaries of XX–XY female mouse chimaeras. Development 104:683–688PubMedGoogle Scholar
  31. 31.
    Yao HH, Whoriskey W, Capel B (2002) Desert Hedgehog/Patched 1 signaling specifies fetal Leydig cell fate in testis organogenesis. Genes Dev 16:1433–1440PubMedCrossRefGoogle Scholar
  32. 32.
    Hughes IA, Acerini CL (2008) Factors controlling testis descent. Eur J Endocrinol 159(Suppl 1):S75–S82PubMedCrossRefGoogle Scholar
  33. 33.
    Creasy DM (2001) Pathogenesis of male reproductive toxicity. Toxicol Pathol 29:64–76PubMedCrossRefGoogle Scholar
  34. 34.
    Klonisch T, Fowler PA, Hombach-Klonisch S (2004) Molecular and genetic regulation of testis descent and external genitalia development. Dev Biol 270:1–18PubMedCrossRefGoogle Scholar
  35. 35.
    Overbeek PA, Gorlov IP, Sutherland RW, Houston JB, Harrison WR, Boettger-Tong HL, Bishop CE, Agoulnik AI (2001) A transgenic insertion causing cryptorchidism in mice. Genesis 30:26–35PubMedCrossRefGoogle Scholar
  36. 36.
    Zimmermann S, Steding G, Emmen JM, Brinkmann AO, Nayernia K, Holstein AF, Engel W, Adham IM (1999) Targeted disruption of the Insl3 gene causes bilateral cryptorchidism. Mol Endocrinol 13:681–691PubMedCrossRefGoogle Scholar
  37. 37.
    Skakkebaek NE, Rajpert-De Meyts E, Main KM (2001) Testicular dysgenesis syndrome: an increasingly common developmental disorder with environmental aspects. Hum Reprod 16:972–978PubMedCrossRefGoogle Scholar
  38. 38.
    Foresta C, Zuccarello D, Garolla A, Ferlin A (2008) Role of hormones, genes, and environment in human cryptorchidism. Endocr Rev 29:560–580PubMedCrossRefGoogle Scholar
  39. 39.
    Barthold JS (2008) Undescended testis: current theories of etiology. Curr Opin Urol 18:395–400PubMedCrossRefGoogle Scholar
  40. 40.
    Kalfa N, Philibert P, Sultan C (2009) Is hypospadias a genetic, endocrine or environmental disease, or still an unexplained malformation? Int J Androl 32:187–197PubMedCrossRefGoogle Scholar
  41. 41.
    Krone N, Arlt W (2009) Genetics of congenital adrenal hyperplasia. Best Pract Res Clin Endocrinol Metab 23:181–192PubMedCrossRefGoogle Scholar
  42. 42.
    Speiser PW, White PC (2003) Congenital adrenal hyperplasia. N Engl J Med 349:776–788PubMedCrossRefGoogle Scholar
  43. 43.
    Oakes MB, Eyvazzadeh AD, Quint E, Smith YR (2008) Complete androgen insensitivity syndrome―a review. J Pediatr Adolesc Gynecol 21:305–310PubMedCrossRefGoogle Scholar
  44. 44.
    Fechner A, Fong S, McGovern P (2008) A review of Kallmann syndrome: genetics, pathophysiology, and clinical management. Obstet Gynecol Surv 63:189–194PubMedCrossRefGoogle Scholar
  45. 45.
    Paduch DA, Fine RG, Bolyakov A, Kiper J (2008) New concepts in Klinefelter syndrome. Curr Opin Urol 18:621–627PubMedCrossRefGoogle Scholar
  46. 46.
    Visootsak J, Graham JM Jr (2006) Klinefelter syndrome and other sex chromosomal aneuploidies. Orphanet J Rare Dis 1:42PubMedCrossRefGoogle Scholar
  47. 47.
    Ross MT, Grafham DV, Coffey AJ, Scherer S, McLay K, Muzny D, Platzer M, Howell GR, Burrows C, Bird CP et al (2005) The DNA sequence of the human X chromosome. Nature 434:325–337PubMedCrossRefGoogle Scholar
  48. 48.
    Colborn T, vom Saal FS, Soto AM (1993) Developmental effects of endocrine-disrupting chemicals in wildlife and humans. Environ Health Perspect 101:378–384PubMedCrossRefGoogle Scholar
  49. 49.
    Mosher WD, Martinez GM, Chandra A, Abma JC, Willson SJ (2004) Use of contraception and use of family planning services in the United States: 1982-2002. Adv Data (350):1–36Google Scholar
  50. 50.
    Kolpin DW, Furlong ET, Meyer MT, Thurman EM, Zaugg SD, Barber LB, Buxton HT (2002) Pharmaceuticals, hormones, and other organic wastewater contaminants in U.S. streams, 1999-2000: a national reconnaissance. Environ Sci Technol 36:1202–1211PubMedCrossRefGoogle Scholar
  51. 51.
    Jobling S, Williams R, Johnson A, Taylor A, Gross-Sorokin M, Nolan M, Tyler CR, van Aerle R, Santos E, Brighty G (2006) Predicted exposures to steroid estrogens in U.K. rivers correlate with widespread sexual disruption in wild fish populations. Environ Health Perspect 114(Suppl 1):32–39PubMedGoogle Scholar
  52. 52.
    Herbst AL, Ulfelder H, Poskanzer DC (1971) Adenocarcinoma of the vagina. Association of maternal stilbestrol therapy with tumor appearance in young women. N Engl J Med 284:878–881PubMedCrossRefGoogle Scholar
  53. 53.
    Giusti RM, Iwamoto K, Hatch EE (1995) Diethylstilbestrol revisited: a review of the long-term health effects. Ann Intern Med 122:778–788PubMedGoogle Scholar
  54. 54.
    Klip H, Verloop J, van Gool JD, Koster ME, Burger CW, van Leeuwen FE (2002) Hypospadias in sons of women exposed to diethylstilbestrol in utero: a cohort study. Lancet 359:1102–1107PubMedCrossRefGoogle Scholar
  55. 55.
    Brouwers MM, Feitz WF, Roelofs LA, Kiemeney LA, de Gier RP, Roeleveld N (2006) Hypospadias: a transgenerational effect of diethylstilbestrol? Hum Reprod 21:666–669PubMedCrossRefGoogle Scholar
  56. 56.
