Fortschritte der Chemie Organischer Naturstoffe / Progress in the Chemistry of Organic Natural Products pp 297-508 | Cite as
Recent Advances in Polynucleotide Synthesis
Abstract
During the past decade solutions of an increasing variety of problems in the field of molecular genetics have rested on the availability of synthetic polynucleotides. Thus, to cite only a few examples, the elucidation of the genetic code was based on synthesis of the 64 possible trinucleoside diphosphates and on the preparation of poly-nucleotides containing repeating sequences (186, 249). More recently the development of synthetic procedures has culminated in the total synthesis of two tRNA-genes (2, 188, 190). A further useful application has been demonstrated in the use of synthetic oligomers of specific base sequence as specific primers for DNA sequencing (247, 366, 379, 467).Because of the many problems which remain with respect to our understanding in gene function or to future gene manipulation, it seems not surprising that the effort for finding new methods or for improving earlier methods in polynucleotide synthesis still continues or even increases in many laboratories all over the world.
Keywords
Blocking Group Polymer Support Oligonucleotide Synthesis Tetrahedron Letter Terminal PhosphatePreview
Unable to display preview. Download preview PDF.
References
- 1.Agarwal, K. L., and M. M. Dhar: The use of 2,3’-anhydronucleosides in the synthesis of the internucleotide bond. Tetrahedron Letters 2451 (1965).Google Scholar
- 2.Agarwal, K. L., H. Buchi, M. H. Caruthers, N. Gupta, H. G. Khorana, K. Kleppe, E. Ohtsuka, U. L. Rajbhandary, J. H. van de Sande, V. Sgaramella, H. Weber, and T. Yamada: Total synthesis of the gene for an alanine transfer ribonucleic acid from yeast. Nature 227, 27 (1970).CrossRefGoogle Scholar
- 3.Agarwal, K. L., A. Yamazaki, and H. G. Khorana: Studies on polynucleotides. XCVIII. A convenient and general method for the preparation of protected dideoxyribonucleotides containing 5’-phosphate end groups. J. Amer. Chem. Soc. 93, 2754 (1971).CrossRefGoogle Scholar
- 4.Agarwal, K. L., and H. G. Khorana: Studies on Polynucleotides. CII. The Use of Aromatic Isocyanates for Selective Blocking of the Terminal 3’-Hydroxyl Group in Protected Deoxyribooligonucleotides. J. Amer. Chem. Soc. 94, 3578 (1972).CrossRefGoogle Scholar
- 5.Agarwal, K. L., A. Kumar, and H. G. Khorana: Studies on Polynucleotides. CIX. Total synthesis of the structural gene for an alanine transfer ribonucleic acid from yeast. Synthesis of a dodecadeoxynucleotide and a decadeoxynucleotide corresponding to the nucleotide sequence 46 to 65. J. Mol. Biol. 72, 351 (1972).CrossRefGoogle Scholar
- 6.Agarwal, K. L., A. Yamazaki, P. J. Cashion, and H. G. Khorana: Chemische Synthese von Polynucleotiden. Angew. Chem. 84, 489 (1972).CrossRefGoogle Scholar
- 7.Agarwal, K. L., M. Fridkin, E. Jay, and H. G. Khorana: Deoxynucleotide synthesis using a new phosphate protecting group. J. Amer. Chem. Soc. 95, 2020 (1973).CrossRefGoogle Scholar
- 8.Akutsu, H., and M. Tsuboi: Structure of polynucleotide complex with non-complementary nucleosides. I. Poly A, G+poly U. Bull. Chem. Soc. Japan 43, 3391 (1970).CrossRefGoogle Scholar
- 9.Akutsu, H., and M. Tsuboi: Structure of polynucleotide complex with non-complementary nucleosides. II. Poly I, U + poly C. Bull. Chem. Soc. Japan 44, 20 (1971).CrossRefGoogle Scholar
- 10.Amagaeva, A. A., A. M. Yurkevitch, I. P. Rudakova, L. V. Khristenko, I. M. Kustanovich, and N. A. Preobrashenskii: 5’-O-p-Tolylsulfonyladenosine derivatives. Rhim. Prir. Soedin. 4, 304 (1968). Chem. Abstr. 70, 115471 s (1969).Google Scholar
- 11.Asai, M., M. Miyaki, and B. Shimizu: Synthetic nucleotides. II. A direct synthetic method for ribonucleotides. Chem. Pharm. Bull. (Tokyo) 15, 1856 (1967).CrossRefGoogle Scholar
- 12.Badashkeeva, A. G., G. N. Kabasheva, D. G. Knorre, G. G. Shamovskii, and T. N. Shubina: Condensation of trideoxyadenylate by means of a water-soluble carbodiimide in the presence of polyuridylic acid. Dokl. Akad. Nauk SSSR 206, 870 (1972).Google Scholar
- 13.Bahr, W., H. Sommer, and K. H. Scheit: Synthesis and properties of oligodeoxy-4-thiothymidylic acid. Biochim. Biophys. Acta 287, 427 (1972).CrossRefGoogle Scholar
- 14.Baker, B. R., P. M. Tanna, and G. D. F. Jackson: Non-classical antimetabolites. XXII. Simulation of 5’-phosphoribosyl binding. IV. Attempted simulation with nucleoside-5’-carbamates. J. Pharm. Sci. 54, 987 (1965).CrossRefGoogle Scholar
- 15.Barzilay, I., J. L. Sussman, and Y. Lapidot: Further studies on the chromatograph behaviour of dinucleoside monophosphates. J. Chromatog. 79, 139 (1973).CrossRefGoogle Scholar
- 16.Bauer, S., R. Lamed, and Y. Lapidot: Large scale synthesis of dinucleoside mono-phosphates catalyzed by ribonuclease from Aspergillus clavatus. Biotechnol. Bioeng. XIV, 861 (1972).CrossRefGoogle Scholar
- 17.Beikirch, H. H., and A. G. Lezius: Double-stranded Polydeoxyribonucleotides containing6-Thiodeoxyguanosineand6-Thiodeoxyinosine. Poly [d(A - C). d(T - S6G)], Poly[d(A-S6G).d(T-C)], and Poly[d(A-C).d(T-S6I)]. Eur. J. Biochem. 27, 381 (1972).CrossRefGoogle Scholar
- 18.Bennett, G. N., J. K. Mackey, J. L. Wiebers, and P. T. Gilham: 2’-(O-α-methoxyethyl-)nucleoside-5’-diphosphates as Single Addition Substrates in the Synthesis of Specific Oligoribonucleotides with Polynucleotide Phosphorylase. Biochemistry 12, 3956 (1973).CrossRefGoogle Scholar
- 19.Berger, H.: Solvolysis and phosphorylating activity of polyphosphate esters. Z. Naturforsch. B 26, 694 (1971).Google Scholar
- 20.Berlin, Yu. A., O. G. Chakhmakhcheva, V. A. Efimov, M. N. Kolosov, and V. G. Korobko: Arenesulfonyl imidazolides, new reagents for polynucleotide synthesis. Tetrahedron Letters 1353 (1973).Google Scholar
- 21.Bernfield, M. R., and F. M. Rottman: Ribonuclease and oligoribonucleotide synthesis. III. Oligonucleotide synthesis with 5’-substituted uridine 2’,3’-cyclic phosphates. J. Biol. Chem. 242, 4134 (1967).Google Scholar
- 22.Blackburn, G. M., M. J. Brown, and M. R. Harris: Nucleic acid studies on insoluble polymer supports. Chem. Commun. 611 (1966).Google Scholar
- 23.Blackburn, G. M., M. J. Brown, and M. R. Harris: Synthetic studies of nucleic acids on polymer supports. Part I. Oligodeoxyribonucleotide synthesis on an insoluble polymer support. J. Chem. Soc. 2438 (1967).Google Scholar
- 24.Blackburn, G. M., M. J. Brown, M. R. Harris, and D. Shire: Synthetic studies of nucleic acids on polymer supports. Part II. Mechanisms of phosphorylation with carbodi-imides and arenesulphonyl chlorides. J. Chem. Soc. 676 (1969).Google Scholar
- 25.Blank, H. U., D. Frahne, A. Myles, and W. Pfleiderer: Nucleosides. IV. Tritylation and benzylation of adenosine derivatives. Liebigs. Ann. Chem. 742, 34 (1970).CrossRefGoogle Scholar
- 26.Blank, H. U., and W. Pfleiderer: Nucleosides. I. Syntheses of O’-benzyl derivatives of uridine. Liebigs Ann. Chem. 742, 1 (1970).CrossRefGoogle Scholar
- 27.Blank, H. U., and W. Pfleiderer: Nucleosides. II. Tritylations and benzylations of cytidine derivatives. Liebigs Ann. Chem. 742, 16 (1970).CrossRefGoogle Scholar
- 28.Blank, H. U., and W. Pfleiderer: Nucleosides. III. New mild method for the selective N6-acylation of cytidine. Liebigs Ann. Chem. 742, 29 (1970).CrossRefGoogle Scholar
- 29.Bobst, A. M., P. A. Cerutti, and F. Rottman: The structure of poly 2’-O-methyladenylic acid at acidic and neutral pH. J. Amer. Chem. Soc. 91, 1246 (1969).CrossRefGoogle Scholar
- 30.Bollum, F. J.: Terminal deoxynucleotidyl transferase. In: The Enzymes, X (P. D. Boyer, ed.), 145 (1974).Google Scholar
- 31.Boom, J. H. van, P. M. J. Burgers, G. P. Owen, C. B. Reese, and R. Saffhill: Approaches to oligoribonucleotide synthesis via phosphotriester intermediates. Chem. Commun. 869 (1971).Google Scholar
- 32.Boots, J. H. van, P. van Deursen, J. Meeuwse, and C. B. Reese: Two sulfur-containing protecting groups for alcoholic hydrogen functions. J. Chem. Soc., Chem. Commun. 766 (1972).Google Scholar
- 33.Brandstetter, F., H. Schott, und E. Bayer: Liquid-phase-Synthese von Nucleotiden. Tetrahedron Letters 2997 (1973).Google Scholar
- 34.Breitenbach, J. W., and O. F. Olaj: Über die proliferierende Polymerisation in Vernetzungssystemen und dynamisch-kalorimetrische Messungen an Popcorn-Polymeren. Chimia 22, 157 (1968).Google Scholar
- 35.Brown, D. M.: Phosphorylation. Advances Org. Chemistry 3, 75 (1963).Google Scholar
- 36.Brunngraber, E. F., and E. Chargafp: Transferase from Escherischia coli effecting low-energy phosphate transfer to nucleosides and nucleotides. Proc. Natl. Acad. Sci. US 67, 107 (1970).CrossRefGoogle Scholar
- 37.Buchi, H., and H. G. Khorana: Studies on Polynucleotides. CV. Total synthesis of the structural gene for an alanine transfer ribonucleic acid from yeast. Chemical synthesis of an icosadeoxyribonucleotide corresponding to the nucleotide sequence 31 to 50. J. Mol. Biol. 72, 251 (1972).CrossRefGoogle Scholar
- 38.Caruthers, M. H., and H. G. Khorana: Studies on Polynucleotides. CXI. Total synthesis of the structural gene for an alanine transfer ribonucleic acid from yeast. Synthesis of a dodecadeoxynucleotide and a heptadeoxynucleotide corresponding to the nucleotide sequence 66 to 77. J. Mol. Biol. 72, 407 (1972).CrossRefGoogle Scholar
- 39.Caruthers, M. H., K. Kleppe, J. H. van de Sande, V. Sgaramella, K. L. Agarwal, H. Buchi, N. K. Gupta, A. Kumar, E. Ohtsuka, U. L. Raj Bhandary, T. Terao, H. Weber, T. Yamada, and H. G. Khorana: Studies On Polynucleotides. CXV. Total synthesis of the structural gene for an alanine transfer RNA from yeast. Enzymic joining to form the total DNA duplex. J. Mol. Biol. 72, 475 (1972).CrossRefGoogle Scholar
- 40.Caruthers, M. H., J. H. van de Sande, and H. G. Khorana: Studies On Polynucleotides. CX. Total synthesis of the structural gene for an alanine transfer ribonucleic acid from yeast. Synthesis of three decadeoxynucleotides corresponding to the nucleotide sequence 51 to 70. J. Mol. Biol. 72, 375 (1972).CrossRefGoogle Scholar
- 41.Cashion, P. J., M. Fridkin, K. L. Agarwal, E. Jay, and H. G. Khorana: Studies On Polynucleotides. CXXI. The use of trityl- and α-naphthylcarbamoyl cellulose derivatives in oligonucleotide synthesis. Biochemistry 12, 1985 (1973).CrossRefGoogle Scholar
- 42.Catlin, J. C., and F. Cramer: Deoxyoligonucleotide synthesis via the triester method. J. Org. Chem. 38, 245 (1973).CrossRefGoogle Scholar
- 43.Cedergren, R. J., B. Larue, and P. Laporte: The acylation of ribonucleotides with benzoic and acetic anhydrides in aqueous solutions. Can. J. Biochem. 49, 730 (1971).Google Scholar
- 44.Chapman, T. M., and D. G. Kleid: Oligonucleotide synthesis on polar polymer supports: The use of a polypeptide support. J. Chem. Soc. D, Chem. Comm. 193 (1973).Google Scholar
- 45.Chargaff, E., and J. N. Davidson: The nucleic acids. Vol. 1, 2 (1955); Vol. 3. New York-London: Academic Press. 1960.Google Scholar
- 46.Chen, H.-C., L. C. Craig, and E. Stoner: On the removal of the residual carboxylic acid groups from cellulosic membranes and Sephadex. Biochem. 11, 3559 (1972).CrossRefGoogle Scholar
