Within the last ten years workers in the physical, biological, and medical sciences have become increasingly aware of the intimate relationship which exists between the chemistry of living organisms and the structure of protein molecules. The general properties of a molecule of an individual protein depend primarily upon the nature and number of the amino acid residues of which it is composed and upon the sequence in which they are arranged along the polypeptide chains. If this information alone were available for any protein it would go far toward explaining its chemical behavior and many of its biological properties; it would serve as a basis for the understanding and control of its chemical reactions, for carrying out proposed alterations of its composition, and, hence, for its possible adaptation to new and useful purposes. But this chemical information alone would not be sufficient to provide adequate understanding of those remarkably specific properties which are especially significant in determining the behavior of proteins in biological systems. These properties are directly dependent upon the spatial relationships between the carbon, nitrogen, oxygen, hydrogen, and other atoms of which the proteins are composed, and upon the nature and the direction of the forces which act between the atoms. These spatial relationships and interatomic forces are largely responsible for the ability of certain proteins to crystallize, for the architecture of protein fibers, for the specificity of enzymes, and for immunological reactions.


Bond Angle Electron Density Distribution Carboxyl Oxygen Atom Trial Structure Crystal Structure Study 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



  1. B 1.
    Bragg, W. L.: The Crystalline State. I. General Survey. London: Bell & Sons, Ltd. 1933.Google Scholar
  2. B 2.
    Buerger, M. J.: X-Ray Crystallography. New York: J. Wiley & Sons, Inc. 1942.Google Scholar
  3. B 3.
    Bunn, C. W.: Chemical Crystallography. Oxford: Clarendon Press. 1945.Google Scholar
  4. B 4.
    Ewald, P. P.: Die Erforschung des Aufbaues der Materie mit Röntgenstrahlen. Handbuch der Physik, Bd. XXIII/2. Berlin: Springer-Verlag. 1933.Google Scholar
  5. B 5.
    Lonsdale, K.: Crystals and X-Rays. New York: Van Nostrand Co., Inc. 1949.Google Scholar
  6. B 6.
    Meyer, K. H. u. H. Mark: Der Aufbau der hochpolymeren organischen Naturstoffe. Leipzig: Akadem. Verlagsges. 1930.Google Scholar
  7. B 7.
    Pauling, L.: The Nature ot the Chemical Bond. 2nd. ed. Ithaca: Cornell University Press. 1940.Google Scholar
  8. B 8.
    Wyckoff, R. W. G.: The Structure of Crystals. New York: Chemical Catalog Co., Inc. 1931. Supplement. New York: Reinhold Publ. Corp. 1935.Google Scholar
  9. B 9.
    — Crystal Structures. New York: Interscience Pub., Inc. 1948.Google Scholar