    Titus-Ernstoff L, Troisi R, Hatch EE, Palmer JR, Hyer M, Kaufman R, Adam E, Noller K, Hoover RN (2009) Birth defects in the sons and daughters of women who were exposed in utero to diethylstilbestrol (DES). Int J Androl 33:377–384PubMedCrossRefGoogle Scholar
  57. 57.
    Newbold RR, Tyrey S, Haney AF, McLachlan JA (1983) Developmentally arrested oviduct: a structural and functional defect in mice following prenatal exposure to diethylstilbestrol. Teratology 27:417–426PubMedCrossRefGoogle Scholar
  58. 58.
    Li S, Washburn KA, Moore R, Uno T, Teng C, Newbold RR, McLachlan JA, Negishi M (1997) Developmental exposure to diethylstilbestrol elicits demethylation of estrogen-responsive lactoferrin gene in mouse uterus. Cancer Res 57:4356–4359PubMedGoogle Scholar
  59. 59.
    Zheng X, Hendry WJ 3rd (1997) Neonatal diethylstilbestrol treatment alters the estrogen-regulated expression of both cell proliferation and apoptosis-related proto-oncogenes (c-jun, c-fos, c-myc, bax, bcl-2, and bcl-x) in the hamster uterus. Cell Growth Differ 8:425–434PubMedGoogle Scholar
  60. 60.
    Nef S, Shipman T, Parada LF (2000) A molecular basis for estrogen-induced cryptorchidism. Dev Biol 224:354–361PubMedCrossRefGoogle Scholar
  61. 61.
    Cederroth CR, Schaad O, Descombes P, Chambon P, Vassalli JD, Nef S (2007) Estrogen receptor α is a major contributor to estrogen-mediated fetal testis dysgenesis and cryptorchidism. Endocrinology 148:5507–5519PubMedCrossRefGoogle Scholar
  62. 62.
    Guyot R, Odet F, Leduque P, Forest MG, Le Magueresse-Battistoni B (2004) Diethylstilbestrol inhibits the expression of the steroidogenic acute regulatory protein in mouse fetal testis. Mol Cell Endocrinol 220:67–75PubMedCrossRefGoogle Scholar
  63. 63.
    Haavisto T, Nurmela K, Pohjanvirta R, Huuskonen H, El-Gehani F, Paranko J (2001) Prenatal testosterone and luteinizing hormone levels in male rats exposed during pregnancy to 2,3,7,8-tetrachlorodibenzo-p-dioxin and diethylstilbestrol. Mol Cell Endocrinol 178:169–179PubMedCrossRefGoogle Scholar
  64. 64.
    Sharpe RM, Irvine DS (2004) How strong is the evidence of a link between environmental chemicals and adverse effects on human reproductive health? Br Med J 328:447–451CrossRefGoogle Scholar
  65. 65.
    Hoei-Hansen CE, Holm M, Rajpert-De Meyts E, Skakkebaek NE (2003) Histological evidence of testicular dysgenesis in contralateral biopsies from 218 patients with testicular germ cell cancer. J Pathol 200:370–374PubMedCrossRefGoogle Scholar
  66. 66.
    Colvin JS, Green RP, Schmahl J, Capel B, Ornitz DM (2001) Male-to-female sex reversal in mice lacking fibroblast growth factor 9. Cell 104:875–889PubMedCrossRefGoogle Scholar
  67. 67.
    Jeffs B, Meeks JJ, Ito M, Martinson FA, Matzuk MM, Jameson JL, Russell LD (2001) Blockage of the rete testis and efferent ductules by ectopic Sertoli and Leydig cells causes infertility in Dax1-deficient male mice. Endocrinology 142:4486–4495PubMedCrossRefGoogle Scholar
  68. 68.
    Nef S, Parada LF (1999) Cryptorchidism in mice mutant for Insl3. Nat Genet 22:295–299PubMedCrossRefGoogle Scholar
  69. 69.
    Thomas JA, Thomas MJ (1984) Biological effects of di-(2-ethylhexyl) phthalate and other phthalic acid esters. Crit Rev Toxicol 13:283–317PubMedCrossRefGoogle Scholar
  70. 70.
    Blount BC, Silva MJ, Caudill SP, Needham LL, Pirkle JL, Sampson EJ, Lucier GW, Jackson RJ, Brock JW (2000) Levels of seven urinary phthalate metabolites in a human reference population. Environ Health Perspect 108:979–982PubMedCrossRefGoogle Scholar
  71. 71.
    Loff S, Kabs F, Witt K, Sartoris J, Mandl B, Niessen KH, Waag KL (2000) Polyvinylchloride infusion lines expose infants to large amounts of toxic plasticizers. J Pediatr Surg 35:1775–1781PubMedCrossRefGoogle Scholar
  72. 72.
    Fisher JS (2004) Environmental anti-androgens and male reproductive health: focus on phthalates and testicular dysgenesis syndrome. Reproduction 127:305–315PubMedCrossRefGoogle Scholar
  73. 73.
    Latini G, Del Vecchio A, Massaro M, Verrotti A, De Felice C (2006) Phthalate exposure and male infertility. Toxicology 226:90–98PubMedCrossRefGoogle Scholar
  74. 74.
    Sharpe RM, Skakkebaek NE (2008) Testicular dysgenesis syndrome: mechanistic insights and potential new downstream effects. Fertil Steril 89:e33–e38PubMedCrossRefGoogle Scholar
  75. 75.
    Kavlock R, Barr D, Boekelheide K, Breslin W, Breysse P, Chapin R, Gaido K, Hodgson E, Marcus M, Shea K, Williams P (2006) NTP-CERHR Expert Panel update on the reproductive and developmental toxicity of di(2-ethylhexyl) phthalate. Reprod Toxicol 22:291–399PubMedCrossRefGoogle Scholar
  76. 76.
    NTP (1991) Final report on the reproductive toxicity of di(n-butyl)phthalate (CAS No. 84-74-2) in Sprague–Dawley rats. National Toxicology Program (NTP), National Technical Information Service (NTIS), U.S. Department of Commerce, Springfield, VAGoogle Scholar
  77. 77.
