Modulation of visual perception and action by forebrain structures and their interactions in amphibians

  • Jörg-Peter Ewert
  • Wolfgang W. Schwippert
Part of the Experientia Supplementum book series (EXS, volume 98)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Eibl-Eibesfeldt I (1951) Nahrungserwerb und Beuteschema der Erdkröte (Bufo bufo L). Behaviour 4: 1–35Google Scholar
  2. 2.
    Wiersma CAG, Ikeda K (1964) Interneurons commanding swimmeret movements in the crayfish, Procambarus clarkii (Girard). Comp Biochem Physiol 12: 509–525PubMedCrossRefGoogle Scholar
  3. 3.
    Hinsche G (1935) Ein Schnappreflex nach “Nichts” bei Anuren. Zool Anz 111: 113–122Google Scholar
  4. 4.
    Tinbergen N (1951) The study of instinct. Clarendon Press, OxfordGoogle Scholar
  5. 5.
    Lorenz K (1954) Das angeborene Erkennen. Natur und Volk 84: 285–295Google Scholar
  6. 6.
    Barlow HB (1953) Summation and inhibition in the frog’s retina. J Physiol (Lond) 173: 377–407Google Scholar
  7. 7.
    Lettvin JY, Maturana HR, McCulloch WS, Pitts WH (1959) What the frog’s eye tells the frog’s brain. Proc Inst Radio Engin 47: 1940–1951Google Scholar
  8. 8.
    Kupfermann I, Weiss KR (1978) The command neuron concept. Behav Brain Sci 1: 3–39Google Scholar
  9. 9.
    Eaton RC (1983) Is the Mauthner cell a vertebrate command neuron? A neuroethological perspective on an evolving concept. In: Ewert J-P, Capranica RR, Ingle DJ (eds): Advances in vertebrate neuroethology. Plenum, New York, 629–636Google Scholar
  10. 10.
    Eaton RC (2001) The Mauthner cell and other identified neurons of the brainstem escape network of fish. Prog Neurobiol 63: 467–485PubMedCrossRefGoogle Scholar
  11. 11.
    Ewert J-P (1980) Neuroethology: an introduction to the neurophysiological fundamentals of behavior. Springer, BerlinGoogle Scholar
  12. 12.
    Ewert J-P (1997) Neural correlates of key stimulus and releasing mechanism: a case study and two concepts. Trends Neurosci 20: 332–339PubMedCrossRefGoogle Scholar
  13. 13.
    Ewert J-P (2004) Motion perception shapes the visual world of amphibians. In: Prete FR (ed): Complex worlds from simpler nervous systems. MIT Press, Cambridge MA, 117–160Google Scholar
  14. 14.
    Hailman JP (1969) How an instinct is learnt. Sci Amer 221: 98–106Google Scholar
  15. 15.
    Bolhuis JE, Giraldeau L-A (2005) The behavior of animals. Mechanisms, function, and evolution. Blackwell, Malden MAGoogle Scholar
  16. 16.
    Ewert J-P (1985) The Niko Tinbergen Lecture: concepts in vertebrate neuroethology. Animal Behav 33: 1–29CrossRefGoogle Scholar
  17. 17.
    Ewert J-P (2005) Stimulus perception. Chapter 2. In: Bolhuis JJ, Giraldeau L-A (eds): The behavior of animals. Blackwell, Malden MA, 13–40Google Scholar
  18. 18.
    Schrader MEG (1887) Zur Physiologie des Froschgehirns. Pflügers Arch 51: 11–21Google Scholar
  19. 19.
    Johannes T (1930) Zur Funktion des sensiblen Thalamus. Pflüg Arch 224Google Scholar
  20. 20.
    Goltz P (1869) Beiträge zur Lehre von den Funktionen der Nervenzentren des Frosches. In: Buddenbrock W v (1937) (ed): Grundriß der vergleichenden Physiologie Bd 1, BerlinGoogle Scholar
  21. 21.
    Blankenagel S (1931) Untersuchungen über die Großhirnfunktionen von Rana temporaria L. Zool Jb Abteilung allgem Zool 49: 272–322Google Scholar
  22. 22.
    Diebschlag E (1935) Zur Kenntnis der Großhirnfunktion einiger Urodelen und Anuren. Z vergl Physiol 21: 343–394Google Scholar
  23. 23.
    Ewert J-P (1967) Untersuchungen über die Anteile zentralnervöser Aktionen an der taxisspezifischen Ermüdung der Erdkröte (Bufo bufo L). Z Vergl Physiol 57: 263–298CrossRefGoogle Scholar
  24. 24.
    Northcutt RG, Kicliter E (1980) Organization of the amphibian telencephalon. In: Ebbesson SOE (ed): Comparative neurology of the telencenphalon. Plenum Press, New York London, 203–255Google Scholar
  25. 25.
    Wilczynski W, Northcutt RG (1983) Connections of the bullfrog striatum: afferent organization. J Comp Neurol 214: 321–332PubMedCrossRefGoogle Scholar
  26. 26.
