Quantum Gravity pp 293-313 | Cite as
Asymptotic Safety in Quantum Einstein Gravity: Nonperturbative Renormalizability and Fractal Spacetime Structure
Chapter
Abstract
The asymptotic safety scenario of Quantum Einstein Gravity, the quantum field theory of the spacetime metric, is reviewed and it is argued that the theory is likely to be nonperturbatively renormalizable. It is also shown that asymptotic safety implies that spacetime is a fractal in general, with a fractal dimension of 2 on sub-Planckian length scales.
Keywords
Quantum Einstein gravity renormalization group non-Gaussian fixed points fractal spacetime asymptotic safetyPreview
Unable to display preview. Download preview PDF.
References
- [1]K.G. Wilson, J. Kogut, Phys. Rept. 12 (1974) 75; K.G. Wilson, Rev. Mod. Phys. 47 (1975) 773.CrossRefADSGoogle Scholar
- [2]G. Parisi, Nucl. Phys. B 100 (1975) 368, Nucl. Phys. B 254 (1985) 58; K. Gawedzki, A. Kupiainen, Nucl. Phys. B 262 (1985) 33, Phys. Rev. Lett. 54 (1985) 2191, Phys. Rev. Lett. 55 (1985) 363; B. Rosenstein, B.J. Warr, S.H. Park, Phys. Rept. 205 (1991) 59; C. de Calan, P.A. Faria da Veiga, J. Magnen, R. Sénéor, Phys. Rev. Lett. 66 (1991) 3233.CrossRefADSGoogle Scholar
- [3]J. Polchinski, Nucl. Phys. B 231 (1984) 269.CrossRefADSGoogle Scholar
- [4]For a review see: C. Bagnuls and C. Bervillier, Phys. Rept. 348 (2001) 91; T.R. Morris, Prog. Theor. Phys. Suppl. 131 (1998) 395; J. Polonyi, Central Eur. J. Phys. 1 (2004) 1.zbMATHCrossRefADSMathSciNetGoogle Scholar
- [5]S. Weinberg in General Relativity, an Einstein Centenary Survey, S.W. Hawking and W. Israel (Eds.), Cambridge University Press (1979); S. Weinberg, hep-th/9702027.Google Scholar
- [6]M. Reuter, Phys. Rev. D 57 (1998) 971 and hep-th/9605030.CrossRefADSMathSciNetGoogle Scholar
- [7]D. Dou and R. Percacci, Class. Quant. Grav. 15 (1998) 3449.zbMATHCrossRefADSMathSciNetGoogle Scholar
- [8]O. Lauscher and M. Reuter, Phys. Rev. D 65 (2002) 025013 and hep-th/0108040.CrossRefADSMathSciNetGoogle Scholar
- [9]M. Reuter and F. Saueressig, Phys. Rev. D 65 (2002) 065016 and hep-th/0110054.CrossRefADSMathSciNetGoogle Scholar
- [10]O. Lauscher and M. Reuter, Phys. Rev. D 66 (2002) 025026 and hep-th/0205062.CrossRefADSMathSciNetGoogle Scholar
- [11]O. Lauscher and M. Reuter, Class. Quant. Grav. 19 (2002) 483 and hep-th/0110021.zbMATHCrossRefADSMathSciNetGoogle Scholar
- [12]O. Lauscher and M. Reuter, Int. J. Mod. Phys. A 17 (2002) 993 and hep-th/0112089.CrossRefADSMathSciNetGoogle Scholar
- [13]W. Souma, Prog. Theor. Phys. 102 (1999) 181.CrossRefADSMathSciNetGoogle Scholar
- [14]R. Percacci and D. Perini, Phys. Rev. D 67 (2003) 081503.CrossRefADSGoogle Scholar
- [15]R. Percacci and D. Perini, Phys. Rev. D 68 (2003) 044018.CrossRefADSGoogle Scholar
- [16]D. Perini, Nucl. Phys. Proc. Suppl. 127 C (2004) 185.CrossRefADSGoogle Scholar
- [17]M. Reuter and F. Saueressig, Phys. Rev. D 66 (2002) 125001 and hep-th/0206145; Fortschr. Phys. 52 (2004) 650 and hep-th/0311056.CrossRefADSMathSciNetGoogle Scholar
- [18]D. Litim, Phys. Rev. Lett. 92 (2004) 201301.CrossRefADSMathSciNetGoogle Scholar
- [19]A. Bonanno, M. Reuter, JHEP 02 (2005) 035 and hep-th/0410191.CrossRefADSMathSciNetGoogle Scholar
- [20]R. Percacci and D. Perini, hep-th/0401071.Google Scholar
- [21]R. Percacci, hep-th/0409199.Google Scholar
- [22]C. Wetterich, Phys. Lett. B 301 (1993) 90.CrossRefADSGoogle Scholar
