Advertisement

Asymptotic Safety in Quantum Einstein Gravity: Nonperturbative Renormalizability and Fractal Spacetime Structure

  • Oliver Lauscher
  • Martin Reuter

Abstract

The asymptotic safety scenario of Quantum Einstein Gravity, the quantum field theory of the spacetime metric, is reviewed and it is argued that the theory is likely to be nonperturbatively renormalizable. It is also shown that asymptotic safety implies that spacetime is a fractal in general, with a fractal dimension of 2 on sub-Planckian length scales.

Keywords

Quantum Einstein gravity renormalization group non-Gaussian fixed points fractal spacetime asymptotic safety 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    K.G. Wilson, J. Kogut, Phys. Rept. 12 (1974) 75; K.G. Wilson, Rev. Mod. Phys. 47 (1975) 773.CrossRefADSGoogle Scholar
  2. [2]
    G. Parisi, Nucl. Phys. B 100 (1975) 368, Nucl. Phys. B 254 (1985) 58; K. Gawedzki, A. Kupiainen, Nucl. Phys. B 262 (1985) 33, Phys. Rev. Lett. 54 (1985) 2191, Phys. Rev. Lett. 55 (1985) 363; B. Rosenstein, B.J. Warr, S.H. Park, Phys. Rept. 205 (1991) 59; C. de Calan, P.A. Faria da Veiga, J. Magnen, R. Sénéor, Phys. Rev. Lett. 66 (1991) 3233.CrossRefADSGoogle Scholar
  3. [3]
    J. Polchinski, Nucl. Phys. B 231 (1984) 269.CrossRefADSGoogle Scholar
  4. [4]
    For a review see: C. Bagnuls and C. Bervillier, Phys. Rept. 348 (2001) 91; T.R. Morris, Prog. Theor. Phys. Suppl. 131 (1998) 395; J. Polonyi, Central Eur. J. Phys. 1 (2004) 1.zbMATHCrossRefADSMathSciNetGoogle Scholar
  5. [5]
    S. Weinberg in General Relativity, an Einstein Centenary Survey, S.W. Hawking and W. Israel (Eds.), Cambridge University Press (1979); S. Weinberg, hep-th/9702027.Google Scholar
  6. [6]
    M. Reuter, Phys. Rev. D 57 (1998) 971 and hep-th/9605030.CrossRefADSMathSciNetGoogle Scholar
  7. [7]
    D. Dou and R. Percacci, Class. Quant. Grav. 15 (1998) 3449.zbMATHCrossRefADSMathSciNetGoogle Scholar
  8. [8]
    O. Lauscher and M. Reuter, Phys. Rev. D 65 (2002) 025013 and hep-th/0108040.CrossRefADSMathSciNetGoogle Scholar
  9. [9]
    M. Reuter and F. Saueressig, Phys. Rev. D 65 (2002) 065016 and hep-th/0110054.CrossRefADSMathSciNetGoogle Scholar
  10. [10]
    O. Lauscher and M. Reuter, Phys. Rev. D 66 (2002) 025026 and hep-th/0205062.CrossRefADSMathSciNetGoogle Scholar
  11. [11]
    O. Lauscher and M. Reuter, Class. Quant. Grav. 19 (2002) 483 and hep-th/0110021.zbMATHCrossRefADSMathSciNetGoogle Scholar
  12. [12]
    O. Lauscher and M. Reuter, Int. J. Mod. Phys. A 17 (2002) 993 and hep-th/0112089.CrossRefADSMathSciNetGoogle Scholar
  13. [13]
    W. Souma, Prog. Theor. Phys. 102 (1999) 181.CrossRefADSMathSciNetGoogle Scholar
  14. [14]
    R. Percacci and D. Perini, Phys. Rev. D 67 (2003) 081503.CrossRefADSGoogle Scholar
  15. [15]
    R. Percacci and D. Perini, Phys. Rev. D 68 (2003) 044018.CrossRefADSGoogle Scholar
  16. [16]
    D. Perini, Nucl. Phys. Proc. Suppl. 127 C (2004) 185.CrossRefADSGoogle Scholar
  17. [17]
    M. Reuter and F. Saueressig, Phys. Rev. D 66 (2002) 125001 and hep-th/0206145; Fortschr. Phys. 52 (2004) 650 and hep-th/0311056.CrossRefADSMathSciNetGoogle Scholar
  18. [18]
    D. Litim, Phys. Rev. Lett. 92 (2004) 201301.CrossRefADSMathSciNetGoogle Scholar
  19. [19]
    A. Bonanno, M. Reuter, JHEP 02 (2005) 035 and hep-th/0410191.CrossRefADSMathSciNetGoogle Scholar
  20. [20]
    R. Percacci and D. Perini, hep-th/0401071.Google Scholar
  21. [21]
    R. Percacci, hep-th/0409199.Google Scholar
  22. [22]
    C. Wetterich, Phys. Lett. B 301 (1993) 90.CrossRefADSGoogle Scholar
  23. [23]
    M. Reuter and C. Wetterich, Nucl. Phys. B 417 (1994) 181, Nucl. Phys. B 427 (1994) 291, Nucl. Phys. B 391 (1993) 147, Nucl. Phys. B 408 (1993) 91; M. Reuter, Phys. Rev. D 53 (1996) 4430, Mod. Phys. Lett. A 12 (1997) 2777.CrossRefADSGoogle Scholar