    Wilczynski W, Northcutt RG (1983) Connections of the bullfrog striatum: efferent projections. J Comp Neurol 214: 333–343PubMedCrossRefGoogle Scholar
  27. 27.
    Northcutt RG, Kaas H (1995) The emergence and evolution of mammalian neocortex. Trends Neurosci 18: 373–379PubMedCrossRefGoogle Scholar
  28. 28.
    Marín O, González A, Smeets WJAJ (1997) Anatomical substrate of amphibian basal ganglia involvement in visuomotor behaviour. Eur J Neurosci 9: 2100–2109PubMedCrossRefGoogle Scholar
  29. 29.
    Marín O, González A, Smeets WJAJ (1997) Basal ganglia organization in amphibians: afferent connections to the striatum and the nucleus accumbens. J Comp Neurol 378: 16–49PubMedCrossRefGoogle Scholar
  30. 30.
    Marín O, González A, Smeets WJAJ (1997) Basal ganglia organization in amphibians: efferent connections of the striatum and the nucleus accumbens. J Comp Neurol 380: 23–50PubMedCrossRefGoogle Scholar
  31. 31.
    Marín O, Smeets WJAJ, González A (1997) Basal ganglia organization in amphibians: catecholaminergic innervation of the striatum and the nucleus accumbens. J Comp Neurol 378: 50–69PubMedCrossRefGoogle Scholar
  32. 32.
    Marín O, Smeets WJAJ, González A (1997) Basal ganglia organization in amphibians: development of striatal and nucleus accumbens connections with emphasis on the catecholaminergic inputs. J Comp Neurol 383: 349–369PubMedCrossRefGoogle Scholar
  33. 33.
    Marín O, González A, Smeets WJAJ (1998) Basal ganglia organization in amphibians: chemoarchitecture. J Comp Neurol 392: 285–312PubMedCrossRefGoogle Scholar
  34. 34.
    Marín O, Smeets WJAJ, González A (1998) Evolution of the basal ganglia in tetrapods: a new perspective based on recent studies in amphibians. Trends Neurosci 21: 487–494PubMedCrossRefGoogle Scholar
  35. 35.
    González A, Smeets WJ, Marín O (1999) Evidences for shared features in the organization of the basal ganglia in tetrapods: studies in amphibians. Eur J Morphol 37(2–3): 151–154PubMedCrossRefGoogle Scholar
  36. 36.
    Reiner A, Brecha NC, Karten HJ (1982) Basal ganglia pathways to the tectum: the afferent and efferent connections of the lateral spiriform nucleus of pigeon. J Comp Neurol 208: 16–36PubMedCrossRefGoogle Scholar
  37. 37.
    Reiner A, Brauth SE, Karten HJ (1984) Evolution of the amniote basal ganglia. Trends Neurosci 7: 320–325CrossRefGoogle Scholar
  38. 38.
    Reiner A, Medina L, Veenman CL (1998) Structural and functional evolution of the basal ganglia in vertebrates. Brain Res Rev 28: 235–285PubMedCrossRefGoogle Scholar
  39. 39.
    Herrick CJ (1933) The amphibian forebrain. VIII: Cerebral hemispheres and pallial primordia. J Comp Neurol 58: 737–759CrossRefGoogle Scholar
  40. 40.
    Roth G, Westhoff G (1999) Cytoarchitecture and connectivity of the amphibian medial pallium. Eur J Morphol 37: 166–171PubMedCrossRefGoogle Scholar
  41. 41.
    Marín O, Smeets WJ, Munoz M, Sanchez-Camacho C, Pena JJ, Lopez JM, González A (1999) Cholinergic and catecholaminergic neurons relay striatal information to the optic tectum in amphibians. Eur J Morphol 37: 155–159PubMedCrossRefGoogle Scholar
  42. 42.
    Marín O, González A (1999) Origin of tectal cholinergic projections in amphibians: a combined study of choline acetyltransferase immunohistochemistry and retrograde transport of dextran amines. Vis Neurosci 16: 271–283PubMedCrossRefGoogle Scholar
  43. 43.
    Schneider D (1954) Beitrag zu einer Analyse des Beute-und Fluchtverhaltens einheimischer Anuren. Biol Zbl 73: 225–282Google Scholar
  44. 44.
    Ewert J-P (1974) The neural basis of visually guided behavior. Sci Amer 230: 34–42PubMedGoogle Scholar
  45. 45.
    Ewert J-P (1984) Tectal mechanisms that underlie prey-catching and avoidance behaviors in toads. In: Vanegas H (ed): Comparative neurology of the optic tectum. Plenum, New York, 247–416Google Scholar
  46. 46.
    Ewert J-P, Arend B, Becker V, Borchers H-W (1979) Invariants in configurational prey selection by Bufo bufo (L.). Brain Behav Evol 16: 38–51PubMedGoogle Scholar
  47. 47.