    Jobling S, Reynolds T, White R, Parker MG, Sumpter JP (1995) A variety of environmentally persistent chemicals, including some phthalate plasticizers, are weakly estrogenic. Environ Health Perspect 103:582–587PubMedCrossRefGoogle Scholar
  78. 78.
    Gray LE Jr, Ostby J, Ferrell J, Rehnberg G, Linder R, Cooper R, Goldman J, Slott V, Laskey J (1989) A dose-response analysis of methoxychlor-induced alterations of reproductive development and function in the rat. Fundam Appl Toxicol 12:92–108PubMedCrossRefGoogle Scholar
  79. 79.
    Mylchreest E, Cattley RC, Foster PM (1998) Male reproductive tract malformations in rats following gestational and lactational exposure to di(n-butyl) phthalate: an antiandrogenic mechanism? Toxicol Sci 43:47–60PubMedGoogle Scholar
  80. 80.
    Lehmann KP, Phillips S, Sar M, Foster PM, Gaido KW (2004) Dose-dependent alterations in gene expression and testosterone synthesis in the fetal testes of male rats exposed to di(n-butyl) phthalate. Toxicol Sci 81:60–68PubMedCrossRefGoogle Scholar
  81. 81.
    Mylchreest E, Sar M, Cattley RC, Foster PM (1999) Disruption of androgen-regulated male reproductive development by di(n-butyl) phthalate during late gestation in rats is different from flutamide. Toxicol Appl Pharmacol 156:81–95PubMedCrossRefGoogle Scholar
  82. 82.
    Mylchreest E, Wallace DG, Cattley RC, Foster PM (2000) Dose-dependent alterations in androgen-regulated male reproductive development in rats exposed to di(n-butyl) phthalate during late gestation. Toxicol Sci 55:143–151PubMedCrossRefGoogle Scholar
  83. 83.
    Shultz VD, Phillips S, Sar M, Foster PM, Gaido KW (2001) Altered gene profiles in fetal rat testes after in utero exposure to di(n-butyl) phthalate. Toxicol Sci 64:233–242PubMedCrossRefGoogle Scholar
  84. 84.
    Mylchreest E, Sar M, Wallace DG, Foster PM (2002) Fetal testosterone insufficiency and abnormal proliferation of Leydig cells and gonocytes in rats exposed to di(n-butyl) phthalate. Reprod Toxicol 16:19–28PubMedCrossRefGoogle Scholar
  85. 85.
    Barlow NJ, Phillips SL, Wallace DG, Sar M, Gaido KW, Foster PM (2003) Quantitative changes in gene expression in fetal rat testes following exposure to di(n-butyl) phthalate. Toxicol Sci 73:431–441PubMedCrossRefGoogle Scholar
  86. 86.
    David RM (2006) Proposed mode of action for in utero effects of some phthalate esters on the developing male reproductive tract. Toxicol Pathol 34:209–219PubMedCrossRefGoogle Scholar
  87. 87.
    Hallmark N, Walker M, McKinnell C, Mahood IK, Scott H, Bayne R, Coutts S, Anderson RA, Greig I, Morris K, Sharpe RM (2007) Effects of monobutyl and di(n-butyl) phthalate in vitro on steroidogenesis and Leydig cell aggregation in fetal testis explants from the rat: comparison with effects in vivo in the fetal rat and neonatal marmoset and in vitro in the human. Environ Health Perspect 115:390–396PubMedCrossRefGoogle Scholar
  88. 88.
    Chauvigne F, Menuet A, Lesne L, Chagnon M, Chevrier C, Regnier J, Angerer J, Jegou B (2009) Time- and dose-related effects of di-(2-ethylhexyl) phthalate and its main metabolites on the function of the rat fetal testis in vitro. Environ Health Perspect 117:515–521PubMedGoogle Scholar
  89. 89.
    Li H, Kim KH (2003) Effects of mono-(2-ethylhexyl) phthalate on fetal and neonatal rat testis organ cultures. Biol Reprod 69:1964–1972PubMedCrossRefGoogle Scholar
  90. 90.
    Stroheker T, Regnier JF, Lassurguere J, Chagnon MC (2006) Effect of in utero exposure to di-(2-ethylhexyl)phthalate: distribution in the rat fetus and testosterone production by rat fetal testis in culture. Food Chem Toxicol 44:2064–2069PubMedCrossRefGoogle Scholar
  91. 91.
    Traggiai C, Stanhope R (2003) Disorders of pubertal development. Best Pract Res Clin Obstet Gynaecol 17:41–56PubMedCrossRefGoogle Scholar
  92. 92.
    Brook CG, Jacobs HS, Stanhope R, Adams J, Hindmarsh P (1987) Pulsatility of reproductive hormones: applications to the understanding of puberty and to the treatment of infertility. Baillieres Clin Endocrinol Metab 1:23–41PubMedCrossRefGoogle Scholar
  93. 93.
    Viswanathan V, Eugster EA (2009) Etiology and treatment of hypogonadism in adolescents. Endocrinol Metab Clin North Am 38:719–738PubMedCrossRefGoogle Scholar
  94. 94.
    Furuya S, Kumamoto Y, Sugiyama S (1978) Fine structure and development of Sertoli junctions in human testis. Arch Androl 1:211–219PubMedCrossRefGoogle Scholar
  95. 95.
    Wong CH, Cheng CY (2005) The blood-testis barrier: its biology, regulation, and physiological role in spermatogenesis. Curr Top Dev Biol 71:263–296PubMedCrossRefGoogle Scholar
  96. 96.
    Moroi S, Saitou M, Fujimoto K, Sakakibara A, Furuse M, Yoshida O, Tsukita S (1998) Occludin is concentrated at tight junctions of mouse/rat but not human/guinea pig Sertoli cells in testes. Am J Physiol 274:C1708–C1717PubMedGoogle Scholar
  97. 97.
    Gow A, Southwood CM, Li JS, Pariali M, Riordan GP, Brodie SE, Danias J, Bronstein JM, Kachar B, Lazzarini RA (1999) CNS myelin and sertoli cell tight junction strands are absent in Osp/claudin-11 null mice. Cell 99:649–659PubMedCrossRefGoogle Scholar
  98. 98.
