Recent Results of the Experimental Analysis of Hadronic High Energy Interactions

  • M. Markytan
Conference paper
Part of the Acta Physica Austriaca book series (FEWBODY, volume 13/1974)

Abstract

In the last year, an enormous amount of experimental information on hadronic high energy interaction has become available. The most spectacular findings have been achieved in experiments at the CERN Intersecting Storage Ring, and the appearance of a predicted diffraction minimum in pp elastic scattering and the observation of rising total pp cross-sections were the results. But, also, the experimental analysis of bubble chamber data, though of limited statistics, but containing all observable reaction channels, furnished most valuable contributions to the understanding of the reaction mechanisms of hadronic interactions. Energy dependences, splitting up of reaction channels into partial contributions of special reaction mechanism, partial wave analyses, and resonance mainly be achieved only by this detector because of its 4π geometry detection capability that does not necessitate angular corrections due to detection efficiency. A still increasing emphasy has been laid on multiparticle and inclusive production with the essential aim to clarify the nature of diffractive production and in general the mechanisms of such reactions.

Keywords

Elastic Scattering Partial Wave Multiplicity Distribution Partial Wave Analysis Pion Exchange 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Barbiellini et al. (Aachen-CERN-Harvard-Genova Torino Collab.), “Small-Angle Proton-Proton Elastic Scattering at Very High Energies (460 GeV2 < s < 2900 GeV2)”, Phys. Lett. 39B, 663 (1972).ADSGoogle Scholar
  2. 2.
    J. V. Allaby et al. (CERN-Rome Collaboration), “Energy Dependence of the Structure in High Energy Proton-Proton Elastic Scattering”, Phys. Lett. 34B 431 (1971).ADSGoogle Scholar
  3. 3.
    C. Baglin et al. (CERN-Ecole Polytechnique-OrsayStockholm Collaboration), “Large Angle π+p Elastic Scattering at 10 GeV/c” (Paper Nr. 162, submitted to the 2-nd Aix-en-Provence Elementary Particle Conference), Phys. Lett. 47B 85 (1973).ADSGoogle Scholar
  4. 4.
    P. Cronillon et al. (Cornell-Brookhaven-Northeastern Collaboration), “Large Angle π-p Elastic Scattering at 14 and 23 GeV/c”, Phys. Rev. Lett. 30, 403 (1973).CrossRefADSGoogle Scholar
  5. R. Rubinstein et al. (Brookhaven-Cornell-Northeastern Collaboration), “Large Angle π+p and K+p Elastic Scattering at 13.8 GeV/c”, Phys. Rev. Lett. 30, 1010 (1973).CrossRefADSGoogle Scholar
  6. 5.
    T. T. Chou, C. N. Yang, “Model of Elastic High Energy Scattering”, Phys. Rev. 170 1591 (1968).Google Scholar
  7. T. T. Chou, C. N. Yang, “Possible Existence of Kinks in High Energy Elastic pp-Scattering”, Phys. Rev. Lett. 20, 1213 (1968).Google Scholar
  8. 6.
    L. DurandIII, R. Lipes, “Diffraction Model for High Energy pp Scattering”, Phys. Rev. Lett. 20, 637 (1968).CrossRefADSGoogle Scholar
  9. 7.
    see: G. Giacomelli, “High Energy Hadron Physics”, Proceedings of the Amsterdam International Conference on Elementary Particles (June 30 - July 6, 1971), North-Holland Publishing Company, p. 1–38.Google Scholar
  10. 8.
    V. Bartenev et al. (USSR-USA Collaboration at NAL), “Measurement of the Slope of the Diffraction Peak for Elastic pp Scattering from 8 to 400 GeV”, Phys. Rev. Lett. 31, 1088 (1974).CrossRefADSGoogle Scholar
  11. 9.
    U. Amaldi et al. (CERN-Rome Collaboration), “The Energy Dependence of the Proton-Proton Total Cross-Section for Centre-of-Mass Energies between 23 and 53 GeV”, Phys. Lett. 44B, 112 (1974).ADSGoogle Scholar
  12. 10.