- 47.Chladek, S., J. Zemlicka, and V. Gut: 5-chloro-8-hydroxyquinoline (chloroxine) esters of carboxylic acids — selective reagents for acylation of nucleoside and nucleotide aminoacyl derivatives. Biochem. Biophys. Res. Commun. 35, 306 (1969).CrossRefGoogle Scholar
- 48.Chong, K. J., and T. Hata: p-Nitrophenyl phosphates as phosphorylating reagents for alcohols. Bull. Chem. Soc. Jap. 44, 2741 (1971).CrossRefGoogle Scholar
- 49.Chou, J. Y., and M. F. Singer: Synthesis of a copolymer containing adenylic and deoxyadenylic acid residues with polynucleotide phosphorylase. Biochem. Biophys. Res. Commun. 42, 306 (1971).CrossRefGoogle Scholar
- 50.Chou, J. Y., and M. F. Singer: Deoxyadenosine diphosphate as a substrate and inhibitor of polynucleotide phosphorylase of Micrococcus luteus. I. Deoxyadenosine diphosphate as a substrate for polymerization and the exchange reaction with inorganic 32P. J. Biol. Chem. 246, 7486 (1971).Google Scholar
- 51.Chou, J. Y., and M. F. Singer: Deoxyadenosine diphosphate as a substrate and inhibitor of polynucleotide phosphorylase of Micrococcus luteus. III. Copolymerization of adenosine diphosphate and deoxyadenosine diphosphate. J. Biol. Chem. 246, 7505 (1971).Google Scholar
- 52.Christensen, L. F., and A. D. Broom: Specific chemical synthesis of ribonucleoside O-Benzyl ethers. J. Org. Chem. 37, 3398 (1972).CrossRefGoogle Scholar
- 53.Clark, V. M., D. W. Hutchinson, A. J. Kirby, and S. G. Warren: Phosphorylierungsmittel — Bauprinzip und Reaktionsweise. Angew. Chem. 76, 704 (1964).CrossRefGoogle Scholar
- 54.Cook, A. F.: The use of β,β,β-tribromoethylchloroformate for the protection of nucleoside hydroxyl groups. J. Org. Chemistry 33, 3589 (1968).CrossRefGoogle Scholar
- 55.Cook, A. F., M. J. Holman, and A. L. Nussbaum: Nucleoside S-alkyl phosphorothioates. II. Preparation and chemical and enzymatic properties. J. Amer. Chem. Soc. 91, 1522 (1969).CrossRefGoogle Scholar
- 56.Cook, A. F., M. J. Holman, and A. L. Nussbaum: Nucleoside S-alkyl phosphorothioates. III. Application to oligonucleotide synthesis. J. Amer. Chem. Soc. 91, 6479 (1969).CrossRefGoogle Scholar
- 57.Cook, A. F., and D. T. Maichuck: Use of chloroacetic anhydride for the protection of nucleoside hydroxyl groups. J. Org. Chem. 35, 1940 (1970).CrossRefGoogle Scholar
- 58.Cook, A. F., E. P. Heimer, M. J. Holman, D. T. Maichuk, and A. L. Nussbaum: Nucleoside S-alkyl phosphorothioates. V. Synthesis of a tridecadeoxyribonucleotide. J. Amer. Chem. Soc. 95, 1334 (1972).CrossRefGoogle Scholar
- 59.Cooperman, B. S., G. J. Lloyd, and C.-M. Hsu: Reactivity of phosphorylimidazole, an analog of known phosphorylated enzymes. J. Amer. Chem. Soc. 93, 4889 (1971).CrossRefGoogle Scholar
- 60.Cozzarelli, N. R., N. E. Melechen, T. M. Jovin, and A. Kornberg: Polynucleotide cellulose as a substrate for polynucleotide ligase induced by phage T4. Biochem. Biophys. Res. Comm. 28, 578 (1967).CrossRefGoogle Scholar
- 61.Cramer, F.: Probleme der chemischen Polynucleotidsynthese. Angew. Chem. 73, 49 (1961).CrossRefGoogle Scholar
- 62.Cramer, F., H. Neunhoeffer, K. H. Scheit, G. Schneider, and J. Tennigkeit: Neue Phosphorylierungsreaktionen und Schutzgruppen für Nucleotide. Angew. Chem. 74, 387 (1962).CrossRefGoogle Scholar
- 63.Cramer, F., H. P. Bär, H. J. Rhaese, W. Saenger, K. H. Scheit, G. Schneider, and J. Tennigkeit: Stabilität von Schutzgruppen für Nucleoside und Nucleotide. Tetrahedron Letters 1039 (1963).Google Scholar
- 64.Cramer, F., and K. H. Scheit: Über Benzhydrylester von Nucleotiden. Liebigs Ann. Chem. 679, 150 (1964).CrossRefGoogle Scholar
- 65.Cramer, F.: Die Synthese von Oligo-und Polynucleotiden. Angew. Chem. 78, 186 (1966).CrossRefGoogle Scholar
- 66.Cramer, F., and T. Hata: Chemie der energiereichen Phosphate. XIX. Phosphorylierung mit der Additionsverbindung aus Bromcyanacetamid und Triphenylphosphin. Liebigs Ann. Chem. 692, 22 (1966).CrossRefGoogle Scholar
- 67.Cramer, F., R. Helbig, H. Hettler, K. H. Scheit, and H. Seliger: OligonucleotidSynthese an einem löslichen Polymeren als Träger. Angew. Chem. 12, 640 (1966).CrossRefGoogle Scholar
- 68.Cramer, F., and H. Köster: Synthesis of oligonucleotides on a polymeric carrier. Angew. Chem. 80, 488 (1968). Angew. Chem. Internat. Edit. 7, 473 (1968).Google Scholar
- 69.Cramer, F.: Chemical synthesis of oligo-and polynucleotides. Pure Appl. Chem. 18, 197 (1969).CrossRefGoogle Scholar
- 70.Cramer, F.: Recent methods of phosphorylation and the application to nucleotide chemistry. Colloq. Int. Cent. Nat. Rech. Sci. 343 (1970).Google Scholar
- 71.Cramer, F., E. M. Gottschalk, H. Matzura, K. H. Scheit, and H. Sternbach: The synthesis of the alternating copolymer poly[r(A-s 4 U)] by RNA polymerase of Escherichia coli. Eur. J. Biochem. 19, 379 (1971).CrossRefGoogle Scholar
- 72.Cuatrecases, P.: Protein purification by affinity chromatography. Derivatizations of agarose and polyacrylamide beads. J. Biol. Chem. 245, 3059 (1970).Google Scholar
- 73.Cusack, N. J., C. B. Reese, and J. H. van Boom: Block synthesis of oligonucleotides by the phosphotriester approach. Tetrahedron Letters 2209 (1973).Google Scholar
- 74.Darlix, J. L., and P. Fromageot: 5’-Monophosphonucleotides. Fr. Pat. 1,539,962 (Cl. C 07f), 20. Sep. 1968, Appl. 11. Aug. 1967. Chem. Abstr. 72, 32179 t (1970).Google Scholar
- 75.Eckstein, F., and I. Rizk: Oligonucleotidsynthesen mit Phosphorsäure-β,β,β-trichloräthylester-dichlorid. Angew. Chem. 79, 939 (1967).CrossRefGoogle Scholar
- 76.Eckstein, F., and I. Rizk: Synthesis of oligonucleotides by use of phosphoric triesters. Angew. Chem. 6, 695 (1967).Google Scholar
- 77.Eckstein, F., and H. Gindl: Polyribonucleotides containing a thiophosphate backbone. FEBS Letters 2, 262 (1969).CrossRefGoogle Scholar
- 78.Eckstein, F., and I. Rizk: Synthese von Oligodesoxynucleotiden über Phosphorsäuretriester. Chem. Ber. 102, 2362 (1969).CrossRefGoogle Scholar
- 79.Eckstein, F.: Nucleoside phosphorothioates. J. Amer. Chem. Soc. 92, 4718 (1970).CrossRefGoogle Scholar
- 80.Eckstein, F., and H. Gindl: Polyribonucleotides containing a phosphorothioate backbone. Eur. J. Biochem. 13, 558 (1970).CrossRefGoogle Scholar
- 81.Eckstein, F., and K.-H. Scheit: Procedures in nucleic acid research. 2, 665 (G. L. Cantoni and D. R. Davies, eds.). New York: Harper and Row. 1971.Google Scholar
- 82.Eckstein, F.: Protection of phosphoric and related acids. In: Protective groups in organic chemistry. (J. F. W. McOmie, ed.). London-New York: Plenum Press. 1973.Google Scholar
- 83.Endo, T., K. Ikeda, Y. Kawamura, and Y. Mizuno: 1-oxidopyridine-2-yl-diazomethane. A water-soluble alkylating agent for nucleosides and nucleotides. J. Chem. Soc. D, Chem. Comm. 673 (1973).Google Scholar
- 84.Ermishkina, S. A., and A. M. Yurkevich: 2’,3’-O-phenyiboric esters of ribonucleosides in the synthesis of diribonucleoside phosphates. Zh. Obshch. Khim. 40, 652 (1970).Google Scholar
- 85.Eto, M., M. Sasaki, M. Ito, M. Eto, and H. Ohkawa: Synthesis of 2-(methylthio)-4H-1,3,2-benzodioxaphosphorine-2-oxide by thiono-thiol conversion and its use as a phosphorylating agent. Tetrahedron Letters 4263 (1971).Google Scholar
- 86.Faerber, P., K.-H. Scheit, and H. Sommer: A new poly-nucleotide complex poly(s2C). poly(I). Eur. J. Biochem. 27, 109 (1972).CrossRefGoogle Scholar
- 87.Falk, W., and C. Tamm: Nucleoside und Nucleotide. Tei13. Über die Polykondensation von Thymidin-3’-phosphat nach der Triestermethode. Hely. Chim. Acta 55, 1928 (1972).CrossRefGoogle Scholar
- 88.Farmer, P. B.: personal communication.Google Scholar
- 89.Feix, G., R. Pollet, and C. Weissmann: Replication of Viral RNA. XVI. Enzymatic Synthesis of Infectious Viral RNA with Noninfectious Qβ, Minus Strands as Template. Proc. Natl. Acad. Sci. US 59, 145 (1968).CrossRefGoogle Scholar
- 90.Feix, G.: Oligoribonucleotides as primer for terminal deoxynucleotidyl transferase. FEBS Letters 18, 280 (1971).CrossRefGoogle Scholar
- 91.Feix, G.: Enzymatic synthesis of polydeoxynucleotides covalently linked to an oligoribonucleotide primer. Biochem. Biophys. Res. Commun. 46, 2141 (1972).CrossRefGoogle Scholar
- 92.Feix, G.: Initiation of DNA synthesis by oligoribonucleotides. In: Gene expression and its regulation (F. T. Kenney, B. A. Hamkalo, G. Favelukes, and J. T. August, eds.), p. 301. New York: Plenum Press. 1973.CrossRefGoogle Scholar
- 93.Filtr, J., and L. Bohacek: Preparation of uridine 5’-monophosphate-5-3H and uridine 5’-monophosphate-6-3H with high molar activity. Radioisotopy 12, 343 (1971).Google Scholar
- 94.Franke, A., F. Eckstein, K. H. Scheit, and F. Cramer: Synthese von Oligo- und Polynucleotiden. XVI. Synthese von Desoxyoligonucleotiden mit der Trichloräthylphosphatschutzgruppe. Chem. Ber. 101, 944 (1968).CrossRefGoogle Scholar
- 95.Franke, A., K. H. Scheit, and F. Eckstein: Selektive Phosphorylierung von Nucleosiden. Chem. Ber. 101, 2998 (1968).CrossRefGoogle Scholar
- 96.Freist, W., and F. Cramer: Synthese von Oligonucleotid-5’-phosphaten an einem polymeren Träger mit 2-(α-Pyridyl)-äthanol als funktioneller Gruppe. Angew. Chem. 82, 358 (1970).CrossRefGoogle Scholar
- 97.Freist, W., and F. Cramer: Synthese von Oligodesoxynucleotiden mit 2-[a-Pyridyl]äthanol als Phosphatschutzgruppe. Chem. Ber. 103, 3122 (1970).CrossRefGoogle Scholar
- 98.Freist, W., R. Helbig, and F. Cramer: 2-[α-Pyridyl]-äthanol als Phosphatschutzgruppe. Chem. Ber. 103, 1032 (1970).CrossRefGoogle Scholar
- 99.Fromageot, H. P. M., B. E. Griffin, C. B. Reese, and J. E. Sulston: Synthesis of oligoribonucleotides. III. Monoacylation of ribonucleosides and derivatives by orthoester exchange. Tetrahedron 23, 2315 (1967).CrossRefGoogle Scholar
- 100.Fujimoto, Y. (Kyowa Fermentation Industry Co., Ltd.): 2’,3’-O-Substituted ribonucleosides. Jap. Pat. 68 25,496 (Cl. 16 E 362), 4. Nov. 1968, Appl. 10. Nov. 1965. Chem. Abstr. 70, 68707m (1969).Google Scholar
- 101.Fujimoto, Y. (Kyowa Fermentation Industry Co., Ltd.): 2’,3’-O-Substituted ribonucleosides. Jap. Pat. 68 25,498 (Cl. 16 E 431), 4. Nov. 1968, Appl. 10. Nov. 1965. Chem. Abstr. 70, 68708 n (1969).Google Scholar
- 102.Gallo, R. C.: Reverse Transcriptase — The DNA Polymerase of Oncogenic RNA Viruses. Nature 234, 194 (1973).CrossRefGoogle Scholar
- 103.Gassen, H. G.: Synthesis by ribonuclease A of codons containing modified nucleosides in the “wobble” position. FEBS Letters 14, 225 (1971).CrossRefGoogle Scholar
- 104.Gassen, H. G., and R. Nolte: Synthesis by polymer-bound ribonuclease of the termination codons U-A-A, U-A-G, and U-G-A. Biochem. Biophys. Res. Commun. 44, 1410 (1971).CrossRefGoogle Scholar
- 105.Gassen, H. G.: personal communication.Google Scholar
- 106.Gillam, S., and M. Smith: Enzymatic synthesis of deoxyribo-oligonucleotides of defined sequence. Nature 238, 233 (1972).Google Scholar
- 107.Glaser, R., U. Sequin, and C. Tamm: Nucleoside und Nucleotide. Festphasensynthese von Oligonucleotiden an einem unlöslichen, makroporösen Träger. Helv. Chim. Acta 56, 654 (1973).CrossRefGoogle Scholar