    Gliki G, Ebnet K, Aurrand-Lions M, Imhof BA, Adams RH (2004) Spermatid differentiation requires the assembly of a cell polarity complex downstream of junctional adhesion molecule-C. Nature 431:320–324PubMedCrossRefGoogle Scholar
  99. 99.
    Lee NP, Mruk D, Lee WM, Cheng CY (2003) Is the cadherin/catenin complex a functional unit of cell-cell actin-based adherens junctions in the rat testis? Biol Reprod 68:489–508PubMedCrossRefGoogle Scholar
  100. 100.
    Mueller S, Rosenquist TA, Takai Y, Bronson RA, Wimmer E (2003) Loss of nectin-2 at Sertoli-spermatid junctions leads to male infertility and correlates with severe spermatozoan head and midpiece malformation, impaired binding to the zona pellucida, and oocyte penetration. Biol Reprod 69:1330–1340PubMedCrossRefGoogle Scholar
  101. 101.
    Russell L (1977) Movement of spermatocytes from the basal to the adluminal compartment of the rat testis. Am J Anat 148:313–328PubMedCrossRefGoogle Scholar
  102. 102.
    Yu WJ, Lee BJ, Nam SY, Ahn B, Hong JT, Do JC, Kim YC, Lee YS, Yun YW (2004) Reproductive disorders in pubertal and adult phase of the male rats exposed to vinclozolin during puberty. J Vet Med Sci 66:847–853PubMedCrossRefGoogle Scholar
  103. 103.
    Blystone CR, Lambright CS, Cardon MC, Furr J, Rider CV, Hartig PC, Wilson VS, Gray LE Jr (2009) Cumulative and antagonistic effects of a mixture of the antiandrogens vinclozolin and iprodione in the pubertal male rat. Toxicol Sci 111:179–188PubMedCrossRefGoogle Scholar
  104. 104.
    Russell LD, Ettlin RA, Sinha Hikim AP, Clegg ED (1990) Histological and histopathological evaluation of the testis. Cache River Press, Clearwater, FLGoogle Scholar
  105. 105.
    Lee TL, Pang AL, Rennert OM, Chan WY (2009) Genomic landscape of developing male germ cells. Birth Defects Res C Embryo Today 87:43–63PubMedCrossRefGoogle Scholar
  106. 106.
    Dadoune JP, Siffroi JP, Alfonsi MF (2004) Transcription in haploid male germ cells. Int Rev Cytol 237:1–56PubMedCrossRefGoogle Scholar
  107. 107.
    Ostermeier GC, Dix DJ, Miller D, Khatri P, Krawetz SA (2002) Spermatozoal RNA profiles of normal fertile men. Lancet 360:772–777PubMedCrossRefGoogle Scholar
  108. 108.
    Krawetz SA (2005) Paternal contribution: new insights and future challenges. Nat Rev Genet 6:633–642PubMedCrossRefGoogle Scholar
  109. 109.
    Miller D, Ostermeier GC, Krawetz SA (2005) The controversy, potential and roles of spermatozoal RNA. Trends Mol Med 11:156–163PubMedCrossRefGoogle Scholar
  110. 110.
    Hinton BT, Palladino MA (1995) Epididymal epithelium: its contribution to the formation of a luminal fluid microenvironment. Microsc Res Tech 30:67–81PubMedCrossRefGoogle Scholar
  111. 111.
    Boue F, Lassalle B, Duquenne C, Villaroya S, Testart J, Lefevre A, Finaz C (1992) Human sperm proteins from testicular and epididymal origin that participate in fertilization: modulation of sperm binding to zona-free hamster oocytes, using monoclonal antibodies. Mol Reprod Dev 33:470–480PubMedCrossRefGoogle Scholar
  112. 112.
    McNeal JE (1988) Normal histology of the prostate. Am J Surg Pathol 12:619–633PubMedCrossRefGoogle Scholar
  113. 113.
    Lee C, Keefer M, Zhao ZW, Kroes R, Berg L, Liu XX, Sensibar J (1989) Demonstration of the role of prostate-specific antigen in semen liquefaction by two-dimensional electrophoresis. J Androl 10:432–438PubMedGoogle Scholar
  114. 114.
    Boekelheide K, Fleming SL, Allio T, Embree-Ku ME, Hall SJ, Johnson KJ, Kwon EJ, Patel SR, Rasoulpour RJ, Schoenfeld HA, Thompson S (2003) 2,5-Hexanedione-induced testicular injury. Annu Rev Pharmacol Toxicol 43:125–147PubMedCrossRefGoogle Scholar
  115. 115.
    Bjorge C, Wiger R, Holme JA, Brunborg G, Andersen R, Dybing E, Soderlund EJ (1995) In vitro toxicity of 1,2-dibromo-3-chloropropane (DBCP) in different testicular cell types from rats. Reprod Toxicol 9:461–473PubMedCrossRefGoogle Scholar
  116. 116.
    Slutsky M, Levin JL, Levy BS (1999) Azoospermia and oligospermia among a large cohort of DBCP applicators in 12 countries. Int J Occup Environ Health 5:116–122PubMedGoogle Scholar
  117. 117.
    Amann RP, Berndtson WE (1986) Assessment of procedures for screening agents for effects on male reproduction: effects of dibromochloropropane (DBCP) on the rat. Fundam Appl Toxicol 7:244–255PubMedCrossRefGoogle Scholar
  118. 118.
    Pearson PG, Soderlund EJ, Dybing E, Nelson SD (1990) Metabolic activation of 1,2-dibromo-3-chloropropane: evidence for the formation of reactive episulfonium ion intermediates. Biochemistry 29:4971–4981PubMedCrossRefGoogle Scholar
  119. 119.
    Taylor MF, de Boer-Brouwer M, Woolveridge I, Teerds KJ, Morris ID (1999) Leydig cell apoptosis after the administration of ethane dimethanesulfonate to the adult male rat is a Fas-mediated process. Endocrinology 140:3797–3804PubMedCrossRefGoogle Scholar
  120. 120.
    Bakalska M, Atanassova N, Angelova P, Koeva I, Nikolov B, Davidoff M (2001) Degeneration and restoration of spermatogenesis in relation to the changes in Leydig cell population following ethane dimethanesulfonate treatment in adult rats. Endocr Regul 35:209–215PubMedGoogle Scholar
  121. 121.