    G. B. Yodh, Yash Pal, J. S. Trefil, “Evicence for Rapidly Rising p-p Total Cross Section from Cosmic Ray Data”, Phys. Rev. Lett. 28, 1005 (1972).CrossRefADSGoogle Scholar
  13. 11.
    U. Amaldi, “Elastic Scattering and Low Multiplicities”, Rapporteur’s talk at the 2-nd Aix-en-Provence Inter- national Conference on Elementary Particles, 1973.Google Scholar
  14. 12.
    U. Amaldi et al. (CERN-Rome Collaboration), “Measurements of the Proton-Proton Total Cross Section by Means of Coulomb Scattering at the CERN Intersecting Storage Ring”, Phys. Lett. 43B 231 (1973).ADSGoogle Scholar
  15. 13.
    P. Söding, “Real Part of the Proton-Proton and Proton Anti-Proton Forward Scattering Amplitude at High Energies”, Phys. Lett. 8, 285 (1964).CrossRefADSGoogle Scholar
  16. 14.
    G. Höhler, H. P. Jakob, “The Real Part of the 7N Diffraction Amplitude”, Preprint of the University of Karlsruhe, Germany, TKP 13/73.Google Scholar
  17. 15.
    G. Höhler, R. Strauss, Zeitschrift f. Physik 232, 205 (1970).CrossRefADSGoogle Scholar
  18. 16.
    J. R. Campbell et al., “Measurement of the Real Part of the K p Elastic Scattering Amplitude at 10 GeV/c”, Nucl. Phys. B64, 1 (1973).CrossRefADSGoogle Scholar
  19. 17.
    Yung-An Chao, E. Pietarinen, “Extraction of ΛK-p and EK-p Coupling Constants from K±p Forward Amplitudes”, Phys. Rev. Lett. 26, 1060 (1971).CrossRefADSGoogle Scholar
  20. 18.
    D.W. G. S. Leith, “Diffractive Processes”, invited paper presented at the 1973 Meeting of the Division of Particles and Fields of the APS, Berkeley, August 1973: SLAC-PUB-1330 (T/E).Google Scholar
  21. 19.
    E. Zevgolatakos et al. (Athens-Demokritos-LiverpoolVienna Collaboration), “A Study of the Reactions K-p → 4 K°π-p and K-p → K*- (890)p at 8.25 GeV/c”, Nucl. Phys. B55, 15 (1973).CrossRefADSGoogle Scholar
  22. 20.
    H. Harari, Annals of Physics 63, 432 (1971).CrossRefADSGoogle Scholar
  23. 21.
    M. Davier, H. Harari, “Elastic K±p Scattering and a Dual Absorptive Model”, Phys. Lett. 35B, 239 (1971).ADSGoogle Scholar
  24. 22.
    H. W. Atherton et al., “Study of the Reactions pp → ΛΛ, ΛΣ°+ c.c, Σ+ Σ+ at 3.6 GeV/c”, CERN/D.Ph. II/Phys. 73–12; to be submitted to Nuclear Physics B.Google Scholar
  25. 23.
    G. Plaut, “Exchange Degeneracy and Absorption in pp → YY, Nucl. Phys. B35, 221 (1971).CrossRefADSGoogle Scholar
  26. 24.
    F. Bradamante et al. (CERN-Trieste High Energy Group), “Polarisation in π+p → K+Σ+ Backward Scattering at 3.5 GeV/c”, Phys. Lett. 44B, 202 (1973).ADSGoogle Scholar
  27. 25.
    W. Beusch et al. (CERN-ETH-IC Collaboration), “Angular Distribution and Polarisation in the Back-ward Peak of p} A K° at 4 and 6.2 GeV/c”, Nucl. Phys. B19, 546 (1970).CrossRefADSGoogle Scholar
  28. 26.
    C. Schmid, J. K. Storrow, “Exchange Degeneracy Tests in the Resonance Region of the Reactions KN → πΣand RN → πΛ, Nucl. Phys. B29, 219 (1971).CrossRefADSGoogle Scholar
  29. 27.
