Gevrey Local Solvability for Degenerate Parabolic Operators of Higher Order

  • Alessandro Oliaro
  • Petar Popivanov
Part of the Operator Theory: Advances and Applications book series (OT, volume 172)

Abstract

In this paper we study the local solvability in Gevrey classes for degenerate parabolic operators of order ≥ 2. We assume that the lower order term vanishes at a suitably smaller rate with respect to the principal part; we then analyze its influence on the behavior of the operator, proving local solvability in Gevrey spaces G s for small s, and local nonsolvability in G s for large s.

Keywords

Degenerate parabolic operators Gevrey classes local solvability non local solvability 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    A. Bove and D. Tartakoff, Propagation of Gevrey regularity for a class of hypoelliptic equations, Trans. Amer. Math. Soc. 348 (1996), 2533–2575.MATHCrossRefMathSciNetGoogle Scholar
  2. [2]
    A. Bove and D. Tartakoff, Optimal non-isotropic Gevrey exponents for sum of squares of vector fields, Comm. Partial Differential Equations 22 (1997), 1263–1282.MATHMathSciNetGoogle Scholar
  3. [3]
    D. Calvo and P. Popivanov, Solvability in Gevrey classes for second powers of the Mizohata operator, C. R. Acad. Bulg. Sci. 57 (2004), 11–18.MATHMathSciNetGoogle Scholar
  4. [4]
    F. Colombini, L Pernazza, and F Treves, Solvability and nonsolvability of second-order evolution equations, in Hyperbolic Problems and Related Topics, Grad. Ser. Anal., Int. Press, Somerville, MA, 2003, 111–120.Google Scholar
  5. [5]
    A. Corli, On local solvability in Gevrey classes of linear partial differential operators with multiple characteristics, Comm. Partial Differential Equations 14 (1989), 1–25.MATHMathSciNetGoogle Scholar
  6. [6]
    T. Gramchev, P. Popivanov and M. Yoshino, Critical Gevrey index for hypoellipticity of parabolic equations and Newton polygons, Ann. Mat. Pura Appl. 170 (1996), 103–131.MATHCrossRefMathSciNetGoogle Scholar
  7. [7]
    B. Helffer, Sur l’hypoellipticité d’une classe d’opérateurs paraboliques dégénérés, in Sur quelques équations aux dérivées partielles singulières, Astérisque, 19, Soc. Math. France, Paris, 1974, 79–105.Google Scholar
  8. [8]
    Y. Kannai, An unsolvable hypoelliptic differential operator, Israel J. Math. 9 (1971), 306–315.MATHMathSciNetGoogle Scholar
  9. [9]
    M. Mascarello and L. Rodino, Partial differential equations with multiple characteristics, Wiley-Akademie Verlag, Berlin, 1997.MATHGoogle Scholar
  10. [10]
    T. Matsusawa, On some degenerate parabolic equations I, Nagoya Math. J. 51 (1973), 57–77.MathSciNetGoogle Scholar
  11. [11]
    T. Matsusawa, On some degenerate parabolic equations II, Nagoya Math. J. 52 (1973), 61–84.MathSciNetGoogle Scholar
  12. [12]
    O.A. Oleinik and E.V. Radkevič, The method of introducing a parameter for the investigation of evolution equations, Uspekhi Mat. Nauk 33,5(203) (1978), 7–76, 237.Google Scholar
  13. [13]
    A. Oliaro, On a Gevrey non-solvable partial differential operator, in Recent Advances in Operator Theory and its Applications, Editors: M.A. Kaashoek, C Van der Mee and S. Seatzu, Birkhäuser, 337–356.Google Scholar
  14. [14]
    P. Popivanov, Local properties of linear pseudodifferential operators with multiple characteristics, C. R. Acad. Bulg. Sci. 29, (1976), 461–464.MATHMathSciNetGoogle Scholar
  15. [15]
    P. Popivanov, Local solvability of several classes of Partial Differential Equations, C. R. Acad. Bulg. Sci. 48, (1995), 15–18.MATHMathSciNetGoogle Scholar
  16. [16]
    P. Popivanov, On a nonsolvable partial differential operator, Ann. Univ. Ferrara VII, Sc. Mat. 49 (2003), 197–208.MathSciNetGoogle Scholar
  17. [17]
    L. Rodino, Gevrey hypoellipticity for a class of operators with multiple characteristics, in Analytic Solutions of Partial Differential Equations (Trento), Astérisque, 89–90, Soc. Math. France, Paris, 1981, 249–262.Google Scholar
  18. [18]
    R. Rubinstein, Examples of nonsolvable partial differential equations, Trans. Amer. Math. Soc. 199 (1974), 123–129.MATHCrossRefMathSciNetGoogle Scholar
  19. [19]
    F. Trèves, On the existence and regularity of solutions of linear partial differential equations, in Proceedings of Symposia in Pure Mathematics, Vol. XXIII, 33–60.Google Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 2006

Authors and Affiliations

  • Alessandro Oliaro
    • 1
  • Petar Popivanov
    • 2
  1. 1.Department of MathematicsUniversity of TorinoTorinoItaly
  2. 2.Institute of Mathematics and InformaticsBulgarian Academy of SciencesSofiaBulgaria

Personalised recommendations