Molecular analysis of the human coronavirus (strain 229E) genome

  • J. Herold
  • T. Raabe
  • S. G. Siddell
Conference paper
Part of the Archives of Virology book series (ARCHIVES SUPPL, volume 7)


The nucleotide sequence of the human coronavirus strain 229E (HCV 229E) has been determined. This article describes the organization of the virus genome, the predicted viral gene products and the mechanisms which regulate viral gene expression. This information provides a basis to investigate the biology and pathogenesis of HCV.


Mouse Hepatitis Virus Viral Gene Product Human Coronavirus Murine Hepatitis Virus Murine Coronavirus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Arpin N, Talbot JP (1990) Molecular characterization of the 229E strain of human coronavirus. In: Cavanagh D, Brown TDK (eds) Coronaviruses and their diseases. Advances in experimental biology and medicine, vol 276. Plenum Press, New York, pp 73–80Google Scholar
  2. 2.
    Baric RS, Fu KS, Schaad MC, Stohlman SA (1990) Establishing a genetic recombination map for MHV-A59 complementation groups. Virology 177: 646–656PubMedCrossRefGoogle Scholar
  3. 3.
    Boursnell MEG, Brown TDK, Foulds IJ, Green PF, Tomley FM, Binns MM (1987) Completion of the sequence of the genome of the coronavirus avian infectious bronchitis virus. J Gen Virol 68: 57–77PubMedCrossRefGoogle Scholar
  4. 4.
    Breedenbeek PJ, Pachuk CJ, Noten AFH, Charite A, Luytjes W, Weiss SR, Spaan WJM (1990) The primary structure and expression of the second open reading frame of the polymerase gene of the coronavirus MHV-A59: a highly conserved polymerase is expressed by an efficient ribosomal frameshifting mechanism. Nucleic Acids Res 18: 1825–1832CrossRefGoogle Scholar
  5. 5.
    Brierley I, Digard P, Inglis SC (1989) Characterization of an efficient ribosomal frameshifting sequence: requirement for an RNA pseudoknot. Cell 57: 537–547PubMedCrossRefGoogle Scholar
  6. 6.
    Denison MR, Zoltick PW, Hughes SA, Giangreco B, Olsen AL, Perlman S, Leibowitz JL, Weiss SR (1992) Intracellular processing of the N-terminal ORF la proteins of the coronavirus MHV requires multiple proteolytic events. Virology 189: 274–284PubMedCrossRefGoogle Scholar
  7. 7.
    Denison MR, Zoltick PW, Leibowitz JL, Pachuk CJ, Weiss SR (1991) Identification of polypeptides encoded in open reading frame lb of the putative polymerase gene of the murine coronavirus mouse hepatitis virus A59. J Virol 65: 3076–3082PubMedGoogle Scholar
  8. 8.
    Devereux J, Haeberli P, Smithies O (1984) A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res 12: 387–395PubMedCrossRefGoogle Scholar
  9. 9.
    Gubler U, Hoffman BJ (1983) A simple and very efficient method for generating cDNA libraries. Gene 25: 263–269PubMedCrossRefGoogle Scholar
  10. 10.
    Hierholzer JC, Tannock GA (1988) Coronaviridae: the coronaviruses. In: Lenette EH, Halonen P, Murphy FA (eds) Viral, rickettsial, and chlamydial diseases. Laboratory diagnosis of infectious disease-principles and practice, vol 2. Springer, Berlin Heidelberg New York Tokyo, pp 451–483CrossRefGoogle Scholar
  11. 11.
    Isaacs D, Flowers D, Clarke JR, Valman B, Macnaughton MR (1983) Epidemiology of coronavirus respiratory infections. Arch Dis Child 38: 500–503CrossRefGoogle Scholar
  12. 12.
    Kemp MC, Hierholzer JC, Harrison A, Burks JS (1984) Characterization of viral proteins synthesized in 229E infected cells and effect(s) of inhibition of glycosylation and glycoprotein transport. In: Rottier PJM, van dere Zeijst BAM, Spaan WJM, Horzinek MC (eds) Molecular biology and pathogenesis of corona-virus. Advances in experimental biology and medicine, vol 173. Plenum Press, New York, pp 65–79Google Scholar
  13. 13.
    Lee H-J, Shieh C-K, Gorbalenya AE, Koonin EV, LaMonica N, Tuler J, Bagdzhadzhyan A, Lai MMC (1991) The complete sequence (22 kilobases) of murine coronavirus gene 1 encoding the putative proteases and RNA polymerase. Virology 180: 567–582PubMedCrossRefGoogle Scholar
  14. 14.
    Myint S, Harmsen D, Raabe T, Siddell S (1990) Characterization of a nucleic acid probe for the diagnosis of human coronavirus 229E infections. J Med Virol 31: 165–172PubMedCrossRefGoogle Scholar
  15. 15.
    Parker MM, Masters PS (1990) Sequence comparison of the N genes of five strains of mouse hepatitis virus suggest a three domain structure for the nucleocapsid protein. Virology 179: 463–468Google Scholar
  16. 16.
    Phillpots JR (1983) Clones of MRC-C cells may be superior to the parent line for the culture of 229E-like strains of human respiratory coronaviruses. J Virol Methods 6: 267–269CrossRefGoogle Scholar
  17. 17.
    Pinto LH, Holsinger LJ, Lamb RA (1992) Influenza virus M2 protein has ion channel activity. Cell 69: 517–528PubMedCrossRefGoogle Scholar
  18. 18.
    Raabe T, Schelle-Prinz B, Siddell SG (1990) Nucleotide sequence of the gene encoding the spike glycoprotein of human coronavirus HCV 229E. J Gen Virol 71: 1065–1073PubMedCrossRefGoogle Scholar
  19. 19.
    Rottier PJM, Welling GW, Welling-Wester S, Niesters HGM, Lenstra JA, van der Zeijst BAM (1986) Predicted membrane topology of the coronavirus protein El. Biochemistry 25: 1335–1339PubMedCrossRefGoogle Scholar
  20. 20.
    Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory, Cold Spring HarborGoogle Scholar
  21. 21.
    Schmidt OW, Kenny GE (1982) Polypeptides and functions of antigens from human coronaviruses 229E and 0C43. Infect Immun 35: 515–522PubMedGoogle Scholar
  22. 22.
    Spaan W, Rottier P, Smeekens S, van der Zeijst BAM, Delius H, Armstrong J, Skinner M, Siddell SG (1983) Coronavirus mRNA synthesis involves fusion of noncontigious sequences. EMBO J 2: 1839–1844PubMedGoogle Scholar
  23. 23.
    Staden R (1982) Automation of the computer handling of gel reading data produced by the shotgun method of DNA sequencing. Nucleic Acids Res 10: 4731–4751PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1993

Authors and Affiliations

  • J. Herold
    • 1
  • T. Raabe
    • 1
  • S. G. Siddell
    • 1
    • 2
  1. 1.Institute of VirologyUniversity of WürzburgWürzburgFederal Republic of Germany
  2. 2.Institute of VirologyUniversity of WürzburgWürzburgFederal Republic of Germany

Personalised recommendations