    Ewert J-P, Burghagen H (1979) Configurational prey selection by Bufo, Alytes, Bombina, and Hyla. Brain Behav Evol 16(3): 157–175PubMedGoogle Scholar
  48. 48.
    Grüsser O-J, Grüsser-Cornehls U, Finkelstein D, Henn V, Patutschnik M, Butenandt E (1967) Aquantitative analysis of movement detecting neurons in the frog retina. Pflügers Arch 293: 100–106CrossRefGoogle Scholar
  49. 49.
    Ewert J-P (1987) Neuroethology of releasing mechanisms: prey-catching in toads. Behav Brain Sci 10: 337–405Google Scholar
  50. 50.
    Satou M, Ewert J-P (1985) The antidromic activation of tectal neurons by electrical stimuli applied to the caudal medulla oblongata in the toad Bufo bufo (L.). J Comp Physiol 157: 739–748CrossRefGoogle Scholar
  51. 51.
    Ewert J-P, Framing EM, Schürg-Pfeiffer E, Weerasuriya A (1990) Responses of medullary neurons to moving visual stimuli in the common toad: I) Characterization of medial reticular neurons by extracellular recording. J Comp Physiol A 167: 495–508Google Scholar
  52. 52.
    Ewert J-P, Hock FJ, Wietersheim A v (1974) Thalamus/Praetectum/Tectum: retinale Topographie und physiologische Interaktionen bei der Kröte (Bufo bufo L). J Comp Physiol 92: 343–356CrossRefGoogle Scholar
  53. 53.
    Schürg-Pfeiffer E, Spreckelsen C, Ewert J-P (1993) Temporal discharge patterns of tectal and medullary neurons chronically recorded during snapping toward prey in toads Bufo bufo spinosus. J Comp Physiol A 173: 363–376CrossRefGoogle Scholar
  54. 54.
    Ewert J-P, Schürg-Pfeiffer E, Schwippert WW (1996) Influence of pretectal lesions on tectal responses to visual stimulation in anurans: field potential, single neuron and behavior analyses. Acta Biologica Acad Sci Hungaria 47(2–4): 223–245Google Scholar
  55. 55.
    Ewert J-P, Wietersheim A v (1974) Der Einfluß von Thalamus/Praetectum-Defekten auf dieAntwort von Tectum-Neuronen gegenüber bewegten visuellen Mustern bei der Kröte (Bufo bufo L). J Comp Physiol 92: 149–160CrossRefGoogle Scholar
  56. 56.
    Ewert J-P (1971) Single unit response of the toad (Bufo americanus) caudal thalamus to visual objects. Vergl Physiol 74: 81–102CrossRefGoogle Scholar
  57. 57.
    Lázár G (1989) Cellular architecture and connectivity of the frog’s optic tectum and pretectum. In: Ewert J-P, Arbib MA (eds): Visuomotor coordination. Plenum, New York, 175–199Google Scholar
  58. 58.
    Matsumoto N (1989) Morphological and physiological studies of tectal and pretectal neurons in the frog. In: Ewert J-P, Arbib MA (eds): Visuomotor coordination. Plenum, New York, 201–222Google Scholar
  59. 59.
    Buxbaum-Conradi H, Ewert J-P (1995) Pretecto-tectal influences I. What the toad’s pretectum tells its tectum: an antidromic stimulation/recording study. J Comp Physiol A 176: 169–180Google Scholar
  60. 60.
    Ingle DJ (1977) Detection of stationary objects by frogs (Rana pipiens) after ablation of optic tectum. J Comp Physiol Psychol 91: 1359–1364PubMedCrossRefGoogle Scholar
  61. 61.
    Ingle DJ (1980) Some effects of pretectum lesions on the frog’s detection of stationary objects. Behav Brain Res 1: 139–163.PubMedCrossRefGoogle Scholar
  62. 62.
    Lázár G, Maderdrut JL, Trasti SL, Liposits Z, Tóth P, Kozicz T, Merchenthaler I (1993) Distribution of proneuropeptide Y-derived peptides in the brain of Rana esculenta and Xenopus laevis. J Comp Neurol 327: 551–571PubMedCrossRefGoogle Scholar
  63. 63.
    Danger JM, Guy J, Benyamina M, Jegou S, Leboulenger F, Cote J, Tonon MC, Pelletier G, Vaudry H (1985) Localization and identification of neuropeptide Y (NPY)-like immunoreactivity in the frog brain. Peptides 6: 1225–1236PubMedCrossRefGoogle Scholar
  64. 64.
    Chapman AM, Debski EA (1995) Neuropeptide Y immunoreactivity of a projection from the lateral thalamic nucleus to the optic tectum of the leopard frog. Vis Neurosci 12: 1–9PubMedCrossRefGoogle Scholar
  65. 65.
    Lázár G (2001) Peptides in frog brain areas processing visual information. Microsc Res Tech 54(4): 201–219PubMedCrossRefGoogle Scholar
  66. 66.