    Moffit JS, Bryant BH, Hall SJ, Boekelheide K (2007) Dose-dependent effects of sertoli cell toxicants 2,5-hexanedione, carbendazim, and mono-(2-ethylhexyl) phthalate in adult rat testis. Toxicol Pathol 35:719–727PubMedCrossRefGoogle Scholar
  122. 122.
    Yu G, Guo Q, Xie L, Liu Y, Wang X (2009) Effects of subchronic exposure to carbendazim on spermatogenesis and fertility in male rats. Toxicol Ind Health 25:41–47PubMedCrossRefGoogle Scholar
  123. 123.
    Noorafshan A, Karbalay-Doust S, Ardekani FM (2005) High doses of nandrolone decanoate reduce volume of testis and length of seminiferous tubules in rats. APMIS 113:122–125PubMedCrossRefGoogle Scholar
  124. 124.
    O’Sullivan AJ, Kennedy MC, Casey JH, Day RO, Corrigan B, Wodak AD (2000) Anabolic-androgenic steroids: medical assessment of present, past and potential users. Med J Aust 173:323–327PubMedGoogle Scholar
  125. 125.
    Takahashi M, Tatsugi Y, Kohno T (2004) Endocrinological and pathological effects of anabolic-androgenic steroid in male rats. Endocr J 51:425–434PubMedCrossRefGoogle Scholar
  126. 126.
    Rasoulpour RJ, Schoenfeld HA, Gray DA, Boekelheide K (2003) Expression of a K48R mutant ubiquitin protects mouse testis from cryptorchid injury and aging. Am J Pathol 163:2595–2603PubMedCrossRefGoogle Scholar
  127. 127.
    Richburg JH, Johnson KJ, Schoenfeld HA, Meistrich ML, Dix DJ (2002) Defining the cellular and molecular mechanisms of toxicant action in the testis. Toxicol Lett 135:167–183PubMedCrossRefGoogle Scholar
  128. 128.
    d’Ancona FC, Debruyne FM (2005) Endocrine approaches in the therapy of prostate carcinoma. Hum Reprod Update 11:309–317PubMedCrossRefGoogle Scholar
  129. 129.
    Schoenfeld HA, Hall SJ, Boekelheide K (2001) Continuously proliferative stem germ cells partially repopulate the aged, atrophic rat testis after gonadotropin-releasing hormone agonist therapy. Biol Reprod 64:1273–1282PubMedCrossRefGoogle Scholar
  130. 130.
    Wang H, Zhou Z, Xu M, Li J, Xiao J, Xu ZY, Sha J (2004) A spermatogenesis-related gene expression profile in human spermatozoa and its potential clinical applications. J Mol Med 82:317–324PubMedCrossRefGoogle Scholar
  131. 131.
    Aoki VW, Liu L, Carrell DT (2006) A novel mechanism of protamine expression deregulation highlighted by abnormal protamine transcript retention in infertile human males with sperm protamine deficiency. Mol Hum Reprod 12:41–50PubMedCrossRefGoogle Scholar
  132. 132.
    Cho C, Willis WD, Goulding EH, Jung-Ha H, Choi YC, Hecht NB, Eddy EM (2001) Haploinsufficiency of protamine-1 or -2 causes infertility in mice. Nat Genet 28:82–86PubMedGoogle Scholar
  133. 133.
    Steger K, Wilhelm J, Konrad L, Stalf T, Greb R, Diemer T, Kliesch S, Bergmann M, Weidner W (2008) Both protamine-1 to protamine-2 mRNA ratio and Bcl2 mRNA content in testicular spermatids and ejaculated spermatozoa discriminate between fertile and infertile men. Hum Reprod 23:11–16PubMedCrossRefGoogle Scholar
  134. 134.
    Klinefelter GR (2008) Saga of a sperm fertility biomarker. Anim Reprod Sci 105:90–103PubMedCrossRefGoogle Scholar
  135. 135.
    Paulsen M, Ferguson-Smith AC (2001) DNA methylation in genomic imprinting, development, and disease. J Pathol 195:97–110PubMedCrossRefGoogle Scholar
  136. 136.
    Li E, Bestor TH, Jaenisch R (1992) Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell 69:915–926PubMedCrossRefGoogle Scholar
  137. 137.
    Okano M, Bell DW, Haber DA, Li E (1999) DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 99:247–257PubMedCrossRefGoogle Scholar
  138. 138.
    Niemitz EL, Feinberg AP (2004) Epigenetics and assisted reproductive technology: a call for investigation. Am J Hum Genet 74:599–609PubMedCrossRefGoogle Scholar
  139. 139.
    Weber M, Davies JJ, Wittig D, Oakeley EJ, Haase M, Lam WL, Schubeler D (2005) Chromosome-wide and promoter-specific analyses identify sites of differential DNA methylation in normal and transformed human cells. Nat Genet 37:853–862PubMedCrossRefGoogle Scholar
  140. 140.
    Houshdaran S, Cortessis VK, Siegmund K, Yang A, Laird PW, Sokol RZ (2007) Widespread epigenetic abnormalities suggest a broad DNA methylation erasure defect in abnormal human sperm. PLoS One 2:e1289PubMedCrossRefGoogle Scholar
  141. 141.
    Pathak S, Kedia-Mokashi N, Saxena M, D’Souza R, Maitra A, Parte P, Gill-Sharma M, Balasinor N (2009) Effect of tamoxifen treatment on global and insulin-like growth factor 2-H19 locus-specific DNA methylation in rat spermatozoa and its association with embryo loss. Fertil Steril 91:2253–2263PubMedCrossRefGoogle Scholar
  142. 142.
    Plas E, Berger P, Hermann M, Pfluger H (2000) Effects of aging on male fertility? Exp Gerontol 35:543–551PubMedCrossRefGoogle Scholar
  143. 143.
    Hermann M, Berger P (2001) Hormonal changes in aging men: a therapeutic indication? Exp Gerontol 36:1075–1082PubMedCrossRefGoogle Scholar
  144. 144.
    Tsutsumi R, Webster NJ (2009) GnRH pulsatility, the pituitary response and reproductive dysfunction. Endocr J 56:729–737PubMedCrossRefGoogle Scholar
  145. 145.