Journal Articles

  1. 1.
    Albrecht, G. and R. B. Corey: The Crystal Structure of Glycine. J. Amer, chem. Soc. 61, 1087 (1939)CrossRefGoogle Scholar
  2. 2.
    Albrecht, G., G. W. Schnakenberg, M. S. Dunn and J. D. McCullough: Quantitative Investigations of Amino Acids and Peptides. XII. Structural Characteristics of Some Amino Acids. J. physic. Chem. 47, 24 (1943)•CrossRefGoogle Scholar
  3. 3.
    Bernal, J. D.: The Crystal Structure of the Natural Amino Acids and Related Compounds. Z. Kristallogr., Mineral., Petrogr. 78, 363 (1931).Google Scholar
  4. 4.
    Carpenter, G. B. and J. Donohue: The Crystal Structure of N-Acetylglycine. J. Amer. chem. Soc. 72, 2315 (1950).CrossRefGoogle Scholar
  5. 5.
    Corey, R. B.: The Crystal Structure of Diketopiperazine. J. Amer. chem. Soc. 60, 1598 (1938).CrossRefGoogle Scholar
  6. 6.
    Corey, R. B.: Interatomic Distances in Proteins and Related Substances. Chem. Reviews 26, 227 (1940).CrossRefGoogle Scholar
  7. 7.
    Corey, R. B.: X-Ray Studies of Amino Acids and Peptides. Adv. Protein Chem. 4, 385 (1948).CrossRefGoogle Scholar
  8. 8.
    Corey, R. B. and J. Donohue: Interatomic Distances and Bond Angles in the Polypeptide Chain of Proteins. J. Amer. chem. Soc. 72, 2899 (1950).CrossRefGoogle Scholar
  9. 9.
    Donohue, J.: The Crystal Structure of DL-Alanine. II. Revision of Parameters by Three-Dimensional Fourier Analysis. J. Amer. chem. Soc. 72, 949 (1950).CrossRefGoogle Scholar
  10. 10.
    Dunitz, J.D.: X-Ray Structure Analysis of Complex Organic Compounds. Research 2, 6 (1949).Google Scholar
  11. 11.
    Hengstenberg, J. u. F. V. Lenel: Die Struktur des Glycins NH2 • CH2 • Cooh. Z. Kristallogr., Mineral., Petrogr. 77, 424 (1931).Google Scholar
  12. 12.
    Hughes, E. W.: The Crystal Structure of Melamine. J. Amer. chem. Soc. 63, 1737 (1941).CrossRefGoogle Scholar
  13. 13.
    Hughes, E. W. and W. J. Moore: The Crystal Structure of ß-Glycylglycine. J. Amer. chem. Soc. 71, 2618 (1949).CrossRefGoogle Scholar
  14. 14.
    Hughes, E. W. and W. J. Moore: ß-Diglycylglycine. Acta Cryst. 3, 313 (1950).CrossRefGoogle Scholar
  15. 75.
    Kitaygorodsky, A.: The Structure of Amino Acetic Acid. Acta physicochim. URSS 5, 749 (1936).Google Scholar
  16. 16.
    Kratky, O. u. H. Mark: Anwendung physikalischer Methoden zur Erforschung von Naturstoffen: Form und Größe dispergierter Moleküle. — Röntgeno-graphie. Fortschr. Chem. organ. Naturstoffe 1, 255 (1938).Google Scholar
  17. 17.
    Lenel, F. V.: Untersuchung der Polypeptide E. Fischers mit Röntgenstrahlen. Naturwiss. 19, 19 (1931).CrossRefGoogle Scholar
  18. 18.
    Lenel, F. V.: Die Struktur der einfachen Polypeptide des Glycins. Z. Kristallogr., Mineral., Petrogr. 81, 224 (1932).Google Scholar
  19. 19.
    Levy, H. A. and R. B. Corey: The Crystal Structure of DL-Alanine. J. Amer, chem. Soc. 63, 2095 (1941).CrossRefGoogle Scholar
  20. 20.
    Mark, H. u. K. Weissenberg: Röntgenographische Bestimmung der Struktur des Harnstoffs und des Zinntetrajodids. Z. Physik 16, 1 (1923).CrossRefGoogle Scholar
  21. 21.
    Meyer, C. E. and W. C. Rose: The Spatial Configuration of α-Amino-ß-hydroxy-n-butyric acid. J. biol. Chemistry 115, 721 (1936).Google Scholar
  22. 21a.
    Möller, Chr. K.: The Structure of DL- and D-Leucine. Acta Chem. Scand. 3, 1326 (1949).CrossRefGoogle Scholar
  23. 22.
    Pirie, N. W. and J. D. Bernal: Cuprous Glutathione. With a Note on the Crystallography of Glutathione. Biochemic. J. 26, 75 (1932).Google Scholar
  24. 23.
    Shoemaker, D. P., J. Donohue, V. Schomaker and R. B. Corey: The Crystal Structure of L s-Threonine. J. Amer. chem. Soc. 72, 2328 (1950).CrossRefGoogle Scholar
  25. 24.
    Stosick, A. J.: The X-Ray Investigation of Copper DL-α-Aminobutyrate. J. Amer. chem. Soc. 67, 362 (1945).CrossRefGoogle Scholar
  26. 25.
    Stosick, A. J.: The Crystal Structure of Nickel Glycine Dihydrate. J. Amer. chem. Soc. 67, 365 (1945).CrossRefGoogle Scholar
  27. 26.
    Wright, B. A. and P. A. Cole: Preliminary Examination of the Crystal Structure of L-Proline. Acta Cryst. 2, 129 (1949).CrossRefGoogle Scholar
  28. 27.
    Wyckoff, R. W. G. and R. B. Corey: Spectrometric Measurements on Hexamethylene Tetramine and Urea. Z. Kristallogr., Mineral., Petrogr. 89, 462 (1934).Google Scholar

Copyright information

© Wien · Springer-Verlag 1951

Authors and Affiliations

  • Robert B. Corey
    • 1
  1. 1.PasadenaUSA

Personalised recommendations