    Kozicz T, Lázár G (1994) The origin of tectal NPY immunopositive fibers in the frog. Brain Res 635: 345–348PubMedCrossRefGoogle Scholar
  67. 67.
    Tuinhof R, Gonzalez A, Smeets WJAJ, Roubos EW (1994) Neuropeptide Y in the developing and adult brain of the South African clawed toad, Xenopus laevis. J Chem Neuroanatom 7: 271–283CrossRefGoogle Scholar
  68. 68.
    Schwippert WW, Ewert J-P (1995) Effect of neuropeptide-Y on tectal field potentials in the toad. Brain Res 669: 150–152PubMedCrossRefGoogle Scholar
  69. 69.
    Schwippert WW, Röttgen A, Ewert J-P (1998) Neuropeptide Y (NPY) or fragment NPY13–36, but not NPY18–36, inhibit retinotectal transfer in cane toads Bufo marinus. Neurosci Lett 253: 33–36PubMedCrossRefGoogle Scholar
  70. 70.
    Carr JA, Brown CL, Mansouri R, Venkatesan S (2002) Neuropeptides and amphibian prey-catching behavior. Comp Biochem Physiol Part B 132: 151–162CrossRefGoogle Scholar
  71. 71.
    Funke S, Ewert J-P (2006) NeuropeptideY suppresses glucose utilization in the dorsal optic tectum towards visual stimulation in the toad Bombina orientalis: A [14C]2DG study. Neuroscience Lett 392: 43–46CrossRefGoogle Scholar
  72. 72.
    Clairambault P (1976) Development of the prosencephalon. In: Llinás R, Precht W (eds): Frog neurobiology. Springer, Berlin, 924–945Google Scholar
  73. 73.
    D’Aniello B, Imperatore C, Fiorentiono M, Vallarino M, Rastogi RK (1994) Immunocytochemical localization of POMC-derived peptides (adrenocorticotropic hormone, α-melanocyte-stimulating hormone and β-endorphin) in the pituitary, brain and olfactory epithelium of the frog, Rana esculenta, during development. Cell Tissue Res 278: 509–516PubMedGoogle Scholar
  74. 74.
    Ebbesson SOE (1987) Prey-catching in toads: an exceptional neuroethological model. Behav Brain Sci 10: 375–376Google Scholar
  75. 75.
    Traud R (1983) Einfluß von visuellen Reizmustern auf die juvenile Erdkröte (Bufo bufo L). Dr.rer.nat. Dissertation. Abt. Neurobiologie. Fachbereich Biologie/Chemie, Univ KasselGoogle Scholar
  76. 76.
    Kuhn P (2003) Quantitative Untersuchungen über die visuelle Steuerung des Beutefangs der Chinesischen Rotbauchunke Bombina orientaliswährend der Ontogenese. Dr.rer.nat. Dissertation, Abt. Neurobiologie, Fachbereich Biologie/Chemie, Univ KasselGoogle Scholar
  77. 77.
    Ewert J-P, Burghagen H (1979) Ontogenetic aspects of visual size constancy phenomenon in the midwife toad Alytes obstetricans (Laur.). Brain Behav Evol 16(2): 99–112PubMedGoogle Scholar
  78. 78.
    Ewert J-P, Burghagen H, Schürg-Pfeiffer E (1983) Neuroethological analysis of the innate releasing mechanism for prey-catching behavior in toads. In: Ewert J-P, Capranica RR, Ingle DJ (eds): Advances in vertebrate neuroethology. Plenum, New York, 413–475Google Scholar
  79. 79.
    Székely G, Lázár G (1976) Cellular and synaptic architecture of the optic tectum. In: Llinás R, Precht W (eds): Frog neurobiology. Springer, Berlin, 407–434Google Scholar
  80. 80.
    Kozicz T, Lázár G (2001) Colocalization of GABA, enkephalin and neuropeptide Y in the tectum of the green frog Rana esculenta. Peptides 22: 1071–1077PubMedCrossRefGoogle Scholar
  81. 81.
    González A, Smeets WJAJ (1991) Comparative analysis of dopamine and tyrosine hydroxylase immunoreactivities in the brain of two amphibians, the anuran Rana ridibunda and the urodele Pleurodeles waltlii. J Comp Neurol 303: 457–477PubMedCrossRefGoogle Scholar
  82. 82.
    Lázár G (1971) The projection of the retinal quadrants on the optic centers in the frog: a terminal degeneration study. Acta Morph Acad Sci Hung 19: 325–334Google Scholar
  83. 83.
    Lázár G (1979) Organization of the frog visual system. In: Lissák K (ed): Recent developments of neurobiology in Hungary, Vol 8. Akadémiai Kiadò, Budapest, 9–50Google Scholar
  84. 84.