    Zirkin BR, Santulli R, Strandberg JD, Wright WW, Ewing LL (1993) Testicular steroidogenesis in the aging brown Norway rat. J Androl 14:118–123PubMedGoogle Scholar
  146. 146.
    Wang C, Sinha Hikim AP, Lue YH, Leung A, Baravarian S, Swerdloff RS (1999) Reproductive aging in the Brown Norway rat is characterized by accelerated germ cell apoptosis and is not altered by luteinizing hormone replacement. J Androl 20:509–518PubMedGoogle Scholar
  147. 147.
    Chen H, Hardy MP, Huhtaniemi I, Zirkin BR (1994) Age-related decreased Leydig cell testosterone production in the brown Norway rat. J Androl 15:551–557PubMedGoogle Scholar
  148. 148.
    Kim IS, Ariyaratne HB, Mendis-Handagama SM (2002) Changes in the testis interstitium of Brown Norway rats with aging and effects of luteinizing and thyroid hormones on the aged testes in enhancing the steroidogenic potential. Biol Reprod 66:1359–1366PubMedCrossRefGoogle Scholar
  149. 149.
    Birnbaum LS (1991) Pharmacokinetic basis of age-related changes in sensitivity to toxicants. Annu Rev Pharmacol Toxicol 31:101–128PubMedCrossRefGoogle Scholar
  150. 150.
    Jackson JA, Birnbaum LS, Diliberto JJ (1998) Effects of age, sex, and pharmacologic agents on the biliary elimination of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in F344 rats. Drug Metab Dispos 26:714–719PubMedGoogle Scholar
  151. 151.
    Bliss CI (1939) The toxicity of poisons applied jointly. Ann Appl Biol 27:585–615CrossRefGoogle Scholar
  152. 152.
    Parvez S, Venkataraman C, Mukherji S (2009) Nature and prevalence of non-additive toxic effects in industrially relevant mixtures of organic chemicals. Chemosphere 75:1429–1439PubMedCrossRefGoogle Scholar
  153. 153.
    Rider CV, Wilson VS, Howdeshell KL, Hotchkiss AK, Furr JR, Lambright CR, Gray LE Jr (2009) Cumulative effects of in utero administration of mixtures of “antiandrogens” on male rat reproductive development. Toxicol Pathol 37:100–113PubMedCrossRefGoogle Scholar
  154. 154.
    Howdeshell KL, Furr J, Lambright CR, Rider CV, Wilson VS, Gray LE Jr (2007) Cumulative effects of dibutyl phthalate and diethylhexyl phthalate on male rat reproductive tract development: altered fetal steroid hormones and genes. Toxicol Sci 99:190–202PubMedCrossRefGoogle Scholar
  155. 155.
    Rider CV, Furr J, Wilson VS, Gray LE Jr (2008) A mixture of seven antiandrogens induces reproductive malformations in rats. Int J Androl 31:249–262PubMedCrossRefGoogle Scholar
  156. 156.
    Andric SA, Kostic TS, Stojilkovic SS, Kovacevic RZ (2000) Inhibition of rat testicular androgenesis by a polychlorinated biphenyl mixture aroclor 1248. Biol Reprod 62:1882–1888PubMedCrossRefGoogle Scholar
  157. 157.
    Markelewicz RJ Jr, Hall SJ, Boekelheide K (2004) 2,5-Hexanedione and carbendazim coexposure synergistically disrupts rat spermatogenesis despite opposing molecular effects on microtubules. Toxicol Sci 80:92–100PubMedCrossRefGoogle Scholar
  158. 158.
    Calabrese EJ (2005) Paradigm lost, paradigm found: the re-emergence of hormesis as a fundamental dose response model in the toxicological sciences. Environ Pollut 138:379–411PubMedCrossRefGoogle Scholar
  159. 159.
    NTP (2001) NTP report of the endocrine disruptors low-dose peer review. National Toxicology Program (NTP), National Institute of Environmental Health Sciences, Research Triangle Park, NCGoogle Scholar
  160. 160.
    Razzaghi M, Loomis P (2001) The concept of hormesis in developmental toxicology. Hum Ecologic Risk Assess 7:933–942CrossRefGoogle Scholar
  161. 161.
    Mushak P (2007) Hormesis and its place in nonmonotonic dose-response relationships: some scientific reality checks. Environ Health Perspect 115:500–506PubMedCrossRefGoogle Scholar
  162. 162.
    Falls JG, Pulford DJ, Wylie AA, Jirtle RL (1999) Genomic imprinting: implications for human disease. Am J Pathol 154:635–647PubMedCrossRefGoogle Scholar
  163. 163.
    Weaver JR, Susiarjo M, Bartolomei MS (2009) Imprinting and epigenetic changes in the early embryo. Mamm Genome 20:532–543PubMedCrossRefGoogle Scholar
  164. 164.
    Biliya S, Bulla LA Jr (2010) Genomic imprinting: the influence of differential methylation in the two sexes. Exp Biol Med 235:139–147CrossRefGoogle Scholar
  165. 165.
    Oswald J, Engemann S, Lane N, Mayer W, Olek A, Fundele R, Dean W, Reik W, Walter J (2000) Active demethylation of the paternal genome in the mouse zygote. Curr Biol 10:475–478CrossRefGoogle Scholar
  166. 166.
    Mayer W, Niveleau A, Walter J, Fundele R, Haaf T (2000) Demethylation of the zygotic paternal genome. Nature 403:501–502PubMedCrossRefGoogle Scholar
  167. 167.
    Kierszenbaum AL (2002) Genomic imprinting and epigenetic reprogramming: unearthing the garden of forking paths. Mol Reprod Dev 63:269–272PubMedCrossRefGoogle Scholar
  168. 168.
    Reik W, Dean W, Walter J (2001) Epigenetic reprogramming in mammalian development. Science 293:1089–1093PubMedCrossRefGoogle Scholar
  169. 169.
    Trasler JM (2009) Epigenetics in spermatogenesis. Mol Cell Endocrinol 306:33–36PubMedCrossRefGoogle Scholar
  170. 170.
    Oakes CC, La Salle S, Smiraglia DJ, Robaire B, Trasler JM (2007) Developmental acquisition of genome-wide DNA methylation occurs prior to meiosis in male germ cells. Dev Biol 307:368–379PubMedCrossRefGoogle Scholar
  171. 171.