- 108.Glinski, R. P., A. B. Ash, C. L. Stevens, M. B. Sporn, and H. M. Lazarus: Nucleotide synthesis. I. Derivatives of thymidine containing p-nitrophenyl phosphate groups. J. Org. Chem. 36, 245 (1971).CrossRefGoogle Scholar
- 109.Glinski, R. P., C. C. Bacon, and C. L. Stevens: Synthesis of partially protected oligonucleotides. Presented at 161 st National Meeting of American Chemical Society, Los Angeles, Calif., No. CARB29 (1971).Google Scholar
- 110.Goldberg, I. H.: Preparation and properties of polypseudouridylic acid. In: Methods in enzymology (L. Grossman and K. Moldave, eds.), XII B, 519. New York-London: Academic Press. 1968.Google Scholar
- 111.Goulian, M., A. Kornberg, and R. L. Sinsheimer: Enzymatic Synthesis of DNA. XXIV. Synthesis of Infectious Phage øX 174 - DNA. Proc. Natl. Acad. Sci. 58, 2321 (1967).CrossRefGoogle Scholar
- 112.Grams, G. W., and R. L. Letsinger: N6,3’-O-disubstituted deoxyadenosine. J. Org. Chem. 33, 2589 (1968).CrossRefGoogle Scholar
- 113.Grams, G. W., and R. L. Letsinger: Synthesis of a diribonucleoside monophosphate by the β-cyanoethyi phosphotriester method. J. Org. Chem. 35, 868 (1970).CrossRefGoogle Scholar
- 114.Grant, R. C., S. J. Harwood, and R. D. Wells: The synthesis and characterization of poly d(I-C). poly d(I-C). J. Amer. Chem. Soc. 90, 4474 (1968).CrossRefGoogle Scholar
- 115.Grant, R. C., M. Kodama, and R. D. Wells: Enzymatic and physical studies on (dI-dC)n (dI-dC)n and (dG-dC)n.(dG-dC)n. Biochemistry 11, 805 (1972).CrossRefGoogle Scholar
- 116.Green, ll. P. L., T. Ravindraathan, C. B. Reese, and R. Saffhill: Synthesis of oligoribonucleotides. VIII. Preparation of ribonucleoside 2’,5’-bisacetals. Tetrahedron Letters 1031 (1970).Google Scholar
- 117.Griffin, B. E., M. Jarman, C. B. Reese, and R. E. Sulston: The synthesis of oligoribonucleotides. II. Methoxymethylidene derivatives of ribonucleosides and 5’-ribonucleotides. Tetrahedron 23, 2301 (1967).CrossRefGoogle Scholar
- 118.Grineva, N. I., V. F. Zarytova, D. G. Knorre, and E. V. Yarmolinskaya: Alkylating derivatives of nucleic acid components. XI. Mechanism of formation of benzylidene derivatives of nucleotides. Izv. Sib. Otd. Akad. Nauk. Chem. Abstr. 76, 107 (1971).Google Scholar
- 119.GrÜnberger, D., A. Holý, and F. Šorm: Synthesis of Triribonucleoside Diphosphates with Ribonuclease T1. Coll. Czech. Chem. Comm. 33, 286 (1968).CrossRefGoogle Scholar
- 120.Gupta, N. K., E. Ohtsuka, H. Weber, S. H. Chang, and H. G. Khorana: Studies on Polynucleotides. LXXXVII. The Joining of Short Deoxyribopolynucleotides by DNA Joining Enzymes. Proc. Natl. Acad. Sci. US 60, 285 (1968).CrossRefGoogle Scholar
- 121.Gupta, N. K., E. Ohtsuka, V. Sgaramella, H. Büchi, A. Kumar, H. Weber, and H. G. Khorana: Studies on Polynucleotides. LXXXVIII. Enzymatic Joining of Chemically Synthesized Segments Corresponding to the Gene for Alanine Transfer RNA. Proc. Natl. Acad. Sci. US 60, 1338 (1968).CrossRefGoogle Scholar
- 122.Haeffner, E. W.: Studies on the thermic phosphorylation of activated nucleoside by phosphate anion and nucleotide anion. Biochim. Biophys. Acta 212, 182 (1970).CrossRefGoogle Scholar
- 123.Hachmann, J., and H. G. Khorana: Studies on polynucleotides. XCIII. A further study of the synthesis of deoxyribopolynucleotides using preformed oligonucleotide blocks. J. Amer. Chem. Soc. 91, 2749 (1969).CrossRefGoogle Scholar
- 124.Haga, K., M. Kainosho, and M. Yoshikawa: Phosphorylation. V. Synthesis of inosine-5’-thiophosphates. Bull. Chem. Soc. Jap. 44, 460 (1973).CrossRefGoogle Scholar
- 125.Hagenberg, L., H. G. Gassen, and H. Matthaei: Synthesis and coding properties of poly(c1A), poly(c3A), poly(c7A) and poly(h6A). Biochem. Biophys. Res. Commun. 50, 1104 (1973).CrossRefGoogle Scholar
- 126.Halmann, M., R. A. Sanchez, and L. E. Orgel: Phosphorylation of D-ribose in aqueous solution. J. Org. Chemistry 34, 3702 (1969).CrossRefGoogle Scholar
- 127.Hansbury, E., V. N. Kerr, V. E. Mitchell, R. L. Ratliff, D. A. Smith, D. L. Williams, and F. N. Hayes: Synthesis of polydeoxynucleotides using chemically modified subunits. Biochim. Biophys. Acta 199, 322 (1970).CrossRefGoogle Scholar
- 128.Harvey, C. L., E. M. Clericuzio, and A. L. Nussbaum: Small-scale preparation of 5’-nucleotides and analogs by carrot phosphotransferase. Anal. Biochem. 36, 413 (1970).CrossRefGoogle Scholar
- 129.Harvey, C. L., R. Wright, A. F. Cook, D. T. Maichuk, and A. L. Nussbaum: Use of phosphate-blocking groups in ligase joining of oligodeoxyribonucleotides. Biochemistry 12, 208 (1973).CrossRefGoogle Scholar
- 130.Harvey, C. L., R. Wright, and A. L. Nussbaum: Lambda phage DNA: Joining of a chemically synthesized cohesive end. Science 179, 291 (1973).CrossRefGoogle Scholar
- 131.Harvey, C. L., A. de Czekala, A. F. Cook, M. J. Holman, T. F. Gabriel, J. E. Michalewsky, and A. L. Nussbaum: High pressure liquid chromatography applied to gene synthesis. Biochim. Biophys. Acta 324, 433 (1973).CrossRefGoogle Scholar
- 132.Hashizume, T.: Synthesis of biochemically significant organic phosphate compounds I. Bis-p-nitrophenyl-phosphorochloridate as a phosphorylating agent. Mem. Coll. Agr., Kyoto Univ., Chem. Ser. 81, 1 (1959). Chem. Abstr. 57, 14157 (1962).Google Scholar
- 133.Hata, T., and J. Azizian: 2-chloroethyl orthoformate as a reagent for protection in nucleotides synthesis. Tetrahedron Letters 4443 (1969).Google Scholar
- 134.Hata, T., Y. Mushika, and T. Mukaiyama: New phosphorylating reagent. I. Preparation of alkyl dihydrogen phosphates by means of 2-chloromethyl-4-nitrophenyl phosphorodichloridate. J. Amer. Chem. Soc. 91, 4532 (1969).CrossRefGoogle Scholar
- 135.Hata, T., Y. Mushika, and T. Mukaiyama: New phosphorylating reagent. II. Preparation of mixed diesters of phosphoric acid by the use of alkyl-2-chloromethyl-4-nitrophenyl hydrogen phosphate. Tetrahedron Letters 3505 (1970).Google Scholar
- 136.Hata, T., K. Tajima, and T. Mukatyama: Simple protecting group protection-purification “handle” for polynucleotide synthesis. I. J. Amer. Chem. Soc. 93, 4928 (1971).CrossRefGoogle Scholar
- 137.Hata, T., and K. J. Chong: p-Nitrophenyl phosphate as a phosphorylating reagent in nucleotide synthesis. Bull. Chem. Soc. Jap. 45, 654 (1972).CrossRefGoogle Scholar
- 138.Hata, T., I. Nakagawa, and N. Takebayashi: Simple protecting group protection-purification handle for polynucleotide synthesis. III. New method for the synthesis of dinucleotides. Tetrahedron Letters 2931 (1972).Google Scholar
- 139.Hayashi, H., and F. Egami: Fractionation and Properties of Guanylic acid Polymers synthesized by Ribonuclease T1. J. Biochem. (Tokyo) 53, 176 (1963).Google Scholar
- 140.Hayatsu, H., and H. G. Khorana: Deoxyribooligonucleotide synthesis on a polymer support. J. Amer. Chem. Soc. 88, 3182 (1966).CrossRefGoogle Scholar
- 141.Hayatsu, H., and H. G. Khorana: Studies on Polynucleotides. LXXII. Deoxyribooligonucleotide synthesis on a polymer support. J. Amer. Chem. Soc. 89, 3880 (1967).CrossRefGoogle Scholar
- 142.Hayes, F. N., V. E. Mitchell, R. L. Ratliff, and D. L. Williams: Limited enzymatic addition of deoxyribonucleotide units onto chemically synthesized oligodeoxyribo5’-nucleotides. Biochemistry 6, 2488 (1967).CrossRefGoogle Scholar
- 143.Hayes, F. N., E. Hansbury, V. E. Mitchell, R. L. Ratliff, and D. L. Williams: Synthesis of N-acetylated deoxyribonucleoside 5’-triphosphates and their utilization in enzymatic formation of single-stranded polydeoxyribonucleotides. Eur. J. Biochem. 6, 485 (1968).CrossRefGoogle Scholar
- 144.Hayes, F. N., and V. E. Mitchell: Gel filtration chromatography of polydeoxynucleotides using agarose columns. J. Chromatog. 39, 139 (1969).CrossRefGoogle Scholar
- 145.Heimer, E. P., M. Ahmad, and A. L. Nussbaum: Chemical synthesis of the “sticky end” of lambda phage DNA r-strand. Biochem. Biophys. Res. Commun. 48, 348 (1972).CrossRefGoogle Scholar
- 146.Heimer, E., M. Ahmad, S. Roy, A. Ramel, and A. L. Nussbaum: Nucleoside S-alkyl phosphorothioates. VI. Synthesis of deoxyribonucleotide oligomers. J. Amer. Chem. Soc. 94, 1707 (1972).CrossRefGoogle Scholar
- 147.Helbig, R.: Oligonucleotidsynthesen am polymeren Träger. Dissertation. Techn. Hochschule Braunschweig, 1967.Google Scholar
- 148.Hoass, J., H. Sternbach, and F. Eckstein: Poly 2’-deoxy-2’-chlorouridylic and -cytidylic acids. FEBS Letters 15, 345 (1971).CrossRefGoogle Scholar
- 149.Hoass, J., H. Sternbach, and F. Eckstein: Poly 2’-deoxy-2’-aminouridylic acid. Biochem. Biophys. Res. Commun. 46, 1509 (1972).CrossRefGoogle Scholar
- 150.Hobbs, J., H. Sternbach, M. Sprinzl, and F. Eckstein: Polynucleotides containing 2’-chloro-2’-deoxyribose. Biochemistry 11, 4336 (1972).CrossRefGoogle Scholar
- 151.Hobbs, J., H. Sternbach, M. Sprinzl, and F. Eckstein: Polynucleotides containing 2’-amino-2’-deoxyribose and 2’-azido-2’- deoxyribose. Biochemistry 12, 5138 (1973).CrossRefGoogle Scholar
- 152.Holy, A., and J. Smrt: Oligonucleotidic compounds. XV. A general approach to the stepwise synthesis of ribooligonucleotides. Synthesis of some triribonucleoside di-phosphates. Coll. Czech. Chem. Comm. 31, 3800 (1966).CrossRefGoogle Scholar
- 153.Holy, A., S. Chladek, and J. Zemlicka: Oligonucleotidic compounds. XXIX. Reactions of ribonucleoside 2’(3’)-phosphates with dimethylformamide acetals. Collect. Czech. Chem. Commun. 34, 253 (1969).CrossRefGoogle Scholar
- 154.Holy, A., and J. Zemlicka: Oligonucleotidic compounds. XXXIII. A study on hydrolysis of N-dimethylaminomethylene-cytidine, -adenosine, -guanosine and related 2’-deoxy compounds. Collect. Czech. Chem. Commun. 34, 2449 (1969).CrossRefGoogle Scholar
- 155.Holy, A., and J. Zemlicka: Oligonucleotidic compounds. XXXV. Reaction of diribonucleoside phosphates with dimethylformamide acetals. Collect. Czech. Chem. Commun. 34, 3921 (1969).CrossRefGoogle Scholar
- 156.Holy, A., and G. Kowollik: Nucleic acid components and their analogs. CXXXI. Simple enzymic synthesis of nucleoside-5’-phosphates. Coll. Czech. Chem. Comm. 35, 1013 (1970).CrossRefGoogle Scholar
- 157.Holy, A., and M. Soucek: Benzoyl cyanide — new benzoylating agent in nucleoside and nucleotide chemistry. Tetrahedron Letters 185 (1971).Google Scholar
- 158.Holy, A.: Phosphorylation of nucleosides with trichloromethylphosphonic acid derivatives. Tetrahedron Letters 157 (1972).Google Scholar
- 159.Honjo, M.,Y. Furukawa, K. Kobayashi, and R. Marumoto (Takeda Chem. Industries, Ltd.): N-Acyl-2’,3’,5’-tri-O-acyl-cytidines. Ger. Offen. 2,038,807 (Cl. C 07d), 18. Feb. 1971, Appl. 6. Aug. 1969. Chem. Abstr. 74, 100354 q (1971). Chem. Abstr. 74, 100354 d (1971).Google Scholar
- 160.Homo, M., S. Yoshikawa, K. Kobayashi, and R. Marumoto: N4,2’,3’,5’-tetraalkanoylcytidines. Japan Patent 71 37, 827 (1971). Chem. Abstr. 76, 34533 k (1972).Google Scholar
- 161.Hudson, R. F., and M. Green: Die Stereochemie von Substitutionsreaktionen am Phosphor. Angew. Chem. 75, 47 (1963).CrossRefGoogle Scholar
- 162.Ikehara, M., and K. Murao: Nucleosides and Nucleotides. XXXVII. Synthesis of 8-oxoguanosine nucleotides and uric acid-9-D-riboside-5’-phosphate. Chem. Pharm. Bull. (Tokyo) 16, 1330 (1968).CrossRefGoogle Scholar
- 162a.Ikehara, M., and S. Uesugi: Selective Tosylation of Adenosine-5’-phosphate. 1 et rahedron Letters 713 (1970).Google Scholar