    D. Yaffe et al., “A Study of the Reactions \( \pi \bar{\ }p\to K_{890}^{*{}^\circ }\Lambda ,K_{890}^{*{}^\circ }{{\Sigma }^{{}^\circ }},and\text{ }K_{890}^{*{}^\circ }\text{ Y}_{1}^{*{}^\circ } \) (1385)”, to be submitted to Nu-clear Physics B. (CERN/D.Ph.II/Phys. 73–24).Google Scholar
  30. 28.
    R. D. Field, R. L. Eisner, M. Aguilar-Benitez, “Study of Vector Meson Production with Hypercharge Exchange”, Phys. Rev. D6, 1863 (1972).ADSGoogle Scholar
  31. 29.
    G. Grayer et al. (CERN-Munich Collaboration), “ ππ Phase Shift Analysis from an Experiment π-ρ → π-π+n at 17.2 GeV/c”, AIP-Conference Proceedings No. 8, Particles and Fields Subseries No. 3, Experimental Meson Spectroscopy - 1972 (Third Philadelphia Conference), Edited by A. H. Rosenfeld and K.-W. Lai, American Institute of Physics, pp. 5–16.Google Scholar
  32. 30.
    P.K. Williams, “Form Factors, Kronecker-6 Terms, and the Absorptive Peripheral Model”, Phys. Rev. 181, 1963 (1969).CrossRefADSGoogle Scholar
  33. L. Chan, P. K. Williams, “Decays of High Spin Objects Produced by Pion Exchange”, Phys. Rev. 188, 2455 (1969).Google Scholar
  34. 31.
    P. K. Williams, “Extrapolation Model for ππ Scattering”, Phys. Rev. Dl, 1312 (1970).Google Scholar
  35. 32.
    G. L. Kane, “Simplified Procedure for Performing Absorption Corrections”, Phys. Rev. 163, 1544 (1967).CrossRefADSGoogle Scholar
  36. 33.
    P. Estabrooks, A.D. Martin, “Analysis of π-ρ → π-π+n Data at 17.2 GeV/c”, Phys. Lett. 41B, 350 (1972).ADSGoogle Scholar
  37. 34.
    P. Estabrooks et al., CERN preprint TH-1661, to be published in: Proceedings of the International Conference on ππ Scattering and Associated Topics, Tallahassee, 28–30 March, 1973.Google Scholar
  38. 35.
    A.D. Martin, P. Estabrooks, “ππ Phase Shifts from π-ρ → π-π+n Data”, Proceedings of the Pion Exchange Meeting, Daresbury Nuclear Physics Laboratory, March 1973, pp. 77–122.Google Scholar
  39. 36.
    S. D. Protopopescu et al., “ρρ Partial Wave Analysis from Reactions π+ρ → π+π-Δ++ and π+ρ → K+K-Δ++ at 7.1 GeV/c”, Phys. Rev. D7, 1279 (1973).Google Scholar
  40. 37.
    P. Estabrooks, A. D. Martin, C. Michael, “Exchange Mechanisms for π-ρ → ρ°n and ρ-ω Interference”, CERN Preprint Ref. TH 1732 (1973).Google Scholar
  41. 38.
    M. Ross, F. S. Henyey, G. L. Kane, “On the Structure of High Energy Two-Body Non-Diffractive Reactions”, Nucl. Phys. B23, 269 (1970).CrossRefADSGoogle Scholar
  42. 39.
    W. Hoogland et al. (Amsterdam-CERN-Munich Collaboration), “Isospin-2 ππ Phase Shifts from an Experiment at 12.5 GeV/c”, CERN Preprint, 1973, submitted to Physics Letters.Google Scholar
  43. 40.
    R. Arnowitt, Proceedings of the Conference on π-π- and Kπ Interactions, Argonne National Laboratory (1969), p. 619.Google Scholar
  44. 41.
    M. J. Losty et al. (CERN-Saclay Collaboration), “A Study of π-π- Scattering from 7-p Interactions at 3.93 GeV/c”, CERN Preprint D. Ph.II/PHYS 73–26.Google Scholar
  45. 42.