- [23]M. Reuter and C. Wetterich, Nucl. Phys. B 417 (1994) 181, Nucl. Phys. B 427 (1994) 291, Nucl. Phys. B 391 (1993) 147, Nucl. Phys. B 408 (1993) 91; M. Reuter, Phys. Rev. D 53 (1996) 4430, Mod. Phys. Lett. A 12 (1997) 2777.CrossRefADSGoogle Scholar
- [24]For a review see: J. Berges, N. Tetradis and C. Wetterich, Phys. Rept. 363 (2002) 223; C. Wetterich, Int. J. Mod. Phys. A 16 (2001) 1951.zbMATHADSMathSciNetGoogle Scholar
- [25]A. Bonanno and M. Reuter, Phys. Rev. D 62 (2000) 043008 and hep-th/0002196; Phys. Rev. D 60 (1999) 084011 and gr-qc/9811026.CrossRefADSGoogle Scholar
- [26]A. Bonanno and M. Reuter, Phys. Rev. D 65 (2002) 043508 and hep-th/0106133; M. Reuter and F. Saueressig, JCAP 09 (2005) 012 and hep-th/0507167.CrossRefADSMathSciNetGoogle Scholar
- [27]A. Bonanno and M. Reuter, Phys. Lett. B 527 (2002) 9 and astro-ph/0106468; Int. J. Mod. Phys. D 13 (2004) 107 and astro-ph/0210472.zbMATHCrossRefADSGoogle Scholar
- [28]J.-I. Sumi, W. Souma, K.-I. Aoki, H. Terao, K. Morikawa, hep-th/0002231.Google Scholar
- [29]P. Forgács and M. Niedermaier, hep-th/0207028; M. Niedermaier, JHEP 12 (2002) 066; Nucl. Phys. B 673 (2003) 131.Google Scholar
- [30]B. Mandelbrot, The Fractal Geometry of Nature, Freeman, New York (1977).Google Scholar
- [31]L.F. Abbott, Nucl. Phys. B 185 (1981) 189; B.S. DeWitt, Phys. Rev. 162 (1967) 1195; M.T. Grisaru, P. van Nieuwenhuizen and C.C. Wu, Phys. Rev. D 12 (1975) 3203; D.M. Capper, J.J. Dulwich and M. Ramon Medrano, Nucl. Phys. B 254 (1985) 737; S.L. Adler, Rev. Mod. Phys. 54 (1982) 729.CrossRefADSGoogle Scholar
- [32]M. Reuter and J.-M. Schwindt, work in progress.Google Scholar
- [33]M. Reuter and J.-M. Schwindt, JHEP 01 (2006) 070 and hep-th/0511021.CrossRefADSMathSciNetGoogle Scholar
- [34]E. Bentivegna, A. Bonanno and M. Reuter, JCAP 01 (2004) 001, and astro-ph/0303150.ADSGoogle Scholar
- [35]A. Bonanno, G. Esposito and C. Rubano, Gen. Rel. Grav. 35 (2003) 1899; Class. Quant. Grav. 21 (2004) 5005.zbMATHCrossRefADSMathSciNetGoogle Scholar
- [36]M. Reuter and H. Weyer, Phys. Rev. D 69 (2004) 104022 and hep-th/0311196.CrossRefADSGoogle Scholar
- [37]M. Reuter and H. Weyer, Phys. Rev. D 70 (2004) 124028 and hep-th/0410117.CrossRefADSGoogle Scholar
- [38]M. Reuter and H. Weyer, JCAP 12 (2004) 001 and hep-th/0410119.ADSGoogle Scholar
- [39]J. Moffat, JCAP 05 (2005) 003 and astro-ph/0412195; J.R. Brownstein and J. Moffat, astro-ph/0506370 and astro-ph/0507222.ADSMathSciNetGoogle Scholar
- [40]O. Lauscher and M. Reuter, JHEP 10 (2005) 050 and hep-th/0508202.CrossRefADSMathSciNetGoogle Scholar
- [41]A. Dasgupta and R. Loll, Nucl. Phys. B 606 (2001) 357; J. Ambjørn, J. Jurkiewicz and R. Loll, Nucl. Phys. B 610 (2001) 347; Phys. Rev. Lett. 85 (2000) 924; R. Loll, Nucl. Phys. Proc. Suppl. 94 (2001) 96; J. Ambjørn, gr-qc/0201028.zbMATHCrossRefADSMathSciNetGoogle Scholar
- [42]J. Ambjørn, J. Jurkiewicz and R. Loll, Phys. Rev. Lett. 93 (2004) 131301.CrossRefADSMathSciNetGoogle Scholar
- [43]J. Ambjørn, J. Jurkiewicz and R. Loll, Phys. Lett. B 607 (2005) 205.CrossRefADSGoogle Scholar
- [44]J. Ambjørn, J. Jurkiewicz and R. Loll, preprints hep-th/0505113 and hep-th/0505154.Google Scholar
- [45]D. ben-Avraham and S. Havlin, Diffusion and reactions in fractals and disordered systems, Cambridge University Press, Cambridge (2004).Google Scholar
- [46]H. Kawai, M. Ninomiya, Nucl. Phys. B 336 (1990) 115; R. Floreanini and R. Percacci, Nucl. Phys. B 436 (1995) 141; I. Antoniadis, P.O. Mazur and E. Mottola, Phys. Lett. B 444 (1998) 284.CrossRefADSMathSciNetGoogle Scholar
Copyright information
© Birkhäuser Verlag Basel/Switzerland 2006