- 162b.Ikehara, M., and S. Uesugi: Studies on Nucleosides and Nucleotides. LIII. Purine Cyclonucleosides. XVIII. Selective Tosylation of Adenine Nucleotides. Synthesis of 8,2’-Anhydro-8mercapto-9-β-D-arabinofuranosyl adenine and 5’- and 3’-5’-cyclic phosphate. Tetrahedron 28, 3687 (1972).CrossRefGoogle Scholar
- 162c.Ikehara, M., and S. Uesugi: Studies on Nucleosides and Nucleotides. LV. Reaction of Cyridine-5’-monophosphate with p-Toluene-sulfonylchloride. Chem. Pharm. Bull. (Tokyo) 21, 264 (1973).CrossRefGoogle Scholar
- 163.Imura, N., T. Tsuruo, and T. Ukita: On the benzylation of nucleosides. I. Reaction of uridine with benzyl bromide in the presence of sodium hydride. Chem. Pharm. Bull. (Tokyo) 16, 1105 (1968).CrossRefGoogle Scholar
- 164.Irie, S.: Selective phosphorylation of thionucleosides. J. Biochem. (Tokyo) 68, 129 (1970).Google Scholar
- 165.Irie, S., T. Uchida, and F. Egami: Synthesis and ribonuclease degradation of dinucleoside monophosphates containing a thionucleoside. Biochim. Biophys. Acta 209, 289 (1970).CrossRefGoogle Scholar
- 166.Jacob, T. M., and H. G. Khorana: Studies on polynucleotides. XXX. A comparative study of reagents for the synthesis of the C3,-C5, internucleotidic linkage. J. Amer. Chem. Soc. 86, 1630 (1964).CrossRefGoogle Scholar
- 167.Janik, B., M. P. Kotick, T. H. Kreiser, L. F. Reverman, R. G. Sommer, and D. P. Wilson: Synthesis and properties of poly 2’-fluoro-2’-deoxyuridylic acid. Biochem. Biophys. Res. Commun. 46, 1153 (1972).CrossRefGoogle Scholar
- 168.Janik, B., R. G. Sommer, M. P. Kotick, D. P. Wilson, and R. K. Erickson: Synthesis and properties of poly(1,N6-ethenoadenylic acid) and poly(3,N4-ethenocytidylic acid). Physiol. Chem. Phys. 5, 27 (1973).Google Scholar
- 169.Janion, C., and D. Shugar: Mechanism of hydroxylamine mutagenesis: Complexing properties of copolymers of hydroxycytidylic acid with cytidylic or uridylic acids. Acta Biochim. Polon. 16, 219 (1969).Google Scholar
- 170.Jovin, T. M., and A. Kornberg: Oligonucleotide celluloses as solid state primers and templates for polymerases. J. Biol. Chem. 243, 250 (1968).Google Scholar
- 171.Kabachnik, M. M., I. A. Polyakova, V. K. Potapov, Z. A. Shabarova, and M. A. Prokof’ev: Phosphorylation of nucleosides on polymeric carriers. Dokl. Akad. Nauk SSSR 195, 1344 (1970).Google Scholar
- 172.Kabachnik, M. M., V. K. Potapov, Z. A. Shabarova, and M. A. Prokof’ev: Oxidative phosphorylation of nucleosides. Dokl. Akad. Nauk. SSSR 195, 1107 (1970).Google Scholar
- 173.Kabachnik, M. M., V. K. Potapov, Z. A. Shabarova, and M. A. Prokof’ev: A new method of synthesis of internucleotide bonds using polymeric supports. Dokl. Akad. Nauk. SSSR 201, 858 (1971).Google Scholar
- 174.Kabachnik, M. M., N. G. Timofeeva, M. V. Budanov, V. K. Potapov, Z. A. Shabarova, and M. A. Prokof’ev: Synthesis of oligonucleotides on a polymer carrier. Zhur. Obshch. Khim. 43, 379 (1973).Google Scholar
- 175.Kapuler, A. M., C. Monny, and A. M. Michelson: The relationship of mono-and polynucleotide conformation to catalysis by polynucleotide phosphorylase. Biochim. Biophys. Acta 217, 18 (1970).CrossRefGoogle Scholar
- 176.Katagiri, N., C. P. Bahl, K. Itakura, J. Michniewicz, and S. A. NARANG: Use Of 9-fluorenylmethanol as phosphate protecting group in the synthesis of deoxyribooligonucleotides. J. Chem. Soc. D, Chem. Comm. 803 (1973).Google Scholar
- 176a.Katagiri, N., K. Itakura, and S. A. Narang: Novel condensing reagents for polynucleotide synthesis. J. Chem. Soc. D, Chem. Comm. 325 (1974).Google Scholar
- 177.Kathawala, F., and F. Cramer: Synthese von Oligo- und Polynucleotiden. XIII. 2’,3’- (2,4-Dimethoxybenzyliden-) als Phosphatschutzgruppe. Liebigs Ann. Chem. 709, 185 (1967).CrossRefGoogle Scholar
- 178.Kathawala, F., and F. Cramer: Synthese von Oligo-und Polynucleotiden. XIV. Darstellung von Desoxyoligonucleotiden mit 2’,3’-(2,4-Dimethoxybenzyliden-)uridin als Phosphatschutzgruppe. Liebigs Ann. Chem. 712, 195 (1968).CrossRefGoogle Scholar
- 178a.Kaufmann, G., and U. Z. Littauer: Deoxyadenosine diphosphate as substrate for polynucleotide phosphorylase from Escherichia coli. FEBS Letters 2, 79 (1969).CrossRefGoogle Scholar
- 179.Kaufmann, G., M. Fridkin, A. Zutra, and U. Z. Littauer: Monofunctional substrates of polynucleotide phosphorylase. Eur. J. Biochem. 24, 4 (1971).CrossRefGoogle Scholar
- 180.Kaufmann, G., A. Zutra, and U. Z. Littauer: Synthesis of the heptanucleotide U-U-U-G-A-A-G using isovaleryl nucleoside diphosphates and sepharose bound polynucleotide phosphorylase. Israel J. Chem. 9, 44 BC (1971).Google Scholar
- 181.Kavunenko, A. P., E. N. Morozova, and N. S. Tikhomirova-Sidorova: Preparation of purine-pyrimidine dinucleotides with terminal 2’,3’-cyclophosphate and their use for the synthesis of trinucleoside diphosphates. Zh. Obshch. Khim. 41, 226 (1971).Google Scholar
- 182.Kavunenko, A. P., V. P. Sukharevich, and N. S. Tikhomirova-Sidorova: Watersoluble carbodiimide in oligoribonucleotide synthesis catalyzed by pancreatic ribonuclease. Zh. Obshch. Khim. 41, 679 (1971).Google Scholar
- 183.Kelly, R. C., W. J. Wechter, and D. T. Gish (Upjohn Co.): 5’-O-Derivatives of ara-cytidine. Ger. Offen. 2,025,624 (Cl. C 07 d), 3. Dec. 1970, US Appl. 27. May 1969–16. Feb. 1970. Chem. Abstr. 74, 54151 w (1971).Google Scholar
- 184.Khorana, H. G.: Recent developments in the chemistry of phosphate esters of biological interest. New York: John Wiley & Sons, Inc. 1961.Google Scholar
- 185.Khorana, H. G.: Synthesis in the study of nucleic acids. Proc. 7th Intern. Congr. Biochem., p. 17, Tokyo (1967).Google Scholar
- 186.Khorana, H. G.: Polynucleotide synthesis and the genetic code. The Harvey Lectures 62, 79 (1968).Google Scholar
- 187.Khorana, H. G.: Nucleinsäuresynthese als Werkzeug für das Studium des Genetischen Codes (Nobel-Vortrag). Angew. Chem. 81, 1027 (1969).CrossRefGoogle Scholar
- 188.Khorana, H. G.: Total synthesis of the gene for an alanine transfer ribonucleic acid from yeast. Pure Appl. Chem. 25, 91 (1971).CrossRefGoogle Scholar
- 189.Khorana, H. G., K. L. Agarwal, H. Buchi, M. H. Caruthers, N. K. Gupta, K. Kleppe, A. Kumar, E. Ohtsuka, U. L. Raj Bhandary, J. H. van de Sande, V. Sgaramella, T. Terao, H. Weber, and T. Yamada: Studies On polynucleotides. CIII. Total synthesis of the structural gene for an alanine transfer ribonucleic acid from yeast. J. Mol. Biol, 72.209 (1972).CrossRefGoogle Scholar
- 190.Khorana, H. G., K. L. Agarwal, P. Besmer, H. Buchi, M. H. Caruthers, P. J. Cashion, M. Fridkin, E. Jay, D. G. Kleid, A. Kumar, P. C. Loewen, R. Miller, K. Minamoto, R. Rama Moorthy, A. Panet, J. H. van de Sande, T. Sekiya, and N. Sidorova: Synthesis of the gene for the precursor of E. coli tyrosine suppressor tRNA. Abstracts of the 166th Meeting of the Amer. Chem. Soc. (1973).Google Scholar
- 191.Khwaja, T. A., and C. B. Reese: Phosphorylation of nucleosides with o-phenylenephosphorochloridate and o-phenylene phosphate. Tetrahedron 27, 6189 (1971).CrossRefGoogle Scholar
- 192.Kikugawa, K., F. Sato, T. Tsuruo, N. Imura, and T. Ukita: On the benzylation of nucleosides. II. A novel synthesis of 2’-O-benzyl uridine. Chem. Pharm. Bull. (Tokyo) 16, 1110 (1968).CrossRefGoogle Scholar
- 193.Kimhi, Y., and U. Z. Littauer: Polynucleotide phosphorylase from Escherichia coli. In: Methods in enzymology XII B, 513 (L. Grossman and K. Moldave, eds.). New York-London: Academic Press. 1968.Google Scholar
- 194.Klee, C. B.:Procedures in nucleic acid research. 2, 896 (G. L. Cantoni and D. R. Davies, eds.). New York: Harper and Row. 1971.Google Scholar
- 195.Kleppe, K., J. H. van de Sande, and H. G. Khorana: Polynucleotide ligase-catalyzed joining of deoxyribo-oligonucleotides on ribopolynucleotide templates and of ribooligonucleotides on deoxyribopolynucleotide templates. Proc. Nat. Acad. Sci. 67, 68 (1970).CrossRefGoogle Scholar
- 196.Knorre, D. G., E. F. Mishenina, T. I. Shubina: Copolymer of acrylamide and 5’-Oacrylylguanosine-2’,3’-cyclophosphate as a substrate of guanyl-RNase during the formation of the internucleotide bond. Dokl. Akad. Nauk. SSSR 198, 1089 (1970).Google Scholar
- 197.Kochetkov, N. K., and E. J. Budovskii: Organic chemistry of nucleic acids. London-New York: Plenum Press. 1971.Google Scholar
- 198.Kogan, E. M., E. N. Morozova, N. S. Tikhomirova-Sidorova, and G. E. Ustyuzhanin: Synthesis of purine-pyrimidine triribonucleotides in the presence of pancreatic ribonuclease. Zh. Obshch. Khim. 39, 2576 (1969).Google Scholar
- 199.Koike, T., T. Uchida, and F. Egami: Synthesis of guanylyl-(3’,5’)-nucleosides and oligoguanylic acids by ribonuclease N1. Biochim. Biophys. Acta 190, 257 (1969).CrossRefGoogle Scholar
- 200.Koike, T., T. Uchida, and F. Egami: Synthesis of adenylyl-(3’,5’)-nucleosides, adenylyl-(3’,5’)-guanosine 2’,3’-cyclic phosphate, and oligoadenylic acids by ribonuclease U2. J. Biochem. (Tokyo) 69, 111 (1971).Google Scholar
- 201.Koike, T., T. Uchida, and F. Egami: Synthesis of oligo-ApGp and other oligonucleotides by ribonuclease N1. J. Biochem. (Tokyo) 70, 55 (1971).Google Scholar
- 202.Kolodkina, I. I., A. S. Guseva, E. A. Ivanova, L. S. Varshavskaya, and A. M. Yurkevich: Synthesis and properties of areneboronates of nucleosides and nucleotides. Zh. Obshch. Khim. 40, 2489 (1970).Google Scholar
- 203.Kolodkina, E. E., E. A. Ivanova, and A. M. Yurkevich: Ion-exchange chromatography of arylboronic acid complexes of nucleosides and mononucleotides. Khim. Prir. Soedin. 6, 612 (1970). Chem. Abstr. 74, 112363 e (1971).Google Scholar
- 204.Kornberg, A.: Adenosine phosphokinase. In: Methods in Enzymology, Vol. II. (S. P. Colowick and N. O. Kaplan, eds.), p. 497. New York: Academic Press. 1955.CrossRefGoogle Scholar
- 205.Kössel, H., H. Buchi, and H. G. Khorana: Studies on polynucleotides. LXV. The synthesis of deoxyribopolynucleotides containing repeating tetranucleotide sequences J. Amer. Chem. Soc. 89, 2185 (1967).CrossRefGoogle Scholar
- 206.Kössel, H., A. R. Morgan, and H. G. Khorana: Studies on polynucleotides. LXXIII. Synthesis in vitro of polypeptides containing repeating tetrapeptide sequences dependent upon DNA-like polymers containing repeating tetranucleotide sequences: direction of reading of messenger RNA. J. Mol. Biol. 26, 449 (1967).CrossRefGoogle Scholar
- 207.Kössel, H., M. W. Moon, and H. G. Khorana: Studies on Polynucleotides. LX. The Use of Preformed Dinucleotide Blocks in the Stepwise Synthesis of Deoxyribopolynucleotides. J. Amer. Chem. Soc. 89, 2148 (1967).CrossRefGoogle Scholar
- 208.Kössel, H., and R. Roychoudhury: Synthetic polynucleotides. The terminal addition of riboadenylic acid to deoxyoligonucleotides by terminal deoxynucleotidyl transferase as a tool for the specific labelling of deoxyoligonucleotides at the 3’-ends. Eur. J. Biochem. 22, 271 (1971).CrossRefGoogle Scholar
- 208a.Kössel, H., and R. Roychoudhury: Proofreading function of DNA polymerase I from E. coli. Nature of excision of ribonucleotides from the 3’-termini of oligodeoxynucleotide primers. J. Biol. Chem. 249, 4094 (1974).Google Scholar
- 209.
