Advertisement

Using Simulated Annealing to Obtain Good Nodal Approximations of Deformable Bodies

  • Oliver Deussen
  • Leif Kobbelt
  • Peter Tücke
Conference paper
Part of the Eurographics book series (EUROGRAPH)

Abstract

In this paper we present a method to obtain good approximations of deformable bodies with spring/mass systems. An iterative algorithm based on voronoi diagrams is used to get a good mass distribution. The elastic properties of the system are optimized by simulated annealing. Results are shown, and some applications are discussed.

Keywords

Simulation Spring/mass lattice Modeling Deformable Bodies Computer Graphics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E.H.L. Aarts and P.J.M. van Laarhoven. Statistical cooling: A general approach to combinatorial optimization problems. Philips Journal of Research, (40): 193–226, 1985.MathSciNetGoogle Scholar
  2. 2.
    K.-J. Bathe and E.L. Wilson. Numerical methods in finite element analysis. Prentice-Hall, 1976.Google Scholar
  3. 3.
    W. Boehm and H. Prautzsch. Numerical methods. AK Peters Wellesley, 1993.Google Scholar
  4. 4.
    D.E. Breen, D.H. House, and P.H. Getto. A physicially-based particle model of woven cloth. The Visual Computer, (8): 264–277, 1992.CrossRefGoogle Scholar
  5. 5.
    H. Delingette, G. Subsol, S. Cotin, and J. Pignon. A craniofacial surgery simulation testbed. Research report 2199, Institute National de Recherche en Informatique et Automatique, 1994.Google Scholar
  6. 6.
    O. Deussen and Chr. Kuhn. Echtzeitsimulation deformierbarer Objekte liber nodale Modelle. in: Th. Strothotte and R Lorenz, Hrsg., Proc. Integration von Bild, Modell und Text. ASIM Mitteilungen No. 46, University of Magdeburg, 1995.Google Scholar
  7. 7.
    J. Eisley. Mechanics of elastic structures. Prentice Hall, 1989.Google Scholar
  8. 8.
    Xiaochun Gao, Zhiying King, and Qixian Zhang. A hybrid beam element for mathematical modelling of high-speed flexible linkages. Mech. Mach. Theory, 24 (1): 29–36, 1989.CrossRefGoogle Scholar
  9. 9.
    G.E. Kirsch. Die Fundamentalgleichungen der Theorie der Elastizität fester Körper, hergeleitet aus der Betrachtung eines Systems von Punkten, welche durch elastische Streben verbunden sind. VDI-Zeitschrift, 1868.Google Scholar
  10. 10.
    U.G. Kühnapfel, B. Neisius, H.G. Krumm, and M. Hübner. CAD-Based simulation and modelling for endoscopic surgery. Endoscopic Surgery, 1993.Google Scholar
  11. 11.
    G.S.P. Miller. The motion dynamics of snakes and worms. Computer Graphics, 22 (4): 169–173, 1988.CrossRefGoogle Scholar
  12. 12.
    F.P. Preparata and M.I. Shamos. Computational geometry. Springer-Verlag New York, 175 Fifth Avenue, New York, New York 10010, USA, 3 Auflage, 1990.Google Scholar
  13. 13.
    D. Terzopoulos and K. Waters. Analysis and synthesis of facial image sequences using physical and anatomical models IEEE Transactions on Pattern Analysis and Machine Intelligence, 1993.Google Scholar
  14. 14.
    P.J.M. van Laarhoven and E.H.L. Aarts. Simulated annealing, theory and applications. Reidel Publishing, Dordrecht, 1987.zbMATHGoogle Scholar
  15. 15.
    K. Waters. A physical model of facial tissue and muscle articulation derived from computer tomography data. Visualization in Biomedical Computing, pp. 574–583.SPIE, 1992.Google Scholar

Copyright information

© Springer-Verlag/Wien 1995

Authors and Affiliations

  • Oliver Deussen
    • 1
  • Leif Kobbelt
    • 1
  • Peter Tücke
    • 1
  1. 1.Institute for Operating and Dialog SystemsUniversity of KarlsruheKarlsruheGermany

Personalised recommendations