    Fite KV, Scalia F (1976) Central visual pathways in the frog. In: Fite KV (ed): The amphibian visual system: a multidisciplinary approach. Academic Press, New York, 87–118Google Scholar
  85. 85.
    Wilczynski W, Northcutt RG (1977) Afferents to the optic tectum of the leopard frog: an HRP study. J Comp Neurol 173: 219–229CrossRefGoogle Scholar
  86. 86.
    Neary TJ, Wilczynski W (1980) Descending inputs to the optic tectum in ranid frogs. Soc Neurosci Abstr 6: 629Google Scholar
  87. 87.
    Neary T, Northcutt RG (1983) Nuclear organization of the bullfrog diencephalon. JComp Neurol 213: 262–278CrossRefGoogle Scholar
  88. 88.
    Stevens RJ (1973) A cholinergic inhibitory system in the frog optic tectum: its role in visual electrical responses and feeding behavior. Brain Res 49: 309–321PubMedCrossRefGoogle Scholar
  89. 89.
    Gruberg ER (1989) Nucleus isthmi and optic tectum in frogs. In: Ewert J-P, Arbib MA (eds): Visuomotor coordination. Plenum, New York, 341–356Google Scholar
  90. 90.
    Gruberg ER, Wallace M, Caine H, Mote M (1991) Behavioral and physiological consequences of unilateral ablation of the nucleus isthmi in the leopard frog. Brain Behav Evol 37: 92–103PubMedGoogle Scholar
  91. 91.
    Gruberg ER, Hughes TE, Karten HJ (1994) Synaptic interregulationships between the optic tectum and the ipsilateral nucleus isthmi in Rana pipiens. J Com Neurol 339(3):353–364CrossRefGoogle Scholar
  92. 92.
    Xiao J, Wang Y, Wang SR (1999) Effects of glutamatergic, cholinergic and GABAergic antagonists on tectal cells in toads. Neuroscience 90(3): 1061–1067PubMedCrossRefGoogle Scholar
  93. 93.
    Brzoska J, Schneider H (1978) Modification of prey-catching behavior by learning in the common toad (Bufo bufo L, Anura, Amphibia): changes in response to visual objects and effects of auditory stimuli. Behav Processes 3: 125–136CrossRefGoogle Scholar
  94. 94.
    Finkenstädt T (1989) Visual associative learning: searching for behaviorally relevant brain structures in toads. In: Ewert J-P, Arbib, MA (eds): Visuomotor coordination. Plenum, New York, 799–832Google Scholar
  95. 95.
    Finkenstädt T, Ewert J-P (1992) Localization of learning-related metabolical changes in brain structures of common toads: a 2-DG-study. In: Gonzalez-Lima F, Finkenstädt T, Scheich H (eds): Advances in metabolic mapping techniques for brain imaging of behavioral and learning functions. Kluwer Academic Publishers, Dordrecht, 409–445Google Scholar
  96. 96.
    Finkenstädt T, Adler NT, Allen TO, Ewert J-P (1986) Regional distribution of glucose utilization in the telencephalon of toads in response to configurational visual stimuli: a 14C-2DG study. J Comp Physiol A 158: 457–467CrossRefGoogle Scholar
  97. 97.
    Dinges AW, Ewert J-P (1994) Species-universal stimulus responses, modified through conditioning, re-appear after telencephalic lesions in toads. Naturwissenschaften 81:317–320PubMedGoogle Scholar
  98. 98.
    Guha K, Jorgensen CB, Larsen LO (1980) Relationship between nutritional state and testes function, together with the observations on patterns of feeding, in the toad. J Zool (London) 192: 147–155Google Scholar
  99. 99.
    Laming PR, Cairns C (1998) Effects of food, glucose, and water ingestion on feeding activity in the toad (Bufo bufo). Behav Neurosci 112(5): 1266–1272PubMedCrossRefGoogle Scholar
  100. 100.
    Laming PR (1989) Central representation of arousal. In: Ewert J-P, Arbib MA (eds): Visuomotor coordination. Plenum, New York, 693–727Google Scholar
  101. 101.
    Laming PR (1993) Slow potential shifts as indicants of glial activation and possible neuromodulation. In: McCallum WC, Curry SH (eds): Slow potential changes in the human brain. Plenum, New York, 35–46Google Scholar
  102. 102.
    Laming PR, Nicol AU, Roughan JV, Ocherashvili IV, Laming BA (1995) Sustained potential shifts in the toad tectum reflect prey-catching and avoidance behavior. Behav Neurosci 109(1): 150–160PubMedCrossRefGoogle Scholar
  103. 103.
    Patton P, Grobstein P (1998). The effects of telencephalic lesions on the visually mediated prey orienting behavior in the leopard frog (Rana pipiens). I. The effects of complete removal of one telencephalic lobe, with a comparison to the effect of unilateral tectal lobe lesions. Brain Behav Evol 51: 123–143PubMedCrossRefGoogle Scholar
  104. 104.