- 210.Köster, H.: Polymer support oligonucleotide synthesis. VI. Inorganic carriers. Tetrahedron Letters 1527 (1972).Google Scholar
- 211.Köster, H., and K. Heyns: Polymer support oligonucleotide synthesis. VII. Use of Sephadex LH 20. Tetrahedron Letters 1531 (1972).Google Scholar
- 212.Köster, H.: Polymer support oligonucleotide synthesis. VIII. Use of polyethylene glycol. Tetrahedron Letters 1535 (1972).Google Scholar
- 213.Köster, H., and F. Cramer: Synthese von Oligonucleotiden an einem Popcorn-Polystyrol als polymerem Träger. Liebigs Ann. Chem. 766, 6 (1972).CrossRefGoogle Scholar
- 214.Köster, H., and S. Geussenhainer: Ein neuer Träger für die Festphasensynthese von Oligomeren. Angew. Chem. 84, 712 (1972).CrossRefGoogle Scholar
- 215.Köster, H., and F. Cramer: Reaktionskinetische Untersuchungen an einem makroporösen unquellbaren Polystyrol: Abspaltung von Nucleosiden und Nucleotiden, die über p-Anisyldiphenylmethylätherbindung an das Polymerisat gebunden sind. Makro-mol. Chem. 167, 171 (1973).CrossRefGoogle Scholar
- 216.Köster, H., and W. Heidmann: A new approach to the synthesis of oligodeoxyribonucleotides. Angew. Chem. 85, 871(1973). Angew. Chem. Internat. Edit. 12, 859 (1973).Google Scholar
- 217.Köster, H., and F. Cramer: Synthese von Desoxyoligonucleotiden an einem makroporösen Polystyrol. Liebigs Ann. Chem. 946 (1974).Google Scholar
- 218.Köster, H., F. Pollack, and F. Cramer: Synthese der Desoxyoligonucleotide dT(pdT)7 und dTpdTpdApdCpdCpdTpdA an einem makroporösen Polystyrol. Liebigs Ann. Chem. 959 (1974).Google Scholar
- 218a.Kowollik, G., K. Gaertner, and P. Langen: 2’- and 3’-O-trityluridine. Tetrahedron Letters 3345 (1972).Google Scholar
- 219.Kumar, A., E. Ohtsuka, and H. G. Khorana: Studies on Polynucleotides. CVI. Total synthesis of the structural gene for an alanine transfer ribonucleic acid from yeast. Synthesis of two nonanucleotides and a heptanucleotide corresponding to nucleotide sequences 22 to 30, 41 to 49 and 28 to 34. J. Mol. Biol. 72, 289 (1972).CrossRefGoogle Scholar
- 219a.Kumar, A., and H. G. Khorana: Studies on Polynucleotides. CVIII. Total Synthesis of the structural gene for an alanine transfer ribonucleic acid from yeast. Synthesis of an undecadeoxynucleotide, a decadeoxynucleotide and an octadeoxynucleotide corresponding to the nucleotide sequences 7 to 27. J. Mol. Biol. 72, 329 (1972).CrossRefGoogle Scholar
- 220.Kusama, T., and H. Hayatsu: Use of a derivatized merrifield resin for the polymer-supported synthesis of oligodeoxyribonucleotides. Chem. Pharm. Bull. (Tokyo) 18, 319 (1970).CrossRefGoogle Scholar
- 221.Lapidot, Y.: Chromatography of diribonucleoside monophosphates on a Bio-Gel P-4 column. J. Chromatog. 56, 143 (1971).CrossRefGoogle Scholar
- 222.Lapidot, Y., and I. Barzilay: The separation of 2’-5’ dinucleoside monophosphates from the corresponding 3’—5’-isomers on a DEAE-sephadex A-25 column. J. Chromatog. 71, 275 (1972).CrossRefGoogle Scholar
- 223.Lapidot, Y.,I. Barzilay, and D. Salomon: Ion-exchange thin-layer chromatography and paper ionophoresis of dinucleoside monophosphates. Anal. Biochem. 49, 301 (1972).CrossRefGoogle Scholar
- 224.Lehrach, H., and K. H. Scheit. Synthesis and properties of a new fluorescent poly-nucleotide, poly(1,N6-ethenoadenylic acid). Biochim. Biophys. Acta 308, 28 (1973).CrossRefGoogle Scholar
- 225.Lehrfeld, J.: Silicagel catalyzed detritylation of some carbohydrate derivatives. J. Org. Chemistry 32, 2544 (1967).CrossRefGoogle Scholar
- 226.Letsinger, R. L., M. J. Kornet, V. Mahadevan, and D. M. Jerina: Reactions On polymer supports. J. Amer. Chem. Soc. 86, 5163 (1964).CrossRefGoogle Scholar
- 227.Letsinger, R. L., and V. Mahadevan: Oligonucleotide synthesis on a polymer support. J. Amer. Chem. Soc. 87, 3526 (1965).CrossRefGoogle Scholar
- 228.Letsinger, R. L., and V. Mahadevan: Stepwise synthesis of oligodeoxyribonucleotides on an insoluble polymer support. J. Amer. Chem. Soc. 88, 5319 (1966).CrossRefGoogle Scholar
- 229.Letsinger, R. L., and K. K. Ogilvie: Use ofp-nitrophenyl chloroformate in blocking hydroxyl groups in nucleosides. J. Org. Chem. 32, 296 (1966).CrossRefGoogle Scholar
- 229a.Letsinger, R. L., M. H. Caruthers, and D. M. Jerina: Reactions of nucleosides On polymer supports. Synthesis of thymidylyl-thymidylyl-thymidine. Biochemistry 6, 1379 (1967).CrossRefGoogle Scholar
- 230.Letsinger, R. L., M. H. Caruthers, P. S. Miller, and K. K. Ogilvie: Oligonucleotide syntheses utilizing β-benzoylpropionyl, a blocking group with a trigger for selective cleavage. J. Amer. Chem. Soc. 89, 7146 (1967).CrossRefGoogle Scholar
- 231.Letsinger, R. L., and D. M. Jerina: Reactivity of ester groups on insoluble polymer supports. J. Polymer Science 5, 1977 (1967).Google Scholar
- 232.Letsinger, R. L., and K. K. Ogilvie: A convenient method for stepwise synthesis of oligothymidylate derivatives in large-scale quantities. J. Amer. Chem. Soc. 89, 4801 (1967).CrossRefGoogle Scholar
- 233.Letsinger, R. L., P. S. Miller, and G. W. Grams: Selective N-debenzoylation of N,O-polybenzoylnucleosides. Tetrahedron Letters 2621 (1968).Google Scholar
- 234.Letsinger, R. L., and P. S. Miller: Protecting groups for nucleosides used in synthesizing oligonucleotides. J. Amer. Chem. Soc. 91, 3356 (1969).CrossRefGoogle Scholar
- 235.Letsinger, R. L., and K. K. Ogilvie: Synthesis of oligothymidylates via phosphotriester intermediates. J. Amer. Chem. Soc. 91, 3350 (1969).CrossRefGoogle Scholar
- 236.Letsinger, R. L., K. K. Ogilvie, and P. S. Miller: Developments in syntheses of oligodeoxyribonucleotides and their organic derivatives. J. Amer. Chem. Soc. 91, 3360 (1969).CrossRefGoogle Scholar
- 237.Letsinger, R., and W. S. Mungall: Phosphoramidate analogs of oligonucleotides. J. Org. Chem. 35, 3800 (1970).CrossRefGoogle Scholar
- 238.Letsinger, R. L., and H. H. Seliger: Polymers with hydroxyl groups as supports for oligonucleotide synthesis. Macromol. Preprints. XXIIIrd Internat. Congr. of pure and applied chemistry, Boston, 1261 (1971).Google Scholar
- 239.Levina, A. S., V. K. Potapov, D. G. Knorre, Z. A. Shabarova, and T. M. Shubina: Individual stages of oligonucleotide synthesis on a highly crosslinked polymer support. Izv. Sib. Otd. Akad. Nauk. 117 (1972).Google Scholar
- 240.Lezius, A. G., and K. H. Scheit: Enzymatic synthesis of DNA with 4-thiothymidine triphosphate as substitute for dTTP. Eur. J. Biochem. 3, 85 (1967).CrossRefGoogle Scholar
- 241.Lezius, A. G.: Synthesis and characterization of a copolymer consisting of alternating deoxyadenosine- and 2-thiodeoxythymidine nucleotides. Eur. J. Biochem. 14, 154 (1970).CrossRefGoogle Scholar
- 242.Lezius, A. G., and E. M. Gottschalk: Ober eine reversible kooperative Konformationsumwandlung einer synthetischen DNA unter dem Einfluß hoher Salzkonzentrationen. Hoppe Seyler’s Zeitschr. Physiol. Chem. 351, 413 (1970).Google Scholar
- 243.Lezius, A. G., and U. Rath: Synthesis of Poly [d(A-S4T). d(A-S4T) by Bacillus Subtilis DNA Polymerase. Eur. J. Biochem. 24, 163 (1971).CrossRefGoogle Scholar
- 244.Lezius, A. G., and E. Domin: A Wobbly Double-Helix. Nature, New Biol. 254, 169 (1973).Google Scholar
- 245.Lichtenthaler, F. W.: The chemistry and properties of enol phosphates. Chem. Rev. 61, 607 (1963).CrossRefGoogle Scholar
- 246.Lloyd, G. S., C.-M. Hsu, and B. S. Cooperman: On the reactivity of phosphorylimidazole, an analog of known phosphorylated enzymes. J. Amer. Chem. Soc. 93, 4889 (1971).CrossRefGoogle Scholar
- 247.Loewen, P. C., and H. G. Khorana: Studies on Polynucleotides. CXXII. The Dodecanucleotide Sequence Adjoining the CCA-End of the Tyrosine Transfer Ribonucleic Acid Gene. J. Biol. Chem. 248, 3489 (1973).Google Scholar
- 248.Lohrmann, R., and H. G. Khorana: Studies on Polynucleotides. LII. The use of 2,4,6-triisopropylbenzenesulfonyl chloride for the synthesis of internucleotide bonds. J. Amer. Chem. Soc. 88, 829 (1966).CrossRefGoogle Scholar
- 249.Lohrmann, R.,D. Söll, H. Hayatsu, E. Ohtsuka, and H. G. Khorana: Studies on polynucleotides. LI. Syntheses of the 64 possible ribotrinucleotides derived from the four major ribomononucleotides. J. Amer. Chem. Soc. 88, 819 (1966).CrossRefGoogle Scholar
- 250.Lohrmann, R., and L. E. Orgel: Urea — inorganic phosphate mixtures as prebiotic phosphorylating agents. Science 171, 490 (1971).CrossRefGoogle Scholar
- 251.Lux, D. C. M., P. Bartl, and A. L. Nussbaum: Chain length characterization of oligodeoxyribonucleotides by analytical ultracentrifugation. Anal. Biochem. 52, 118 (1973).CrossRefGoogle Scholar
- 252.Mackey, J. K., and P. T. Gilham: New approach to the synthesis of polyribonucleotides of defined sequence. Nature 233, 551 (1971).CrossRefGoogle Scholar
- 253.Maurer, H. K. (Papierwerke Waldhof-Aschaffenburg A.G.): Stable antileukemic 5’-(adamantanecarbonyl)-N6-(3-methyl-2-butenyl)-adenosine. Ger. Offen. 2,112 (Cl. C 07 d), 14. Sep. 1972, Appl. P 21 12 263,3, 13. Mar. 1971. Chem. Abstr. 78, 4491 u (1973).Google Scholar
- 254.Melby, L. R., and D. R. Strobach: Oligonucleotide syntheses on isoluble polymer supports. I. Stepwise synthesis of trithymidine diphosphate. J. Amer. Chem. Soc. 89, 450 (1967).CrossRefGoogle Scholar
- 255.Melby, L. R., and D. R. Strobach: Oligonucleotide syntheses on insoluble polymer supports. II. Pentathymidine tetraphosphate. J. Org. Chem. 34, 421 (1969).CrossRefGoogle Scholar
- 256.Melby, L. R., and D. R. Strobach: Oligonucleotide syntheses on insoluble polymer supports. III. Fifteen di(deoxyribonucleoside)monophosphates and several trinucleoside diphosphates. J. Org. Chem. 34, 427 (1969).CrossRefGoogle Scholar
- 257.Merrifield, R. B.: Automated synthesis of peptides. Science 150, 178 (1968).CrossRefGoogle Scholar
- 258.Michelson, A.: The chemistry of nucleosides and nucleotides. London-New York: Academic Press. 1963.Google Scholar
- 259.Michniewicz, J. J., O. S. Bhanot, J. Goodchild, S. K. Dheer, R. H. Wightman, and S. A. Narang: Benzoylated DEAE-Sephadex. Its preparation and application. Biochim. Biophys. Acta 224, 626 (1970).CrossRefGoogle Scholar
- 260.Michniewicz, J. J., C. P. Bahl, K. Itakura, N. Katagiri, and S. A. Narang: Fractionation of synthetic deoxyribopolynucleotides on silica-gel-thin-layer plates. J. Chromatog. 85, 159 (1973).CrossRefGoogle Scholar
- 261.Miller, P. S., K. N. Fang, N. S. Kondo, and P. O. P. Ts’o: Syntheses and properties of adenine and thymine nucleoside alkyl phosphotriesters, the neutral analogs of di-nucleoside monophosphates. J. Amer. Chem. Soc. 93, 6657 (1971).CrossRefGoogle Scholar
- 262.Mitsumo, Y. (Takeda Chem. Industries, Ltd.): Adenosine-2’(3’),5’-diphosphate. Jap. Pat. 70 00,870 (Cl. 16 E 611,2), 12. Jan. 1970, Appl. 8. Feb. 1967. Chem. Abstr. 72, 111788 u (1970).Google Scholar
- 263.Mitsunobu, O., K. Kato, and J. Kimura: Selective phosphorylation of the 5’-hydroxy groups of thymidine and uridine. J. Amer. Chem. Soc. 91, 6510 (1969).CrossRefGoogle Scholar
- 264.Mitsunobu, O., J. Kimura, and Y. Fujisawa: Studies on nucleosides and nucleotides. II. Selective acylation of 5’-hydroxyl group of thymidine. Bull. Chem. Soc. Japan 45, 245 (1972).CrossRefGoogle Scholar
- 265.Miura, K., and T. Ueda: A convenient synthesis of diribonucleoside monophosphates by the use of unblocked nucleosides. Chem. Pharm. Bull (Tokyo) 19, 2567 (1971).CrossRefGoogle Scholar
- 266.Miura, K., M. Shiga, and T. Ueda: Nucleosides and Nucleotides. VI. Preparation of diribonucleoside monophosphates containing 4-thiouridine. J. Biochem. 73,1279 (1973).Google Scholar
- 267.Miyauchi, K., Y. Matsumoto, T. Furuya, and K. Uchida: Microbial phosphorylation of inosine and guanosine. Jap. Pat. 70 35,236 (Cl. C 12 d), 11. Nov. 1970, Appl. 31. Mar. 1966 (Yamasa Shoyu Co. Ltd.). Chem. Abstr. 74, 63175 j (1971).Google Scholar
- 268.Mizuno, Y., T. Itoh, and H. Tagawa: New acetylating agents for nucleosides N-acetyl cyclohydroxamic acids. Chem. and Ind. 1498 (1965).Google Scholar
- 269.Mizuno, Y., and T. Sasaki: The synthesis of dinucleoside phosphates of natural linkages by the anhydronucleoside method. Tetrahedron Letters 4579 (1965).Google Scholar
- 270.Mizuno, Y., T. Sasaki, T. Kauai, and H. Igarashi: Nucleotides I. The reaction of cyclouridines with benzyl hydrogen phosphoric benzoic anhydride. J. Org. Chemistry 30, 1533 (1965).CrossRefGoogle Scholar
- 271.Mizuno, Y., W. Limn, K. Tsuchida, and K. Ikeda: Novel protecting group for the synthesis of 7α-D-pentofuranosyl-hypoxanthines. J. Org. Chemistry 37, 39 (1972).CrossRefGoogle Scholar
- 272.Mohr, S. C., and R. E. Thach: Application of ribonuclease T1 to the synthesis of oligoribonucleotides of defined base sequence. J. Biol. Chem. 244, 6566 (1969).Google Scholar
- 273.Monparler, R. L., and G. A. Fischer: Mammalian deoxynucleoside kinases. I. Deoxycytidine kinase. Purification, properties and kinetic studies with cytosine arabinoside. J. Biol. Chem. 243, 4298 (1968).Google Scholar