    J. P. Baton, G. Laurens, J. Reignier, ππ Phase Shifts from Chew-Low Extrapolations of π-p →ππN at 2.77 GeV/c”, Phys. Lett. 33B, 528 (1970).ADSGoogle Scholar
  46. 43.
    O. R. Sander et al., “S- and D-Wave Phase Shifts for π+π+→π+π+ T = 2 Strong Elastic Scattering at Low Dipion Energies”, Paper No.476, submitted to the 16th Int. Conference on High Energy Physics, Batavia (1972).Google Scholar
  47. 44.
    G. Ciapetti, R. L. Eisner, A. C. Irving, J. B. Kinson, D. C. Watkins, “Study of Reactions Involving a Vector Meson Produced in Association with the A(1236) or Nucleon”, Nucl. Phys. B66, 350 (1973).CrossRefADSGoogle Scholar
  48. 45.
    C. Brankin et al. (Athens-Demokritos-Liverpool-Vienna Collaboration), “A Study of the K-π- Interaction from K p Data at 8.25 GeV/c”, Nucl. Phys. B63, 211 (1973).CrossRefADSGoogle Scholar
  49. 46.
    M. Bardadin-Otwinowska et al. (Saclay-Ecole Polytechnique-Rutherford Collaboration), “Determination of the K-π- Inelastic Cross Sections for C. M. Energy up to 2.8 GeV”, Saclay Preprint D.Ph.PE 73–11.Google Scholar
  50. 47.
    P. L. Bastien et al. (Seattle-Berkeley Collaboration), “Diffractive Dissociation of Pions at 15 GeV/c”, Paper No. 376, submitted to the 2nd Aix-en-Provence Conference on Elementary Particles, September 1973.Google Scholar
  51. 48.
    D. V. Brockway, “Study of the Three Pion Final State Interactions in the Reaction K-p →K-π+π-p at 5 and 7.5 GeV/c”, University of Illinois report C00–1195197 (1970).Google Scholar
  52. 49.
    R. Klanner, “Analysis of the Reaction K-p →K-π+π-p at 25 and 40 GeV/c”, NP Internal Report 73–9, CERN.Google Scholar
  53. 50.
    G. Ascoli et al., “Summary of the Experimental Situation Regarding Al, A2 and A3 Production”, papers 442 and 444 submitted to the 16th Int. Conference on High Energy Physics, Batavia, September 1972.Google Scholar
  54. G. Ascoli et al. (Illinois-Toronto-Genova-DESY-Milan-Saclay-Harvard-Aachen-Berlin-Bonn-CERN-Heidelberg- Notre Dame-Wisconsin Collaboration), “Spin Parity Analysis of the A3”, Phys. Rev. D7, 669 (1973).ADSGoogle Scholar
  55. 51.
    M. Deutschmann et al. (Aachen-Berlin-CERN-LondonVienna Collaboration), “Spin Parity Structure of the Q and L Enhancements in K-p →(K-π+π-)p at 10 and 16 GeV/c”, CERN Preprint D.Ph.II/PHYS 73, submitted to Phys. Letters.Google Scholar
  56. 52.
    J. D. Hansen, G. T. Jones, G. Otter, G Rudolph, “Formalism and Assumptions Involved in Partial Wave Analysis of Three-Meson Systems”, CERN Preprint D.Ph.II/PHYS. 73–34, to be published.Google Scholar
  57. 53.
    V. Chaloupka, “Analysis of the ðù System Produced in the Reaction ð-p pωπ- ”, CERN Preprint D.Ph.II/ PHYS 73–33, submitted to the 2nd Aix-en-Provence Conference on Elementary Particles, September 1973.Google Scholar
  58. 54.
    A. Apostolakis et al. (Athens-Demokritos-LiverpoolVienna Collaboration), “A Study of the Reaction K-p →~ K- ωp at 8.25 GeV/c”, Preprint of the University of Athens, submitted to Nuclear Physics B.Google Scholar
  59. 55.
    D. R. O. Morrison, Phys. Lett. 22, 528 (1966).CrossRefADSGoogle Scholar
  60. 56.