    Patton P, Grobstein P (1998). The effects of telencephalic lesions on the visually mediated prey orienting behavior in the leopard frog (Rana pipiens). II. The effects of limited lesions to the telencephalon. Brain Behav Evol 51: 144–161PubMedCrossRefGoogle Scholar
  105. 105.
    Finkenstädt T, Adler NT, Allen TO, Ebbesson SOE, Ewert J-P (1985) Mapping of brain activity in mesencephalic and diencephalic structures of toads during presentation of visual key stimuli: a computer assisted analysis of 14C-2DG autoradiographs. J Comp Physiol A 156: 433–445CrossRefGoogle Scholar
  106. 106.
    Finkenstädt T, Ewert J-P (1985) Glucose utilization in the toad’s brain during anesthesia and stimulation of the ascending reticular arousal system: a 14C-2-deoxyglucose study. Naturwissenschaften 72: 161–162CrossRefGoogle Scholar
  107. 107.
    Lázár G, Kozicz, T (1990) Morphology of neurons and axon terminals associated with descending and ascending pathways of the lateral forebrain bundle in Rana exculenta. Cell Tissue Res 260: 535–548PubMedCrossRefGoogle Scholar
  108. 108.
    Merchenthaler I, Lázár G, Maderdrut, JL (1989) Distribution of proenkephalin-derived peptides in the brain of Rana esculenta. J Comp Neurol 281: 23–39PubMedCrossRefGoogle Scholar
  109. 109.
    Schwerdtfeger WK, Germroth P (1990) The forebrain in nonmammals. Springer, Berlin, 57–65Google Scholar
  110. 110.
    Matsumoto N, Schwippert WW, Beneke TW, Ewert J-P (1991) Forebrain-mediated control of visually guided prey-catching in toads: investigation of striato-pretectal connections with intracellular recording/labeling methods. Behav Processes 25: 27–40CrossRefGoogle Scholar
  111. 111.
    Buxbaum-Conradi H, Ewert J-P (1999) Responses of single neurons in the toad’s caudal ventral striatum to moving visual stimuli and test of their efferent projection by extracellular antidromic stimulation/recording techniques. Brain Behav Evol 54: 338–354PubMedCrossRefGoogle Scholar
  112. 112.
    Gruberg ER, Ambros VR (1974) Aforebrain visual projection in the frog (Rana pipiens). Exp Brain Res 44: 187–197Google Scholar
  113. 113.
    Buddenbrock Wv (1937) Grundriß der vergleichenden Physiologie. Borntraeger, BerlinGoogle Scholar
  114. 114.
    Glagow M, Ewert J-P (1997) Dopaminergic modulation of visual responses in toads. I. Apomorphine-induced effects on visually directed appetitive and consummatory preycatching behavior. J Comp Physiol A 180: 1–9PubMedCrossRefGoogle Scholar
  115. 115.
    Glagow M, Ewert J-P (1999) Apomorphine alters prey-catching patterns in the common toad: behavioural experiments and 14C-2-deoxyglucose brain mapping studies. Brain Behav Evol 54: 223–242PubMedCrossRefGoogle Scholar
  116. 116.
    Ewert J-P, Beneke TW, Schürg-Pfeiffer E, Schwippert WW, Weerasuriya A (1994) Sensorimotor processes that underlie feeding behavior in tetrapods. In: Bels VL, Chardon M, Vandevalle P (eds): Advances in comparative and environmental physiology, Vol. 18: Biomechanics of feeding in vertebrates. Springer, Berlin, 119–161Google Scholar
  117. 117.
    Chu J, Wilcox RE, Wilczynski W (1994) Pharmacological characterization of D1 and D2 dopamine receptors in Rana pipiens. Soc Neurosci Abstr 20: 167Google Scholar
  118. 118.
    Djamgoz MBA, Wagner, H-J (1992) Localization and function of dopamine in the adult vertebrate retina. Neurochem Int 20: 139–191PubMedCrossRefGoogle Scholar
  119. 119.
    Röttgen A(1999) Über den Einfluß von Neuropharmaka auf die visuelle Ansprechbarkeit in der retino-tectalen Projektion der Agakröte. Dr.rer.nat. Dissertation, Abt. Neurobiologie, Fachbereich Biologie/Chemie, Univ Kassel.Google Scholar
  120. 120.
    Glagow M, Ewert J-P (1997) Dopaminergic modulation of visual responses in toads. II. Influences of apomorphine on retinal ganglion cells and tectal cells. J Comp Physiol A 180: 11–18PubMedCrossRefGoogle Scholar
  121. 121.
    Glagow M, Ewert J-P (1996) Apomorphine-induced suppression of prey oriented turning in toads is correlated with activity changes in pretectum and tectum: 14C-2DG studies and single cell recordings. Neurosci Lett 220: 215–218PubMedCrossRefGoogle Scholar
  122. 122.