  24. [24]
    For a review see: J. Berges, N. Tetradis and C. Wetterich, Phys. Rept. 363 (2002) 223; C. Wetterich, Int. J. Mod. Phys. A 16 (2001) 1951.zbMATHADSMathSciNetGoogle Scholar
  25. [25]
    A. Bonanno and M. Reuter, Phys. Rev. D 62 (2000) 043008 and hep-th/0002196; Phys. Rev. D 60 (1999) 084011 and gr-qc/9811026.CrossRefADSGoogle Scholar
  26. [26]
    A. Bonanno and M. Reuter, Phys. Rev. D 65 (2002) 043508 and hep-th/0106133; M. Reuter and F. Saueressig, JCAP 09 (2005) 012 and hep-th/0507167.CrossRefADSMathSciNetGoogle Scholar
  27. [27]
    A. Bonanno and M. Reuter, Phys. Lett. B 527 (2002) 9 and astro-ph/0106468; Int. J. Mod. Phys. D 13 (2004) 107 and astro-ph/0210472.zbMATHCrossRefADSGoogle Scholar
  28. [28]
    J.-I. Sumi, W. Souma, K.-I. Aoki, H. Terao, K. Morikawa, hep-th/0002231.Google Scholar
  29. [29]
    P. Forgács and M. Niedermaier, hep-th/0207028; M. Niedermaier, JHEP 12 (2002) 066; Nucl. Phys. B 673 (2003) 131.Google Scholar
  30. [30]
    B. Mandelbrot, The Fractal Geometry of Nature, Freeman, New York (1977).Google Scholar
  31. [31]
    L.F. Abbott, Nucl. Phys. B 185 (1981) 189; B.S. DeWitt, Phys. Rev. 162 (1967) 1195; M.T. Grisaru, P. van Nieuwenhuizen and C.C. Wu, Phys. Rev. D 12 (1975) 3203; D.M. Capper, J.J. Dulwich and M. Ramon Medrano, Nucl. Phys. B 254 (1985) 737; S.L. Adler, Rev. Mod. Phys. 54 (1982) 729.CrossRefADSGoogle Scholar
  32. [32]
    M. Reuter and J.-M. Schwindt, work in progress.Google Scholar
  33. [33]
    M. Reuter and J.-M. Schwindt, JHEP 01 (2006) 070 and hep-th/0511021.CrossRefADSMathSciNetGoogle Scholar
  34. [34]
    E. Bentivegna, A. Bonanno and M. Reuter, JCAP 01 (2004) 001, and astro-ph/0303150.ADSGoogle Scholar
  35. [35]
    A. Bonanno, G. Esposito and C. Rubano, Gen. Rel. Grav. 35 (2003) 1899; Class. Quant. Grav. 21 (2004) 5005.zbMATHCrossRefADSMathSciNetGoogle Scholar
  36. [36]
    M. Reuter and H. Weyer, Phys. Rev. D 69 (2004) 104022 and hep-th/0311196.CrossRefADSGoogle Scholar
  37. [37]
    M. Reuter and H. Weyer, Phys. Rev. D 70 (2004) 124028 and hep-th/0410117.CrossRefADSGoogle Scholar
  38. [38]
    M. Reuter and H. Weyer, JCAP 12 (2004) 001 and hep-th/0410119.ADSGoogle Scholar
  39. [39]
    J. Moffat, JCAP 05 (2005) 003 and astro-ph/0412195; J.R. Brownstein and J. Moffat, astro-ph/0506370 and astro-ph/0507222.ADSMathSciNetGoogle Scholar
  40. [40]
    O. Lauscher and M. Reuter, JHEP 10 (2005) 050 and hep-th/0508202.CrossRefADSMathSciNetGoogle Scholar
  41. [41]
    A. Dasgupta and R. Loll, Nucl. Phys. B 606 (2001) 357; J. Ambjørn, J. Jurkiewicz and R. Loll, Nucl. Phys. B 610 (2001) 347; Phys. Rev. Lett. 85 (2000) 924; R. Loll, Nucl. Phys. Proc. Suppl. 94 (2001) 96; J. Ambjørn, gr-qc/0201028.zbMATHCrossRefADSMathSciNetGoogle Scholar
  42. [42]
    J. Ambjørn, J. Jurkiewicz and R. Loll, Phys. Rev. Lett. 93 (2004) 131301.CrossRefADSMathSciNetGoogle Scholar
  43. [43]
    J. Ambjørn, J. Jurkiewicz and R. Loll, Phys. Lett. B 607 (2005) 205.CrossRefADSGoogle Scholar
  44. [44]
    J. Ambjørn, J. Jurkiewicz and R. Loll, preprints hep-th/0505113 and hep-th/0505154.Google Scholar
  45. [45]
    D. ben-Avraham and S. Havlin, Diffusion and reactions in fractals and disordered systems, Cambridge University Press, Cambridge (2004).Google Scholar
  46. [46]
    H. Kawai, M. Ninomiya, Nucl. Phys. B 336 (1990) 115; R. Floreanini and R. Percacci, Nucl. Phys. B 436 (1995) 141; I. Antoniadis, P.O. Mazur and E. Mottola, Phys. Lett. B 444 (1998) 284.CrossRefADSMathSciNetGoogle Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 2006

Authors and Affiliations

  • Oliver Lauscher
    • 1
  • Martin Reuter
    • 2
  1. 1.Institute of Theoretical PhysicsUniversity of LeipzigLeipzigGermany
  2. 2.Institute of PhysicsUniversity of MainzMainzGermany

Personalised recommendations