    G. W. Brandenburg et al. “Observation of a Crossover in the Differential Cross Sections for Q-Meson Production”, Phys. Rev. Lett. 28, 932 (1972).CrossRefADSGoogle Scholar
  61. 57.
    A. Stergiou et al. (Athens-Bruxelles-CERN-DemokritosLiverpool-Mons-Vienna Collaboration), “Comparison of the Reactions K±p Q±p at Incident Momentum 8.25 GeV/c”, CERN preprint D.Ph.II/PHYS 73–1, Paper No. 314, submitted to the 2nd Aix-en-Provence Conference on Elementary Particles, September 1973.Google Scholar
  62. 58.
    A. P. Contogouris et al. (Athens-Demokritos-Liverpool-Vienna Collaboration), “A Model for the Reaction KN → QN” Paper No. 281, submitted to the 2nd Aix-en-Provence Conference on Elementary Particles, September 1973.Google Scholar
  63. 59.
    H. Harari, “Dual Absorptive Model for Dips in Inelastic Hadron Processes”, Phys. Rev. Lett. 26, 1400 (1971).CrossRefADSGoogle Scholar
  64. M. Davier, H. Harari, “Elastic K±p Scattering and a Dual Absorptive Model”, Phys. Lett. 35B, 239 (1971).ADSGoogle Scholar
  65. H. Harari, A. Schwimmer, “Properties of Hadronic Amplitudes in an Absorptive Model”, Phys. Rev. D5, 2780 (1971).ADSGoogle Scholar
  66. 60.
    V. Barger, R. J. N. Phillips, “Meson Regge Exchanges from Simultaneous Analysis of ITN Scattering and Dispersion Sum Rules”, Phys. Rev. 187, 2210 (1969).Google Scholar
  67. 61.
    G. S. Abrams et al. (Berkeley-NAL Collaboration), “Diffraction Dissociation in 205 GeV/c p Two-and Four Prong Interactions”, Paper No. 359, submitted to the 2nd Aix-en-Provence Conference on Elementary Particles, September 1973.Google Scholar
  68. 62.
    E. H. De Groot, H. I. Miettinen, “Shadow Approach to Diffraction Scattering”, Proceedings of the VIIIth Recontre de Moriond, Méribel-les-Allues, March 1973, pp. 193–234.Google Scholar
  69. 63.
    N. Sakai, J. N. J. White, “An Investigation of Unitarity at ISR Energies”, Nucl. Phys. B59, 511 (1973).Google Scholar
  70. 64.
    H. Grässler et al. (Aachen-Berlin-CERN-London-Vienna Collaboration), “Quantum Number Transfer in K-p Reactions at 6, 10 and 16 GeV/c”, Nucl. Phys. B59, 333 (1973).CrossRefADSGoogle Scholar
  71. 65.
    S. Pokorski, L. van Hove, “A Two-Step Dynamical Picture of Diffraction Dissociation and the High Energy Behaviour of Transverse Momenta”, Nucl. Phys. B60, 379 (1973).CrossRefADSGoogle Scholar
  72. 66.
    M. G. Albrow et al. (CERN-Holland-Lancaster-Manchester ISR Collaboration), “The Spectrum of Protons Produced in pp Collisions at 31 GeV/c Total Energy”, Nucl. Phys. B54, 6 (1973).CrossRefADSGoogle Scholar
  73. 67.
    Z. Ajduk, “Structure of the Inelastic Overlap Function for rp Collisions in a Diffraction Dissociation Model”, Nuovo Cimento 16A, 111 (1973).ADSGoogle Scholar
  74. 68.
    M. G. Albrow et al. (CERN-Holland-Lancaster-Manchester Collaboration), “Missing Mass Spectra in p-p Inelastic Scattering at Total Energies of 23 GeV and 31 GeV”, paper Nr. 375, presented at the 2nd Aix-en-Provence International Conference on Elementary Particles, September 1973.Google Scholar
  75. 69.
    F. C. Winkelmann et al. (Berkeley-NAL Collaboration), “Pion Diffraction Dissociation in 205 GeV/c p Interactions”, Phys. Rev. Lett. 32, 121 (1974).CrossRefADSGoogle Scholar
  76. 70.