    Sanchez-Camacho C, MarÍn O, Lopez JM, Moreno N, Smeets WJ, Ten Donkelaar HJ, González A (2002) Origin and development of descending catecholaminergic pathways to the spinal cord in amphibians. Brain Res Bull 57(3–4): 325–330PubMedCrossRefGoogle Scholar
  123. 123.
    Hoffmann A (1973) Stereotaxis atlas of the toad’s brain. Acta Anat 84: 416–451PubMedCrossRefGoogle Scholar
  124. 124.
    Kicliter E, Northcutt G (1975) Ascending afferents to the telencephalon of ranid frogs: an anterograde degeneration study. J Comp Neur 161: 239–254PubMedCrossRefGoogle Scholar
  125. 125.
    Northcutt RG, Royce GJ (1975) Olfactory bulb projections in the bullfrog Rana catesbeiana. J Morphol 145: 51–268CrossRefGoogle Scholar
  126. 126.
    Ploog D, Gottwald P (1974)Verhaltensforschung: Instinkt, Lernen, Hirnfunktion. Urban & Schwarzenberg, MünchenGoogle Scholar
  127. 127.
    Nistri A, Sivilotti L, Welsh DM (1990) An electrophysiological study of the action of N-methyl-D-aspartate on excitatory synaptic transmission in the optic tectum of the frog in vitro. Neuropharmacol 29: 681–687CrossRefGoogle Scholar
  128. 128.
    Hickmott PW, Constantine-Paton M (1993) The contributions of NMDA, non-NMDA, and GABA receptors to postsynaptic responses in neurons of the optic tectum. J Neurosci 13(10): 4339–4353PubMedGoogle Scholar
  129. 129.
    Gamlin PD, Reiner A, Keyser T, Brecha N, Karten HJ (1996) Projection of the nucleus pretectalis to a retinorecipient tectal layer in the pigeon (Columba livia). J Comp Neurol 368(3): 424–438PubMedCrossRefGoogle Scholar
  130. 130.
    Cucchiaro JB, Bickford ME, Sherman SM (1991) A GABAergic projection from the pretectum to the dorsal lateral geniculate nucleus in the cat. Neurosci 41(1) 213–226CrossRefGoogle Scholar
  131. 131.
    Kenigfest NB, Belekhova MG, Karamyan OA, Minakova MN, Rio J-P, Reperant J (2002) Neurochemical organization of the turtle pretectum: an immunohistochemical study. Comparative analysis. J Evol Biochem Physiol 38(6): 673–688CrossRefGoogle Scholar
  132. 132.
    Borostyankoi-Baldauf Z, Herczeg L (2002) Parcellation of the human pretectal complex: a chemoarchitectonic reappraisal. Neurosci 110(3): 527–540CrossRefGoogle Scholar
  133. 133.
    Ebersole TJ, Coulon JM, Goetz FW, Boy SK (2001) Characterization and distribution of neuropeptide Y in the brain of a caecilian amphibian. Peptides 22: 325–334PubMedCrossRefGoogle Scholar
  134. 134.
    Bertoz A, Vidal PP, Graf W (1992) The head-neck sensory motor system. Oxford Univ Press, New YorkGoogle Scholar
  135. 135.
    Foreman N, Stevens R (1987) Relationships between the superior colliculus and hippocampus: Neural and behavioural considerations. Behav Brain Sci 10: 101–152CrossRefGoogle Scholar
  136. 136.
    Gonzalez-Lima F (1989) Functional brain circuitry related to arousal and learning in rats. In: Ewert J-P, Arbib MA (eds): Visuomotor coordination. Plenum, New York, 729–765Google Scholar
  137. 137.
    Ewert J-P, Finkenstädt T (1987) Modulation of tectal functions by prosencephalic loops in amphibians. Behav Brain Sci 10(1): 122–123Google Scholar
  138. 138.
    Birkhofer M, Bleckmann H, Görner P (1994) Sensory activity in the telencephalon of the clawed toad, Xenopus laevis. Eur J Morphol 2–4: 262–266Google Scholar
  139. 139.
    Walkowiak W, Berlinger M, Schul J, Gerhardt HC (1999) Significance of forebrain structures in acoustically guided behavior in anurans. Eur J Morphol 37(2–3): 177–181PubMedCrossRefGoogle Scholar
  140. 140.
    Endepols H, Walkowiak W (1999) Influence of descending forebrain projections on processing of acoustic signals and audiomotor integration in the anuran midbrain. Eur J Morphol 37(2–3): 182–184PubMedCrossRefGoogle Scholar
  141. 141.
    Chevalier G, Vacher S, Deniau JM (1984) Inhibitory nigral influence on tectospinal neurons, a possible implication of basal ganglia in orienting behavior. Exp Brain Res 53: 320–326PubMedCrossRefGoogle Scholar
  142. 142.
    Chevalier G, Deniau JM (1990) Disinhibition as a basic process in the expression of striatal functions. Trends Neurosci 13: 277–280PubMedCrossRefGoogle Scholar
  143. 143.