- 274.Moon, M. W., and H. G. Khorana: Studies on Polynucleotides. LV. The use of mesitoylchloride in the synthesis of internucleotide bonds. J. Amer. Chem. Soc. 88, 1805 (1966).CrossRefGoogle Scholar
- 275.Moravek, J.: Formation of oligonucleotides during heating of a mixture of uridine2’,3’-phosphate and uridine. Tetrahedron Letters 1707 (1967).Google Scholar
- 276.Moravek, J., J. Kopecky, and J. Skoda: Thermal phosphorylations IV. Formation of a natural internucleotide bond in oligonucleotides formed by heating uridine-2’,3’phosphate with uridine. Coll. Czech. Chem. Comm. 33, 960 (1968).CrossRefGoogle Scholar
- 277.Moravek, J., J. Kopecky, and J. Skoda: Thermal phosphorylations V. Fractionation of products of thermal reaction of uridylic acid with uridine using gel filtration and ion exchange chromatography. Coll. Czech. Chem. Comm. 33, 4407 (1968).Google Scholar
- 278.Moravek, J., J. Kopecky, and J. Skoda: Thermal phosphorylations VI. Formation of oligonucleotides from uridine2’,3’-monophosphate. Coll. Czech. Chem. Comm. 33, 4120 (1968).CrossRefGoogle Scholar
- 279.Morgan, A. R.: Studies on polynucleotides. XCIV. Transcription of DNA’s with repeating nucleotide sequences. J. Mol. Biol. 52, 441 (1970).CrossRefGoogle Scholar
- 280.Mukaiyama, T., and M. Hashimoto: Phosphorylation of alcohols and phosphates by oxidation-reduction condensation. Bull. Chem. Soc. Jap. 44, 106 (1971).Google Scholar
- 281.Mushika, Y., T. Hata, and T. Mukaiyama: New phosphorylating reagent. III. Preparation of mixed diesters of phosphoric acid by the use of an activatable protecting group. Bull. Chem. Soc. Japan 44, 232 (1971).CrossRefGoogle Scholar
- 282.Mushika, Y., and N. Yoneda: New phosphorylating reagent. IV. Preparation of the mixed phosphoric diesters of dl-α-tocopherol and ethylene glycol analogs by means of 2-chlormethyl-4-nitrophenyl phosphorodichloridate. Chem. Pharm. Bull. (Tokyo) 19, 687 (1971).CrossRefGoogle Scholar
- 282a.Myles, A., W. Hutzenlaub, G. Reitz, and W. Pfleiderer: Nucleotide I. Synthese und Eigenschaften von Thymidylyl-(3’→3’)-, (3’→5’)- und (5’→5’)-thymidin; in preparation.Google Scholar
- 283.Nagyvary, J., and J. S. Roth: Studies on the synthesis of the natural internucleotide bond by the use of cyclonucleosides. Tetrahedron Letters 617 (1965).Google Scholar
- 284.Nakayama, K., and H. Tanaka: Production of nucleic acid related substances. XXXVIII. Production of uridine 5’-monophosphate and orotidine 5’-mono-phosphate by Brevibacterium ammoniagenes. Agr. Biol. Chem. 35, 518 (1971).CrossRefGoogle Scholar
- 285.Nara, T., T. Komuro, M. Misawa, and S. Kinoshita: Production of nucleic acid related substances by fermentative processes. XXIX. Growth responses of Brevi-bacterium ammoniagenes. Agr. Biol. Chem. 33, 1030 (1969).CrossRefGoogle Scholar
- 286.Narang, S. A., T. M. Jacob, and H. G. Khorana: Studies on polynucleotides. LXIII. Deoxyribopolynucleotides containing repeating trinucleotide sequences. The polymerization of protected deoxyribotrinucleotides. J. Amer. Chem. Soc. 89, 2167 (1967).CrossRefGoogle Scholar
- 287.Narang, S. A., S. K. Dheer, and J. J. Michniewicz: A new general method for the synthesis of deoxyribopolynucleotides bearing a 5’-phosphomonoester end group. J. Amer. Chem. Soc. 90, 2702 (1968).CrossRefGoogle Scholar
- 288.Narang, S. A., and S. K. Dheer: Chemical synthesis of three deoxyribododecanucleotide chains of defined sequence. Biochemistry 8, 3443 (1969).CrossRefGoogle Scholar
- 289.Narang, S. A., O. S. Bhanot, J. Goodchild, and R. Wightman: Use Of substituted phenol as phosphate protecting group in the synthesis of deoxyribo-oligo-nucleotides bearing 5’-phosphomonoester end group. J. Chem. Soc. D Chem. Commun. 91 (1970).Google Scholar
- 290.Narang, S. A., O. S. Bhanot, J. Goodchild, J. Michniewicz, R. A. Wightman, and S. K. Dheer: Use of new protecting groups in the synthesis of deoxyribo-oligonucleotides of defined sequence. J. Chem. Soc. D Chem. Commun. 516 (1970).Google Scholar
- 290a.Narang, S. A., O. S. Bhanot, J. Goodchild, R. H. Wightman, and S. K. Dheer: A new general method for the synthesis of phosphate-protected deoxyribo-oligonucleotides. IV. J. Amer. Chem. Soc. 94, 6183 (1972).CrossRefGoogle Scholar
- 291.Narang, S. A., K. Itakura, C. P. Bahl, and Y. Y. Wigfield: Chemical synthesis of two deoxyribopolynucleotide fragments containing the natural sequence of T4 lysozyme gene. Biochem. Biophys. Res. Commun. 49, 445 (1972).CrossRefGoogle Scholar
- 292.Narang, S. A., K. Itakura, and R. H. Wightman: A simplification in the synthesis of deoxyribooligonucleotides. Can. J. Chem. 50, 769 (1972).CrossRefGoogle Scholar
- 293.Narang, S. A., and J. J. Michniewicz: Thin-layer chromatography of synthetic polydeoxyribonucleotides. Part III. Anal. Biochem. 49, 379 (1972).CrossRefGoogle Scholar
- 294.Naylor, R., and P. T. Gilham: Studies on Some Interactions and Reactions of Oligonucleotides in Aqueous Solution. Biochem. 5, 2722 (1966).CrossRefGoogle Scholar
- 295.Nedrai, V. K., N. I. Sokolova, Z. A. Shabarova, and M. A. Prokof’ev: Chemical matrix synthesis of oligonucleotides in aqueous solutions. Dokl. Akad. Nauk SSSR 205, English translation p. 1114 (1972).Google Scholar
- 296.Neilson, T.: A novel chemical synthesis for oligoribonucleotides. Chem. Commun. 1139 (1969).Google Scholar
- 297.Neilson, T., and E. S. Werstiuk: Oligoribonucleotide synthesis. II. Preparation of 2’-0-tetrahydropyranyl derivatives of adenosine and cytidine necessary for insertion in stepwise synthesis. Can. J. Chem. 49, 493 (1971).CrossRefGoogle Scholar
- 298.Neilson, T., and E. S. Werstiuk: Oligoribonucleotide synthesis III. Synthesis of trinucleotides using a stepwise phosphotriester method. Can. J. Chem. 49, 3004 (1971).CrossRefGoogle Scholar
- 299.Neilson, T., E. V. Wastrodowski, and E. S. Werstiuk: Oligoribonucleotide synthesis. V. Preparation of 2’-O-tetrahydropyranyl derivatives of guanosine and their insertion into a general stepwise synthesis. Can. J. Chem. 51, 1068 (1973).CrossRefGoogle Scholar
- 300.Nelson, T., and E. S. Werstink: Synthesis of the anticodon loop of E. coli methionine transfer ribonucleic acid. J. Amer. Chem. Soc. 96, 2295 (1974).CrossRefGoogle Scholar
- 301.Nejedly, Z., H. Skodova, K. Hybs, and J. Skoda: New possibilities of enzyme synthesis of radioactive nucleotides. II. Phosphoribosylation of radioactive bases of nucleic acids by the catalytic effect of unpurified cell-free extract of Brevibacterium ammoniagenes. J. Label. Compounds 6, 3 (1970).CrossRefGoogle Scholar
- 302.Neuman, M. W., W. F. Neuman, and K. Lane: Possible role of crystals in the origins of life. IV. The phosphorylation of nucleotides. Curr. Mod. Biol. 3, 277 (1970).Google Scholar
- 303.Nikolenko, L. N., V. N. Nezavibat’ko, and M. N. Semenova: Selective N-benzoylation of cytidine 5’-monophosphate. Zh. Obshch. Khim. 39, 223 (1969).Google Scholar
- 304.Ogilvie, K. K., and R. L. Letsinger: Use of isobutyloxycarbonyl as a blocking group in preparation of 3’-O p-monomethoxytritylthymidine. J. Org. Chemistry 32, 2365 (1967).CrossRefGoogle Scholar
- 305.Ogilvie, K. K., and D. Iwacha: Nucleotide syntheses using O2, 2’-anhydrouridine. Can. J. Chem. 48, 862 (1970).CrossRefGoogle Scholar
- 306.Ogilvie, K. K., and K. Kroeker: Synthesis of oligothymidylates on an insoluble polymer support. Can. J. Chem. 50, 1211 (1972).CrossRefGoogle Scholar
- 307.Ogilvie, K. K.: The tert.-butyldimethylsilyl group as a protecting group in deoxynucleosides. Can. J. Chem. 51, 3799 (1973).CrossRefGoogle Scholar
- 308.Ohtsuka, E., M. W. Moon, and H. G. Khorana: The synthesis of deoxyribopolynucleotides containing repeating dinucleotide sequences. J. Amer. Chem. Soc. 87, 2954 (1965).CrossRefGoogle Scholar
- 309.Ohtsuka, E., K. Murao, M. Ubasawa, and M. Ikehara: A new method for the synthesis of protected ribooligonucleotides with 3’-phosphate end groups. J. Amer. Chem. Soc. 91, 1537 (1969).CrossRefGoogle Scholar
- 310.Ohtsuka, E., K. Murao, M. Ubasawa, and M. Ikehara: Studies on transfer ribonucleic acids and related compounds. I. Synthesis of ribooligonucleotides using aromatic phosphoramidates as a protecting group. J. Amer. Chem. Soc. 92, 3441 (1970).CrossRefGoogle Scholar
- 311.Ohtsuka, E., M. Ubasawa, and M. Ikehara: Studies on transfer ribonucleic acids and related compounds. II. A method for synthesis of protected ribooligonucleotides using a ribonuclease. J. Amer. Chem. Soc. 92, 3445 (1970).CrossRefGoogle Scholar
- 312.Ohtsuka, E., K. Murao, M. Ubasawa, and M. Ikehara: Polynucleotides. VIII. A new method for the synthesis of protected deoxy- ribooligonucleotides with 5’-phosphate. J. Amer. Chem. Soc. 92, 5507 (1970).CrossRefGoogle Scholar
- 313.Ohtsuka, E., K. Murao, M. Ubasawa, and M. Ikehara: Studies on transfer ribonucleic acids and related compounds. III. Synthesis of hexanucleotide having the sequence of the yeast alanine transfer ribonucleic acid 3’ end. J. Amer. Chem. Soc. 93, 2296 (1971).CrossRefGoogle Scholar
- 314.Ohtsuka, E., H. Tagawa, and M. Ikehara: Studies on t-RNA’s and related compounds. IV. A simple method for the synthesis of ribotrinucleotides. Chem. Pharm. Bull. 19, 139 (1971).CrossRefGoogle Scholar
- 315.Ohtsuka, E., A. Kumar, and H. G. Khorana: Studies on Polynucleotides. CVII. Total synthesis of the structural gene for an alanine transfer ribonucleic acid from yeast. Synthesis of a dodecadeoxynucleotide and a hexadeoxynucleotide corresponding to the nucleotide sequences 1 to 12. J. Mol. Biol. 72, 309 (1972).CrossRefGoogle Scholar
- 316.Ohtsuka, E., S. Morioka, and M. Ikehara: Formation of phosphodiester linkages by oxidation of a phosphoramidate. Tetrahedron Letters 2553 (1972).Google Scholar
- 317.Ohtsuka, E., S. Morioka, and M. Ikehara: Studies on transfer ribonucleic acids and related compounds. V. Synthesis of ribonucleotides with phosphomonoester end groups on a polymer support. J. Amer. Chem. Soc. 94, 3229 (1972).CrossRefGoogle Scholar
- 318.Ohtsuka, E., M. Ubasawa, S. Morioka, and M. Ikehara: Studies On Transfer Ribonucleic Acids and Related Compounds. VI. Synthesis of Yeast Alanine Transfer Ribonucleic Acid 3’-terminal Nonanucleotides and 5’-terminal Hexanucleotides. J. Amer. Chem. Soc. 95, 4725 (1973).CrossRefGoogle Scholar
- 319.Ohtsuka, E.: Chemical synthesis of oligo-and poly-nucleotides. In: Methoden der Organischen Chemie (Houben-Weyl, ed.). In press.Google Scholar
- 320.Okazaki, R., and A. Kornberg: Deoxythymidine kinase of E. coli I. Purification and some properties of the enzyme. J. Biol. Chem. 239, 269 (1964).Google Scholar
- 321.Okazaki, R., and A. Kornberg: Deoxythymidine kinase of E. coli II. Kinetics and feedback control. J. Biol. Chem. 239, 275 (1964).Google Scholar
- 322.McOmie, J. F. W.: Protective groups. Advances Org. Chemistry 3, 191 (1963).Google Scholar
- 323.Osterberg, R., L. E. Orgel, and R. Lohrmann: Further studies of urea-catalyzed phosphorylation reactions. J. Mol. Evol. 2, 231 (1973).CrossRefGoogle Scholar
- 324.Ott, D. G., V. N. Kerr, E. Hansbury, and F. N. Hayes: Chemical synthesis of nucleoside triphosphates. Anal. Biochem. 21, 469 (1967).CrossRefGoogle Scholar
- 325.Ouchi, S., T. Sowa, K. Tsunoda, and S. Senoo(Asahi Chem. Industry Co., Ltd.): Direct phosphorylation of nucleosides. Jap. Pat. 7016,708 (Cl. 16 E 461), 10. Jun. 1970, Appl. 14. Jul. 1966. Chem. Abstr. 73, 66866 a (1970).Google Scholar
- 326.Ouchi, S., T. Sowa, S. Kato, T. Osawa, and S. Senoh (Asahi Chem. Industry Co., Ltd.): 5’Phosphorylation of unprotected nucleosides. Jap. Pat. 7108,854 (Cl. C 07 d), 5. Mar. 1971, Appl. 20. Jan. 1967. Chem. Abstr. 75, 36571 z (1971).Google Scholar
- 327.Pace, N. R., D. H. L. Bishop, and S. Spiegelman: The Immediate Precursor of Viral RNA in the Qβ-Replicase Reaction. Proc. Natl. Acad. Sci. US 59, 139 (1968).CrossRefGoogle Scholar
- 328.Paetkau, V. H., and H. G. Khorana: Preparation of a circular bihelical deoxyribonucleic acid containing repeating dinucleotide sequences. Biochemistry 10, 1511 (1971).CrossRefGoogle Scholar
- 329.Paivinen, E., and N. S. Tikhomirova-Sidorova: Selective 4-N-acetylation of 2’-deoxycytidine 5’-phosphate. Zh. Obshch. Khim. 41, 2076 (1971).Google Scholar
- 330.Paivinen, E., E. N. Morozova, and N. S. Tikhomirova-Sidorova: Acetylation of dinucleotides and synthesis of trinucleotides. Zh. Obshch. Khim. 41, 219 (1971).Google Scholar
- 331.Parks, R. E., Jr., and R. P. Agarwal: Nucleotide kinases. In: The Enzymes. VI. (P. D. Boyer, ed.), 3rd edition. New York-London: Academic Press. 1972.Google Scholar
- 332.Philipp, M., and H. Seliger: Formylated deoxynucleotidyl triphosphates as potential substrates of deoxynucleotide polymerizing enzymes. Abstracts. 164th ACS-meeting, New York. CARB 5 (1972).Google Scholar
- 333.