    Richards EJ (2006) Inherited epigenetic variation―revisiting soft inheritance. Nat Rev Genet 7:395–401PubMedCrossRefGoogle Scholar
  172. 172.
    Anway MD, Cupp AS, Uzumcu M, Skinner MK (2005) Epigenetic transgenerational actions of endocrine disruptors and male fertility. Science 308:1466–1469PubMedCrossRefGoogle Scholar
  173. 173.
    Skinner MK (2008) What is an epigenetic transgenerational phenotype? F3 or F2. Reprod Toxicol 25:2–6PubMedCrossRefGoogle Scholar
  174. 174.
    Chang HS, Anway MD, Rekow SS, Skinner MK (2006) Transgenerational epigenetic imprinting of the male germline by endocrine disruptor exposure during gonadal sex determination. Endocrinology 147:5524–5541PubMedCrossRefGoogle Scholar
  175. 175.
    Anway MD, Leathers C, Skinner MK (2006) Endocrine disruptor vinclozolin induced epigenetic transgenerational adult-onset disease. Endocrinology 147:5515–5523PubMedCrossRefGoogle Scholar
  176. 176.
    Schneider S, Kaufmann W, Buesen R, van Ravenzwaay B (2008) Vinclozolin―the lack of a transgenerational effect after oral maternal exposure during organogenesis. Reprod Toxicol 25:352–360PubMedCrossRefGoogle Scholar
  177. 177.
    Furr J, Gray LE (2009) Vinclozolin (V) treatment induces reproductive malformation and infertility in F1 male rats when administered during sexual but not gonadal differentiation. The effects are not transmitted to the subsequent generations (abstract No. 1441). Toxicologist 108(1):298; Society of Toxicology, Baltimore, MD, USAGoogle Scholar
  178. 178.
    McGlynn KA, Devesa SS, Sigurdson AJ, Brown LM, Tsao L, Tarone RE (2003) Trends in the incidence of testicular germ cell tumors in the United States. Cancer 97:63–70PubMedCrossRefGoogle Scholar
  179. 179.
    Shah MN, Devesa SS, Zhu K, McGlynn KA (2007) Trends in testicular germ cell tumours by ethnic group in the United States. Int J Androl 30:206–213; discussion 213–204PubMedCrossRefGoogle Scholar
  180. 180.
    Lacerda HM, Akre O, Merletti F, Richiardi L (2009) Time trends in the incidence of testicular cancer in childhood and young adulthood. Cancer Epidemiol Biomarkers Prev 18:2042–2045PubMedCrossRefGoogle Scholar
  181. 181.
    Rajpert-De Meyts E (2006) Developmental model for the pathogenesis of testicular carcinoma in situ: genetic and environmental aspects. Hum Reprod Update 12:303–323PubMedCrossRefGoogle Scholar
  182. 182.
    Ahlgren M, Wohlfahrt J, Olsen LW, Sorensen TI, Melbye M (2007) Birth weight and risk of cancer. Cancer 110:412–419PubMedCrossRefGoogle Scholar
  183. 183.
    Michos A, Xue F, Michels KB (2007) Birth weight and the risk of testicular cancer: a meta-analysis. Int J Cancer 121:1123–1131PubMedCrossRefGoogle Scholar
  184. 184.
    Neale RE, Carriere P, Murphy MF, Baade PD (2008) Testicular cancer in twins: a meta-analysis. Br J Cancer 98:171–173PubMedCrossRefGoogle Scholar
  185. 185.
    Swerdlow AJ, De Stavola BL, Swanwick MA, Mangtani P, Maconochie NE (1999) Risk factors for testicular cancer: a case-control study in twins. Br J Cancer 80:1098–1102PubMedCrossRefGoogle Scholar
  186. 186.
    Hoei-Hansen CE, Olesen IA, Jorgensen N, Carlsen E, Holm M, Almstrup K, Leffers H, Rajpert-De Meyts E (2007) Current approaches for detection of carcinoma in situ testis. Int J Androl 30:398–404; discussion 404–395PubMedCrossRefGoogle Scholar
  187. 187.
    Skakkebaek NE, Rajpert-De Meyts E, Jorgensen N, Main KM, Leffers H, Andersson AM, Juul A, Jensen TK, Toppari J (2007) Testicular cancer trends as ‘whistle blowers’ of testicular developmental problems in populations. Int J Androl 30:198–204; discussion 204–195PubMedCrossRefGoogle Scholar
  188. 188.
    Rajpert-De Meyts E, Bartkova J, Samson M, Hoei-Hansen CE, Frydelund-Larsen L, Bartek J, Skakkebaek NE (2003) The emerging phenotype of the testicular carcinoma in situ germ cell. APMIS 111:267–278; discussion 278–269PubMedGoogle Scholar
  189. 189.
    Rajpert-de Meyts E, Hoei-Hansen CE (2007) From gonocytes to testicular cancer: the role of impaired gonadal development. Ann NY Acad Sci 1120:168–180PubMedCrossRefGoogle Scholar
  190. 190.
    Barlow NJ, Foster PM (2003) Pathogenesis of male reproductive tract lesions from gestation through adulthood following in utero exposure to di(n-butyl) phthalate. Toxicol Pathol 31:397–410PubMedGoogle Scholar
  191. 191.
    Ferrara D, Hallmark N, Scott H, Brown R, McKinnell C, Mahood IK, Sharpe RM (2006) Acute and long-term effects of in utero exposure of rats to di(n-butyl) phthalate on testicular germ cell development and proliferation. Endocrinology 147:5352–5362PubMedCrossRefGoogle Scholar
  192. 192.
    Olesen IA, Sonne SB, Hoei-Hansen CE, Rajpert-DeMeyts E, Skakkebaek NE (2007) Environment, testicular dysgenesis and carcinoma in situ testis. Best Pract Res Clin Endocrinol Metab 21:462–478PubMedCrossRefGoogle Scholar
  193. 193.