    M. G. Albrow et al. (CERN-Daresbury-Holland-LancasterManchester Collaboration), “The Spectrum of Protons Produced in pp Collisions at 31 GeV Total Energy”, Nucl. Phys. B54, 6 (1973).CrossRefADSGoogle Scholar
  77. 71.
    L. Fog, “Experimental Review of High Multiplicity Reactions”, Rapporteur’s talk at the 2nd Aix-en-Provence International Conference on Elementary Particles, September 1973, Proceedings: pp. 317–338.Google Scholar
  78. 72.
    S. J. Barish, D. C. Colley, P. F. Schultz, J. Whitmore (ANL-NAL Collaboration), “Characteristics of the Reaction p + p → p + X at 205 GeV/c”, Phys. Rev. Lett. 31, 1080 (1974).CrossRefADSGoogle Scholar
  79. 73.
    S. Childress, P. Franzini, J. Lee-Franzini, R. McCarthy, R. D. Schamberger, Jr. (Columbia-Stony Brook Collaboration), “Small-Momentum-Transfer p-p Inelastic Scattering at 300 GeV/c”, Phys. Rev. Lett. 32, 389 (1974).CrossRefADSGoogle Scholar
  80. 74.
    Aachen-CERN-Genova-Harvard-Torino ISR Collaboration, communicated to ref. [18] by G. Goldhaber.Google Scholar
  81. 75.
    Ph. Salin, “Phénomenologie de Mueller-Regge”, Cours de l’Ecole de Physique de Gif-sur-Yvette, September-October 1973.Google Scholar
  82. 76.
    K. Gottfried, “An Introduction to Multiple Production Processes”, Lectures given in the Academic Training Program, November-December 1972; Ref. TH. 1615-CERN.Google Scholar
  83. 77.
    K. Abe, T. DeLillo, B. Robinson, F. Sannes, J. Carr, J. Kleyne, I. Siotis (Rutgers-Imperial College Collaboration), “Measurement of p + p → p + X Between 50 and 400 GeV/c”, Phys. Rev. Lett. 31, 1527 (1974).CrossRefADSGoogle Scholar
  84. 78.
    N. K. Yamdagni, S. Ljung, “Factorization of the Diffraction Dissociation Amplitude in Four-Body Final States”, Phys. Lett. 37B, 117 (1971).ADSGoogle Scholar
  85. 79.
    C. M. Bromberg et al. (Rochester-Michigan Collaboration), “Cross Sections and Charged-Particle Multiplicities at 102 and 405 GeV/c”, Phys. Rev. Lett. 31, 1563 (1973); Phys. Rev. Lett. 32, 83 (1974).Google Scholar
  86. 80.
    R. C. Hwa, “Multiplicity Distribution and Single Particle Spectrum in the Diffractive Model”, Phys. Rev. Lett. 26, 1143 (1971).CrossRefADSGoogle Scholar
  87. 81.
    A. K. Wróblewski, “Multiple Production and Processes at Ultra High Energies”, Rapporteur’s talk at the XV. International Conference on High Energy Physics, Kiev 1970, pp. 42–94.Google Scholar
  88. 82.
    G. F. Chew, A. Pignotti, “Multiperipheral Bootstrap Model”, Phys. Rev. 176, 2112 (1968).CrossRefGoogle Scholar
  89. N. F. Bali, G. F. Chew, A. Pignotti, “Multiple-Production Theory via Toller Variables”, Phys. Rev. Lett. 19, 614 (1967).CrossRefADSGoogle Scholar
  90. 83.
    C. E. DeTar, “Momentum Spectrum of Hadronic Secondaries in the Multiperipheral Model”, Phys. Rev. D3, 128 (1971).ADSGoogle Scholar
  91. 84.
    D. Sivers, G. H. Thomas, “Analysis of Inclusive Distributions Using a Statistical Approach”, Phys. Rev. D6, 1961 (1974).ADSGoogle Scholar
  92. 85.