- 334.Pochon, F., M. Leng, and A. M. Michelson: Photochimie des polynucléotides. III. Étude de la luminescence de poly-nucléotides à température ordinaire. Biochim. Biophys. Acta 169, 350 (1968).CrossRefGoogle Scholar
- 335.Pochon, F., and A. M. Michelson: Polynucleotide analogues. XIV. Poly N2-dimethylguanylate. Biochim. Biophys. Acta 182, 17 (1969).CrossRefGoogle Scholar
- 336.Podder, S. K., and I. Tinoco Jr.: Enzymatic synthesis of oligoguanylic acids containing 2’-5’ phosphodiester linkages. Biochem. Biophys. Res. Commun. 34, 569 (1969).CrossRefGoogle Scholar
- 337.Podder, S. K.: Synthetic action of ribonuclease T1. Biochim. Biophys. Acta 209, 455 (1970).CrossRefGoogle Scholar
- 338.Podder, S. K.: On self-interacting oligoribonucleotides. I. absorption and optical rotatory dispersion of 2’-5’- and 3’-5’-oligoguanylic acids. Biochemistry 10, 2415 (1971).CrossRefGoogle Scholar
- 339.Pongs, O., and P. O. P. Ts’o: Polymerization of 5’-deoxyribonucleotides with 13imidazolyl-4(5)-propanoic acid. Biochem. Biophys. Res. Comm. 36, 475 (1969).CrossRefGoogle Scholar
- 340.Pongs, O., and P. O. P. Ts’o: Polymerization of unprotected 2’-deoxyribonucleoside-5’-phosphates at elevated temperature. J. Amer. Chem. Soc. 93, 5241 (1971).CrossRefGoogle Scholar
- 341.Poonian, M. S., E. F. Nowoswiat, and A. L. Nussbaum: Nucleoside S-alkyl phosphorothioates. VII. A fragment from the nonsense strand of a modified S-peptide “gene”. J. Amer. Chem. Soc. 94, 3992 (1972).CrossRefGoogle Scholar
- 342.Potapov, V. K., O. G. Chekhmakhcheva, Z. A. Shabarova, and M. A. Prokof’ev: Synthesis of oligonucleotides on polymer carriers. Synthesis of deoxy-[thimidylyl(3’→5’)-adenylyl-(3’→5’)-adenylyl-(3’→5’)-adenosine]. Dokl. Akad. Nauk SSSR 196, 360 (1971).Google Scholar
- 343.Potapov, V. K., S. I. Turkin, and Z. A. Shabarova: Application of Sephadex LH-20 in the synthesis of oligonucleotides on polymeric carriers. Zh. Obshch. Khim. 42, 2349 (1972).Google Scholar
- 344.Rabinowitz, J.: 265. Recherche sur la formation et la transformation des esters. LXXXIII. (1). Reaction de condensation et/ou de phosphorylation, en solution aqueuse, de divers composes organiques a fonction —OH, —COOH, —NH2 ou autre a l’aide de polyphosphates lineares ou cycliques. Helv. Chim. Acta 52, 2663 (1969).CrossRefGoogle Scholar
- 345.Rabinowitz, J., S. Chang, and C. Ponnamperuma: Phosphorylation by way of inorganic phosphate as a potential prebiotic process. Nature 218, 442 (1968).CrossRefGoogle Scholar
- 346.Rajabalee, F. J. M.: A convenient synthesis of 2’,3’,5’-tri-O-acetyladenosine and -uridine. Angew. Chem. 10, 75 (1971).Google Scholar
- 347.Ramel, A., E. Heimer, S Roy, and A. L. Nussbaum: Gel filtration of acylated oligonucleotides. Anal. Biochem. 41, 323 (1971).CrossRefGoogle Scholar
- 348.Randerath, K., and E. Randerath: Thin-layer Separation Methods for Nucleic Acid Derivatives. In: S. P. Colowicx and N. O. Kaplan, Methods in Enzymology, Vol. XII (L. Grossmann and K. Moldave, eds.), p. 323. New York-London: Academic Press. 1967.Google Scholar
- 349.Ratliff, R. L., and F. N. Hayes: Enzymatic synthesis of a three-section block copolymer of thymidylate, deoxyguanylate and deoxyadenylate. Biochim. Biophys. Acta 134, 203 (1967).CrossRefGoogle Scholar
- 350.Reese, C. B., and R. Saffhill: Oligonucleotide synthesis via phosphotriester intermediates: The phenyl protecting group. J. Chem. Soc. D, Chem. Comm. 767 (1968).Google Scholar
- 351.Reese, C. B., and J. C. M. Stewart: Methoxyacetyl as a protecting group in ribonucleoside chemistry. Tetrahedron Letters 4273 (1968).Google Scholar
- 352.Reese, C. B.: A systematic approach to oligoribonucleotide synthesis. Chim. Organ. du Phosphore (Colloqu. Intern. du centre national de la recherche scientifique, eds.) 182, 319 (1969).Google Scholar
- 353.Reese, C. B., J. H. van Boom, G. R. Owen, J. Preston, and T. Ravindranathan: Synthesis of oligoribonucleotides. IX. Preparation of ribonucleotide 2’-acetal 5’-esters. J. Chem. Soc. C 3230 (1971).Google Scholar
- 354.Regel, W., E. Stengele, and H. Seliger: Kinetik der Schutzgruppenabspaltung an Nucleosiden mittels’H-NMR-Spektroskopie. Chem. Ber. 107, 611 (1974).CrossRefGoogle Scholar
- 355.Renz, M., R. Lohrmann, and L. E. Orgel: Catalysts for the polymerization of adenosine cyclic 2’,3’-phosphate on a poly (U) template. Biochim. Biophys. Acta 240,463 (1971).CrossRefGoogle Scholar
- 356.Richards, G. M., D. J. Tutas, W. J. Wechter, and M. Laskowskisr: Hydrolysis of dinucleoside monophosphates containing arabinose in various internucleotide linkages by exonuclease from the venom of crotalus adamanteus. Biochemistry 6, 2908 (1967).CrossRefGoogle Scholar
- 357.Richardson, C. C.: Phosphorylation of nucleic acid by an enzyme from T4-bacteriophage infected Escherischia coli. Proc. Natl. Acad. Sci. US 54, 158 (1965).CrossRefGoogle Scholar
- 358.Rokos, H., W. Hutzenlaub, A. Myles, and W. Pflederer: Nucleotide, II: Isomerisierung der Internucleotidbindung bei der Abspaltung der Phosphor-Schutzgruppe von Phosphorsäuretriestern. In preparation.Google Scholar
- 359.Rössner, E.: Synthese von Oligodesoxyribonucleotiden mit 3’-terminalem Ribonucleotid durch Cooligokondensation. Diplomarbeit, Univ. Freiburg, 1972.Google Scholar
- 360.Roychoudhury, R., and H. Kössel: Synthetic polynucleotides. Enzymic synthesis of ribonucleotide terminated oligodeoxynucleotides and their use as primers for the enzymic synthesis of polydeoxynucleotides. Eur. J. Biochem. 22, 310 (1971).CrossRefGoogle Scholar
- 361.Roychoudhury, R.: Enzymic Synthesis of Polynucleotides. Oligodeoxynucleotides with one 3’-terminal Ribonucleotide as Primers for Polydeoxynucleotide Synthesis. J. Biol. Chem. 247, 3910 (1972).Google Scholar
- 361a.Roychudhury, R., S. Kühn, H. Schott, and H. Kössel: Enzymic polynucleotide synthesis primed by polyvinylalcohol linked oligothymidylate. FEBS Letters 50, 140 (1975).CrossRefGoogle Scholar
- 362.Rubinstein, M., and A. Patchornik: Polymers as chemical reagents. Use of poly-3,5diethylstyrene sulfonyl chloride for the synthesis of internucleotide bonds. Tetrahedron Letters 2281 (1972).Google Scholar
- 363.Sachdev, H. S., and N. A. Starkovsky: Enzymatic removal of acyl protecting groups. The use of dihydrocinnamoyl group in oligonucleotide synthesis and its cleavage by α-chymotrypsin. Tetrahedron Letters 733 (1969).Google Scholar
- 364.Saffhill, R.: Selective phosphorylation of the cis-2’,3’-diol of unprotected ribonucleosides with trimetaphosphate in aqueous solution. J. Org. Chemistry 35, 2881 (1970).CrossRefGoogle Scholar
- 365.Saito, M., Y. Furuichi, K. Takeishi, M. Yoshida, M. Yamasaki, K. Arima, H. Hayatsu, and T. Ukita: Synthesis of diribonucleoside monophosphates by use of a nonspecific ribonuclease from Bacillus subtilis. Biochim. Biophys. Acta 195, 299 (1969).CrossRefGoogle Scholar
- 366.Sanger, F., J. E. Donelson, A. R. Coulson, H. Kössel, and D. Fischer: Use of DNA polymerase I primed by a synthetic oligonucleotide to determine a nucleotide sequence in phage f 1 DNA. Proc. Nat. Acad. Sci. US 70, 1209 (1973).CrossRefGoogle Scholar
- 367.Sanno, Y., and A. Nohara: Phosphorylation of 2’,3’-isopropylideneinosine by heating or ultraviolet irradiation in the presence of phosphoric acid and nitriles. Chem. Pharm. Bull. (Tokyo) 16, 2056 (1968).CrossRefGoogle Scholar
- 367a.Sano, H., and G. Feix: Ribonucleic acid ligase activity of DNA ligase from T4-infected E. coli. Biochemistry 13, 5110 (1974).CrossRefGoogle Scholar
- 367b.Scheffler, I. E., and C. C. Richardson: Chemical and enzymatic studies of DNA covalently linked to ficoll. J. Biol. Chem. 247, 5736 (1972).Google Scholar
- 368.Scheit, K. H.: Untersuchungen an poly-5-Hydroxymethyluridylsäure und poly-5Methyluridylsäure. Biochim. Biophys. Acta 134, 17 (1967).CrossRefGoogle Scholar
- 369.Scheit, K. H.: Die Benzylester von Desoxydinucleosidphosphaten und 5’-O-(13,ß,13,-trichloräthylphosphoryl-) thymidylyl-3’-5’-thymidylyl-3’-5’-thymidin. Tetrahedron Letters 3243 (1967).Google Scholar
- 370.Scheit, K. H.: Über die Synthese und Eigenschaften von 4-Thiouridylyl-(3’-5’)-4-thiouridin, 4-Thiouridylyl-(3’-5’)-uridin und Uridylyl-(3’-5’)-4-thiouridin. Biochim. Biophys. Acta 166, 285 (1968).CrossRefGoogle Scholar
- 371.Scheit, K. H., und E. Gaertner: Die Polymerisation von 4-Thiouridin-5’-diphosphat und 4-Thiothymidin-5’-diphosphat durch Polynucleotidphosphorylase aus Micro-coccus Lysodeikticus. Biochim. Biophys. Acta 182, 1 (1969).CrossRefGoogle Scholar
- 372.Scheit, K. H.: Enzymatic polymerization of 5-methyl-4-thiouridine-5’-diphosphate by polynucleotide phosphorylase from Escherichia coli. Biochim. Biophys. Acta 209, 445 (1970).CrossRefGoogle Scholar
- 373.Scheit, K.-H., and P. Faerber: Synthesis and properties of poly(s2C), a new Poly(c) analog. Eur. J. Biochem. 24, 385 (1971).CrossRefGoogle Scholar
- 374.Schetters, H., H. G. Gassen, and H. Matthaei: Codon-anticodon interaction studied with oligonucleotides containing 3-deazauridine, 4-deoxyuridine or 3-deaza-4deoxyuridine. I. Synthesis by primer-dependent polynucleotide phosphorylase of oligonucleotidescontainingmodifiednucleosides. Biochim. Biophys. Acta 272, 549 (1972).CrossRefGoogle Scholar
- 375.Schneider-Bernloehr, H., R. Lohrmann, J. Sulston, B. J. Weimann, L. E. Orgel, and H. Todd Miles: Non-enzymic synthesis of deoxyadenylate oligonucleotides on a polyuridylate template. J. Mol. Biol. 37, 151 (1968).CrossRefGoogle Scholar
- 376.Schneider-Bernloehr, H., R. Lohrmann, J. Sulston, L. E. Orgel, and H. Todd Miles: Specificity of template-directed synthesis with adenine nucleosides. J. Mol. Biol. 47, 257 (1970).CrossRefGoogle Scholar
- 377.Schott, H.: New dihydroxyboryl-substituted polymers for column-chromatographic separation of ribonucleoside-deoxyribonucleoside mixtures. Angew. Chem. 11, 824 (1972).CrossRefGoogle Scholar
- 378.Schott, H.: Polyvinyl alcohol substituted by nucleotides as carrier for liquid phase oligonucleotide synthesis. Angew. Chem. 12, 246 (1973).CrossRefGoogle Scholar
- 379.Schott, H., D. Fischer, and H. Kössel: Synthesis of four undecanucleotides complementary to a region of the coat protein cistron of phage fd. Biochemistry 12, 3447 (1973).CrossRefGoogle Scholar