    Krentz AD, Murphy MW, Kim S, Cook MS, Capel B, Zhu R, Matin A, Sarver AL, Parker KL, Griswold MD, Looijenga LH, Bardwell VJ, Zarkower D (2009) The DM domain protein DMRT1 is a dose-sensitive regulator of fetal germ cell proliferation and pluripotency. Proc Natl Acad Sci USA 106:22323–22328PubMedCrossRefGoogle Scholar
  194. 194.
    Jiang LI, Nadeau JH (2001) 129/Sv mice―a model system for studying germ cell biology and testicular cancer. Mamm Genome 12:89–94PubMedCrossRefGoogle Scholar
  195. 195.
    Youngren KK, Coveney D, Peng XN, Bhattacharya C, Schmidt LS, Nickerson ML, Lamb BT, Deng JM, Behringer RR, Capel B, Rubin EM, Nadeau JH, Matin A (2005) The Ter mutation in the dead end gene causes germ cell loss and testicular germ cell tumours. Nature 435:360–364PubMedCrossRefGoogle Scholar
  196. 196.
    Meng X, de Rooij DG, Westerdahl K, Saarma M, Sariola H (2001) Promotion of seminomatous tumors by targeted overexpression of glial cell line-derived neurotrophic factor in mouse testis. Cancer Res 61:3267–3271PubMedGoogle Scholar
  197. 197.
    Donehower LA (1996) The p53-deficient mouse: a model for basic and applied cancer studies. Semin Cancer Biol 7:269–278PubMedCrossRefGoogle Scholar
  198. 198.
    Donehower LA, Harvey M, Slagle BL, McArthur MJ, Montgomery CA Jr, Butel JS, Bradley A (1992) Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature 356:215–221PubMedCrossRefGoogle Scholar
  199. 199.
    Harvey M, McArthur MJ, Montgomery CA Jr, Butel JS, Bradley A, Donehower LA (1993) Spontaneous and carcinogen-induced tumorigenesis in p53-deficient mice. Nat Genet 5:225–229PubMedCrossRefGoogle Scholar
  200. 200.
    Harvey M, McArthur MJ, Montgomery CA Jr, Bradley A, Donehower LA (1993) Genetic background alters the spectrum of tumors that develop in p53-deficient mice. FASEB J 7:938–943PubMedGoogle Scholar
  201. 201.
    Xia T, Blackburn WR, Gardner WA Jr (1990) Fetal prostate growth and development. Pediatr Pathol 10:527–537PubMedCrossRefGoogle Scholar
  202. 202.
    Cunha GR (1994) Role of mesenchymal-epithelial interactions in normal and abnormal development of the mammary gland and prostate. Cancer 74:1030–1044PubMedCrossRefGoogle Scholar
  203. 203.
    Hayward SW, Cunha GR, Dahiya R (1996) Normal development and carcinogenesis of the prostate. A unifying hypothesis. Ann NY Acad Sci 784:50–62PubMedCrossRefGoogle Scholar
  204. 204.
    Cunha GR, Alarid ET, Turner T, Donjacour AA, Boutin EL, Foster BA (1992) Normal and abnormal development of the male urogenital tract. Role of androgens, mesenchymal-epithelial interactions, and growth factors. J Androl 13:465–475PubMedGoogle Scholar
  205. 205.
    Ekbom A (1998) Growing evidence that several human cancers may originate in utero. Semin Cancer Biol 8:237–244PubMedCrossRefGoogle Scholar
  206. 206.
    Ellem SJ, Risbridger GP (2009) The dual, opposing roles of estrogen in the prostate. Ann NY Acad Sci 1155:174–186PubMedCrossRefGoogle Scholar
  207. 207.
    Adams JY, Leav I, Lau KM, Ho SM, Pflueger SM (2002) Expression of estrogen receptor beta in the fetal, neonatal, and prepubertal human prostate. Prostate 52:69–81PubMedCrossRefGoogle Scholar
  208. 208.
    Aksglaede L, Juul A, Leffers H, Skakkebaek NE, Andersson AM (2006) The sensitivity of the child to sex steroids: possible impact of exogenous estrogens. Hum Reprod Update 12:341–349PubMedCrossRefGoogle Scholar
  209. 209.
    Bosland MC (2005) The role of estrogens in prostate carcinogenesis: a rationale for chemoprevention. Rev Urol 7(Suppl 3):S4–S10PubMedGoogle Scholar
  210. 210.
    Sugimura Y, Cunha GR, Yonemura CU, Kawamura J (1988) Temporal and spatial factors in diethylstilbestrol-induced squamous metaplasia of the developing human prostate. Hum Pathol 19:133–139PubMedCrossRefGoogle Scholar
  211. 211.
    Yonemura CY, Cunha GR, Sugimura Y, Mee SL (1995) Temporal and spatial factors in diethylstilbestrol-induced squamous metaplasia in the developing human prostate. II. Persistent changes after removal of diethylstilbestrol. Acta Anat 153:1–11PubMedCrossRefGoogle Scholar
  212. 212.
    Bosland MC, Ford H, Horton L (1995) Induction at high incidence of ductal prostate adenocarcinomas in NBL/Cr and Sprague-Dawley Hsd:SD rats treated with a combination of testosterone and estradiol-17β or diethylstilbestrol. Carcinogenesis 16:1311–1317PubMedCrossRefGoogle Scholar
  213. 213.
    Prins GS, Tang WY, Belmonte J, Ho SM (2008) Perinatal exposure to oestradiol and bisphenol A alters the prostate epigenome and increases susceptibility to carcinogenesis. Basic Clin Pharmacol Toxicol 102:134–138PubMedCrossRefGoogle Scholar
  214. 214.
    Prins GS, Birch L, Tang WY, Ho SM (2007) Developmental estrogen exposures predispose to prostate carcinogenesis with aging. Reprod Toxicol 23:374–382PubMedCrossRefGoogle Scholar

Copyright information

© Springer Basel AG 2012

Authors and Affiliations

  • Sarah Campion
    • 1
  • Natasha Catlin
    • 1
  • Nicholas Heger
    • 1
  • Elizabeth V. McDonnell
    • 1
  • Sara E. Pacheco
    • 1
  • Camelia Saffarini
    • 1
  • Moses A. Sandrof
    • 1
  • Kim Boekelheide
    • 1
  1. 1.Department of Pathology and Laboratory MedicineBrown UniversityProvidenceUSA

Personalised recommendations