    E. L. Berger, “Multiparticle Production Processes at High Energy”, Lectures presented at Erice (July 1973) Basko Polje (September 1973), and Gif-sur-Yvette (September 1973); Ref. TH.1737-CERN.Google Scholar
  93. 86.
    E. L. Berger, G. C. Fox, A. Krzywicki, “Quantitative Measure of Cluster Formation in Multiparticle Production”, Phys. Lett. 43B, 132 (1973).ADSGoogle Scholar
  94. E. L. Berger, A. Krzywicki, “Kinematic Aspects of Inclusive Phenomenology”, Phys. Lett. 36B 380 (1971)ADSGoogle Scholar
  95. 87.
    H. Muirhead, “Antiproton-Proton Interactions”, Proceedings of the 2nd Aix-en-Provence International Conference on Elementary Particles, September 1973, pp. 365–368.Google Scholar
  96. 88.
    E. L. Berger, G. C. Fox: “Multiplicity Distributions and Inclusive Spectra in a Multiperipheral Cluster Emission Model”, Phys. Lett. 47B, 162 (1973).ADSGoogle Scholar
  97. 89.
    N. Schmitz, “An Introduction to Proton-Proton-Collisions at High Energies”, Lectures given at the XIII. Cracow School of Theoretical Physics, Zakopane, 1–12 June 1973, preprint of the Max-Planck Institute for Physics and Astrophysics, Munich: MPI/PAE/Exp. El. 32, May 1973, and Acta Physica Polon. 84, 689 (1973).Google Scholar
  98. 90.
    V. V. Ammosov et al. (Aachen-Berlin-CERN-London-MonsSaclay-Serpuchov-Vienna Collaboration), “Charged Particle Multiplicity Distributions for 33.8 GeV/c K p and 50 GeV/c π-p Interactions”, Nucl. Phys. B58 77 (1973).CrossRefADSGoogle Scholar
  99. 91.
    F. T. Dao, J. Lach, J. Whitmore, “Study of Charged Multiplicity Distributions in High Energy Particle Collisions”, Phys. Lett. 45B, 513 (1973).ADSGoogle Scholar
  100. 92.
    P. K. Malhotra, “Dependence of Multiplicity on Primary Energy in Nucleon-Nucleon and Pion-Nucleon Collisions”, Nucl. Phys. 46, 559 (1963).CrossRefGoogle Scholar
  101. 93.
    A. Wróblewski, “Multiplicity Distributions in Proton-Proton Collisions”, Lecture given at the XIII. Cracow School of Theoretical Physics, Zakopane, June 1–12, 1973, Acta Phys. Polon. B4, 857 (1973).Google Scholar
  102. 94.
    A. J. Buras, J. Dias de Deus, R. Mller, “Multiplicity Scaling at Low Energies, a Generalized Wroblewski Formula, and the Leading Particle Effect”, Phys. Lett. 47B, 251 (1973).ADSGoogle Scholar
  103. 95.
    K. Fialkowski, H. I. Miettinen, “High Energy Multiplicity Distributions and the Two-Component Picture of Particle Production”, Phys. Lett. 43B, 61 (1973).ADSGoogle Scholar
  104. 96.
    A. Balas, “Correlations in Particle Production at High Energies”, invited talk given at the IVth International Symposium on Multiparticle Hadrodynamics, Collegio Ghislieri, Pavia, 31 August - 4 September 1973; Ref. TH. 1745-CERN.Google Scholar
  105. 97.
    A. Wróblewski, Proceedings of theIII. Colloquium on Multiparticle Reactions, Zakopane 1972, p. 81.Google Scholar
  106. 98.
    Z. Koba, H. B. Nielsen, P. Olesen, “Scaling of Multiplicity Distributions in High Energy Hadron Collisions”, Nucl. Phys. B40, 317 (1972).CrossRefADSGoogle Scholar
  107. 99.
    R. P. Feynman, “Very High-Energy Collisions of Hadrons”, Phys. Rev. Lett. 23, 1415 (1969).CrossRefADSGoogle Scholar
  108. J. Benecke, T. T. Chou, C. N. Yang, E. Yen, “Hypothesis of Limiting Fragmentation in High-Energy Collisions”, Phys. Rev. 188, 2159 (1969).CrossRefADSGoogle Scholar
  109. 100.