    Andersen H, Bræstrup C, Randrup A (1975) Apomorphine-induced stereotyped biting in the tortoise in relation to dopaminergic mechanisms. Brain Behav Evol 11: 365–373PubMedGoogle Scholar
  144. 144.
    Dhawan B, Saxena PN, Gupta GP (1961) Apomorphin-induced pecking in pigeons. Brit J Pharmacol 15: 285–295Google Scholar
  145. 145.
    Burg B, Haase C, Lindenblatt U, Delius JD (1989) Sensitization to and conditioning with apomorphine in pigeons. Pharmacol Biochem Behav 34: 59–64PubMedCrossRefGoogle Scholar
  146. 146.
    Fekete M, Kurti AM, Priubusz J (1970) On the dopaminergic nature of the gnawing compulsion induced by apomorphine in mice. J Pharmacol 22: 377–379Google Scholar
  147. 147.
    McCulloch J, Savaki HE, McCulloch MC, Jehle J, Sokoloff L (1982) The distribution of alterations in energy metabolism in the rat brain produced by apomorphine. Brain Res 243: 67–80PubMedCrossRefGoogle Scholar
  148. 148.
    Blackburn JB, Pfaust JG, Phillips AG (1992) Dopamine functions in appetitive and defensive behaviours. Prog Neurobiol 39: 247–279PubMedCrossRefGoogle Scholar
  149. 149.
    Szechman H, Cleghorn JM, Brown GM, Kaplan RD, Franco SW, Rosenthal K (1987) Sensitization and tolerance to apomorphine in men: yawning, growth hormone, nausea, and hypothermia. Psychiatr Res 23: 245–255CrossRefGoogle Scholar
  150. 150.
    Ugwoke MI, Sam E, Van den Mooter G, Verbeke N, Kinget R (1999) Assessment of apomorphine nasal spray in Parkinson treatment. Int J Pharmac 181: 125–193CrossRefGoogle Scholar
  151. 151.
    Godoy AM, Delius JD (1999) Sensitization to apomorphine in pigeons is due to conditioning, subject to generalization but resistant to extinction. Behav Pharmacol 10:367–378PubMedCrossRefGoogle Scholar
  152. 152.
    Baxter BL, Gluckman MJ, Stein L, Scerni RA (1974) Self-injection of apomorphine in the rat: positive reinforcement by a dopamine receptor stimulant. Pharmacol Biochem Behav 2: 387–392PubMedCrossRefGoogle Scholar
  153. 153.
    Cools AR, Broekkamp CLE, van Rossum JM (1977) Subcutanous injections of apomorphine, stimulus generalization and conditioning: serious pitfalls for the examiner using apomorphine as a tool. Pharmacol Biochem Behav 6: 705–708PubMedCrossRefGoogle Scholar
  154. 154.
    Woolverton WL, Goldberg LI, Ginos JZ (1984) Intravenous self-administration of dopamine receptor agonists by rhesus monkeys. J Pharmacol Exp Ther 230: 678–683PubMedGoogle Scholar
  155. 155.
    Möller, H-G, K. Nowak K, Kuschinsky K (1987) Studies on interactions between conditioned and unconditioned behavioural responses to apomorphine in rats. Naudyn-Schmiedeberg’s Arch Pharm 335: 673–679CrossRefGoogle Scholar
  156. 156.
    Lindenblatt U, Delius JD (1988) Nucleus basalis prosencephali, a substrate of apomorphine-induced pecking in pigeons. Brain Res 453: 1–8PubMedCrossRefGoogle Scholar
  157. 157.
    Wynne B, Delius JD (1995) Sensitization to apomorphine in pigeons: unaffected by latent inhibition but still due to classical conditioning. Psychopharmacology 119: 414–420PubMedCrossRefGoogle Scholar
  158. 158.
    Godoy AM, Delius JD, Siemann M (2000) Dose shift effects on an apomorphine-elicited response. Med Sci Res 28: 39–42Google Scholar
  159. 159.
    Ewert J-P, Matsumoto N, Schwippert WW (1985) Morphological identification of preyselective neurons in the grass frog’s optic tectum. Naturwissenschaften 72: 661–662PubMedCrossRefGoogle Scholar
  160. 160.
    Ewert J-P, Buxbaum-Conradi H, Dreisvogt F, Glagow M, Merkel-Harff C, Röttgen A, Schürg-Pfeiffer E, Schiwppert WW (2001) Neural modulation of visuomotor functions underlying prey-catching behaviour in anurans: perception, attention, motor performance, Learning. Comp Biochem Physiol A 128: 417–461CrossRefGoogle Scholar

Copyright information

© Birkhäuser Verlag/Switzerland 2006

Authors and Affiliations

  • Jörg-Peter Ewert
    • 1
  • Wolfgang W. Schwippert
    • 1
  1. 1.Department of Neurobiology, Faculty of Natural SciencesUniversity of KasselKasselGermany

Personalised recommendations