    A. J. Buras, Z. Koba, “Scaling Behaviour of Charged-Prong Multiplicity Distributions in High Energy Hadronic Collisions and Local Excitation Model”, Nuovo Cimento Lett. 6, 629 (1973).CrossRefGoogle Scholar
  110. 101.
    A. Ramanauskas et al. (Brookhaven-Virginia-WisconsinPurdue-Pennsylvania Collaboration), “Observation of Increasing Charged Multiplicity as a Function of Transverse Momentum in 28.5 GeV/c pp Interactions”, Phys. Rev. Lett. 31, 1371 (1973).CrossRefADSGoogle Scholar
  111. 102.
    P. Schübelin, “Observation of Increasing Charged Multiplicity as a Function of Transverse Momentum in 28.5 GeV/c pp Interactions”, Proceedings of the 2nd Aix-en-Provence International Conference on Elementary Particles, September 1973, pp. 401–403.Google Scholar
  112. 103.
    B. Alper et al. (British-Scandinavian Collaboration), “Preliminary Results on Charged Particle Production at High Transverse Momenta in p-p Collisions at 90° at the CERN ISR”, Paper No. 423, presented at the 2nd Aix-en-Provence International Conference on Elementary Particles, September 1973.Google Scholar
  113. 104.
    L. J. Caroll, “Preliminary Results on Charged Particle Production at High Transverse Momenta in p-p Collisions at 90° at the CERN ISR”, Proceedings of the 2nd Aix-en-Provence International Conference on Elementary Particles, September 1973, pp. 4o7–4o8.Google Scholar
  114. 105.
    F. W. Büsser et al. (CERN-Columbia-Rockefeller Collaboration), “Observation of ð Mesons with Large Transverse Momentum in High Energy Proton-Proton Collisions”, Phys. Lett. 46B, 471 (1973).ADSGoogle Scholar
  115. 106.
    F. Cerulus, “Closed Formulae for the Statistical Weights”, Il Nuovo Cimento XIX, 528 (1961). J. Bartke, “Statistical Model and Cross-Sections for High Energy Reactions”, Inst.of Nucl. Physics Cracow Report No. 719/PH (1970).Google Scholar
  116. 107.
    M. Deutschmann et al. (Aachen-Berlin-CERN-LondonVienna Collaboration), “The ”True“ Multiplicity Distribution in K p Interaction and the Two-Component Model”, CERN preprint D.Ph.II/PHYS 73–27, to be submitted to Nucl. Phys. B.Google Scholar
  117. 108.
    J. D. Hansen, W. Kittel, D.R.O. Morrison, “Study of Many Body Cross Sections and Link with Two-Body Cross Sections and with the Reaction Mechanism”, Nucl. Phys. B25, 605 (1971).CrossRefADSGoogle Scholar
  118. 109.
    F. T. Dao, J. Whitmore, “Study of Neutral-Charged Particle Correlations in High Energy Collisions”, Phys. Lett. 46B, 252 (1973).Google Scholar
  119. 110.
    H. Dibon et al. (CERN-Hamburg-Vienna Collaboration), “Correlations between Photons and Charged Particles Measured at the CERN ISR”, Paper No. 338, presented at the 2nd Aix-en-Provence International Conference on Elementary Particles, September 1973.Google Scholar
  120. 111.
    P. Bosetti et al. (Aachen-Berlin-CERN-London-Vienna Collaboration), “Charge Exchange and Charge Distributions in K-p Interactions at 10 and 16 GeV/c”, Nucl. Phys. B62, 46 (1973).CrossRefADSGoogle Scholar
  121. 112.
    C. Quigg, G. H. Thomas, “Charge Transfer in a Multineripheral Picture”, Phys. Rev. D7, 2752 (1973).ADSGoogle Scholar

Copyright information

© Springer-Verlag 1974

Authors and Affiliations

  • M. Markytan
    • 1
  1. 1.Institut für Hochenergiephysik der Österr.Akademie der WissenschaftenWienAustria

Personalised recommendations