- 380.Schott, H., and H. Kössel: Synthesis of phage specific deoxyribonucleic acid fragments. I. Synthesis of four undecanucleotides complementary to a mutated region of the coat protein cistron of fd phage deoxyribonucleic acid. J. Amer. Chem. Soc. 95, 3778 (1973).CrossRefGoogle Scholar
- 381.Schott, H., E. Rudloff, P. Schmidt, R. Roychoudhury, and H. Kössel: A dihydroxyboryl-substituted methacrylic polymer for the column chromatographic separation of mononucleotides, oligonucleotides, and transfer ribonucleic acid. Biochemistry 12, 932 (1973).CrossRefGoogle Scholar
- 382.Schott, H., F. Brandstetter, and E. Bayer: Liquid-Phase Synthese von Oligothymidylphosphaten. Makromol. Chem. 173, 247 (1974).CrossRefGoogle Scholar
- 383.Schott, H.: Chemische Synthese eines phagenspezifischen DNA-Fragments. Makrom. Chem. 175, 1683 (1974).CrossRefGoogle Scholar
- 384.Schwartz, A. W., and F. N. Hayes: Synthesis of a polydeoxyribonucleotide containing an internal pyrophosphate linkage. Biochim. Biophys. Acta 138, 604 (1967).CrossRefGoogle Scholar
- 385.Schwartz, A. W.: Specific phosphorylation of the 2’- and 3’-position in ribonucleosides. J. Chem. Soc. D, Chem. Comm. 1393 (1969).Google Scholar
- 386.Schwartz, A., and C. Ponnamperuma: Phosphorylation of adenosine with linear polyphosphate salts in aqueous solution. Nature 218, 449 (1968).CrossRefGoogle Scholar
- 386a.Sedel’nikova, E. A., and S. M. Zhenodarova: Stepwise synthesis of oligonucleotides. I. 5-O-(α-alkoxyalkyl) derivatives of uridine 3’-phosphate. Zh. Obshch. Khim. 38, 2234 (1968).Google Scholar
- 387.Sedel’nikova, E. A., O. A. Smolyaninova, and S. M. Zhenodarova: Stepwise synthesis of oligonucleotides. III. Structural analysis of α-alkoxyalkyl groups in O-(α-alkoxylkyl) derivatives of nucleosides and nucleotides. Zh. Obshch. Khim. 38, 2245 (1968).Google Scholar
- 388.Sekiya, T., Y. Furuichi, M. Yoshida, and T. Ukita: Ribonuclease-T1 catalyzed Synthesis of Triribonucleoside Diphosphates having a Guanosine Residue at the 5’-End. J. Biochem. (Tokyo) 63, 514 (1968).Google Scholar
- 389.Seliger, H.: Versuche zur Einführung und Reaktivierung von Enolgruppen als Schutzgruppen an Phosphorsäuren. Diplom thesis. Technische Hochschule Darmstadt, 1963.Google Scholar
- 390.Seliger, H., and F. Cramer: Nucleophile Substitutionen mit Pyrimidinnucleosid-N3natriumsalzen. Angew. Chem. 81,577 (1969). Angew. Chem. Internat. Edit. 8, 609 (1969).Google Scholar
- 391.Seliger, H.: Chlorameisensäureester von Nucleosiden — neue Zwischenprodukte für Synthesen mit Nucleinsäurebausteinen. Tetrahedron Letters 4043 (1972).Google Scholar
- 392.Seliger, H., and G. Aumann: Oligonucleotide synthesis on a polymer support soluble in water and pyridine. Tetrahedron Letters 2911 (1973).Google Scholar
- 393.Seliger, H.: Ein neuer Weg zur Synthese von Polystyrol und Styrol-Copolymeren mit primären aromatischen Aminogruppen. Makromol. Chem. 169, 83 (1973).CrossRefGoogle Scholar
- 394.Seliger, H.,G. Aumann, V. Genrich, M. Philipp, and E. Rössner: Improvements in the development of rational methods for oligonucleotide synthesis. Abstracts. XXIV th Internat. Congr. of pure and applied chemistry, Hamburg, p. 136 (1973).Google Scholar
- 395.Seliger, H., G. Aumann, and R. L. Letsinger: Progress in the synthesis of oligonucleotides on polymer supports. Contributed Papers, Internat. Symposium on Macromolecules, Rio de Janeiro, 221 (1974).Google Scholar
- 396.Seliger, H., G. Aumann, V. Genrich, M. Philipp, E. Rössner, and H. Schütz: Sequence-specific cooligocondensation of nucleic acid constituents — a new approach to polynucleotide synthesis. Contributed Papers, Internat. Symposium on Macromolecules, Rio de Janeiro, 222 (1974).Google Scholar
- 396a.Seliger, H., and G. Aumann: Oligonukleotidsynthese an unvernetzten Copolymeren des Vinylalkohols und N-Vinylpyrrolidons. Makromol. Chem., in press.Google Scholar
- 397.Seliger, H.: Polymers in aid of polynucleotide chemistry. Current topics in chemistry, manuscript in preparation.Google Scholar
- 397a.Seliger, H.: Handelsübliche Polymere als Träger in der Oligonukleotidsynthese. I. Synthese eines Pentanucleosidtetraphosphats an Merckogel OR 1 000 000R. Makromol. Chem., in press.Google Scholar
- 398.Seliger, H., H. Schütz, E. Saur, and M. Philipp: Oligonucleotide synthesis with nucleotide-3’-formyl esters. J. Carbohydr., Nucleosides, Nucleotides, in press.Google Scholar
- 398a.Seliger, H., E. Rössner, G. Aumann, V. Genrich, M. Holupirek, T. Knable, and M. Philipp: Sequenzspezifische Cooligokondensation von Nukleinsäurebausteinen mit Affinitätsschutzgruppen. I. Desoxyoligonucleotide mit Ribouridin-Terminus. Makro-mol. Chem., in press.Google Scholar
- 398b.Seliger, H., H. Schütz, and M. Philipp: Sequenzspezifische Cooligokondensation von Nukleinsäurebausteinen mit Affinitätsschutzgruppen. II. Cooligomere von 5’-O-(p-Methoxytrityl-)thymidin und Desoxynucleotiden. Makromol. Chem., in press.Google Scholar
- 399.Sgaramella, V., J. H. van de Sande, and H. G. Khorana: Studies on polynucleotides. C. A novel joining reaction catalyzed by the T4-polynucleotide ligase. Proc. Nat. Acad. Sci. US 67, 1468 (1970).CrossRefGoogle Scholar
- 400.Sgaramella, V., and H. G. Khorana: Studies on Polynucleotides. CXII. Total synthesis of the structural gene for an alanine transfer RNA from yeast. Enzymic joining of the chemically synthesized polydeoxynucleotides to form the DNA duplex representing nucleotide sequence 1 to 20. J. Mol. Biol. 72, 427 (1972).CrossRefGoogle Scholar
- 401.Sgaramella, V., and H. G. Khorana: Studies on polynucleotides. CXVI. A further study of the T4 ligase-catalyzed joining of DNA at base-paired ends. J. Mol. Biol. 72, 493 (1972).CrossRefGoogle Scholar
- 402.Sgaramella, V., K. Kleppe, T. Terao, N. K. Gupta, and H. G. Khorana: Studies on Polynucleotides. CXIII. Toral synthesis of the structural gene for an alanine transfer RNA from yeast. Enzymic joining of the chemically synthesized segments to form the DNA duplex corresponding to nucleotide sequence 17 to 50. J. Mol. Biol. 72, 445 (1972).CrossRefGoogle Scholar
- 403.Shabarova, Z. A., and M. A. Prokofiev: A model of enzymatic synthesis of the inter-nucleotide bond between oligodeoxynucleotides. FEBS Letters 11, 237 (1970).CrossRefGoogle Scholar
- 404.Shemyakin, M. M., Yu. A. Ovchinnikov, A. A. Kiryushkin, and I. V. Kozhevnikova: Synthesis of peptides in solution on a polymeric support. I. Synthesis of glycylglycyl-L leucyl-glycin. Tetrahedron Letters 2323 (1965).Google Scholar
- 405.Shen, T.-Y., and K. H. Boswell (Merck and Co., Inc.): 5’-Adamantoyl-2’-deoxy-5(methylamino)-uridine. US Pat. 3,676,422 (Cl. 260/211.5R; C 07d), 11. Jul. 1972, Appl. 73,206, 17. Sep. 1970. Chem. Abstr. 77, 114817 s (1972).Google Scholar
- 406.Shimtzu, B., M. Asai, and T. Nishimura: Synthetic nucleotides. I. A convenient synthesis of ribonucleotides. Chem. Pharm. Bull. (Tokyo) 15, 1847 (1967). 7CrossRefGoogle Scholar
- 407.Shimidzu, T., and R. L. Letsinger: Synthesis of deoxyguanylyldeoxyguanosine on an insoluble polymer support. J. Org. Chem. 33, 708 (1968).CrossRefGoogle Scholar
- 408.Shimidzu, T., and R. L. Letsinger: Hydrolysis of p-nitrophenyl(deoxyguanyl-deoxyguanosine succinate) by deoxyguanyldeoxyguanosine N-acetylhistidate on polycytidylic acid. Bull. Chem. Soc. Japan 44, 584 (1971).CrossRefGoogle Scholar
- 409.Shimidzu, T., and R. L. Letsinger: The preparation of deoxyguanosine oligomers on an insoluble polymer support. Bull. Chem. Soc. Japan 44, 1673 (1971).CrossRefGoogle Scholar
- 410.Shimidzu, T., and R. L. Letsinger: Hydrolyses of p-Nitrophenyl(oligodeoxyribonucleotide succinate)s by oligodeoxyribonucleotide N-acetylhistidates on polycytidylic acid. Bull. Chem. Soc. Japan 46, 3270 (1973).CrossRefGoogle Scholar
- 411.Shinskii, N. G., N. N. Preobrashenskaya, M. G. Ivanovskaya, Z. A. Shabarova, and M. A. Prokof’ev: Phosphorylation of nucleosides by pyrophosphoryl chloride. Dokl. Akad. Nauk SSSR 184, 622 (1969).Google Scholar
- 412.Simuth, J., K. H. Scheit, and E. M. Gottschalk: The enzymatic synthesis of poly 4-thiouridylic acid by polynucleotide phosphorylase from Escherichia coli. Biochim. Biophys. Acta 204, 371 (1970).CrossRefGoogle Scholar
- 413.Simuth, J., P. Strehlke, U. Niedballa, H. Vorbrüggen, and K. H. Scheit: 2’-Omethylcytidine 5’-diphosphate as substrate for polynucleotide phosphorylase from Escherichia coli. Biochim. Biophys. Acta 228, 654 (1971).CrossRefGoogle Scholar
- 414.Smirnov, V. D., M. G. Ivanovskaya, E. V. Il’ina, Z. A. Shabarova, and M. A. Prokof’ev: Synthesis of the phenylalanine amide of a pentadeoxynucleotide. Dokl. Akad. Nauk SSSR 206, English translation p. 1133 (1972).Google Scholar
- 415.Smrt, J., and J. Catlin: Abnormal course of phosphorylation with methyl phosphate. Tetrahedron Letters 5081 (1970).Google Scholar
- 416.Smrt, J., and F. Cramer: Oligonucleotidic compounds. XXXVI. Synthesis of uridylyl(5’-3’)-uridylyl-(5’-5’)-uridylyl-(3’-5’)-uridine and its priming activity for polynucleotide phosphorylase. Collect. Czech. Chem. Commun. 35, 1456 (1970).CrossRefGoogle Scholar
- 417.Smrt, J.: Protection of the internucleotidic bond after its synthesis. An approach to the synthesis of oligonucleotidic chains. Tetrahedron Letters 3437 (1972).Google Scholar
- 418.Smrt, J.: Oligonucleotidic compounds. XXXIX. Triester synthesis of oligonucleotides in the ribo series. Collect. Czech. Chem. Commun. 37, 846 (1972).CrossRefGoogle Scholar
- 419.Smrt, J.: Oligonucleotidic compounds. XL. Aspects of the triester synthesis in the ribo series. Collect. Czech. Chem. Commun. 37, 1870 (1972).CrossRefGoogle Scholar
- 420.Smrt, J.: Oligonucleotidic compounds. XLI. On the reaction of ribonucleoside 2’(3’)-phosphates with dimethylformamide dimethylacetal. Collect. Czech. Chem. Commun. 37, 4088 (1972).CrossRefGoogle Scholar
- 421.Smrt, J.: A remark on the preparation of protected guanosine-3’-phosphate by means of a mixture of ribonucleases T1 and T2. Collect. Czech. Chem. Commun. 39, 969 (1974).CrossRefGoogle Scholar
- 422.Smrt, J.: Combined synthesis of oligonucleotides in the deoxy series. Collect. Czech. Chem. Commun. 39, 972 (1974).CrossRefGoogle Scholar
- 423.Sommer, H., and F. Cramer: Synthese von Oligodesoxynucleotiden mit 5’-terminaler Phosphatgruppe. Angew. Chem. 84, 710 (1972).CrossRefGoogle Scholar
- 424.Sowa, T., S. Ouchi, and T. Osawa (Asahi Chem. Industry Co., Ltd.): 5’-Nucleotides by a direct phosphorylation. Jap. Pat. 7102,025 (Cl. C 07 d), 19. Jan. 1971, Appl. 16. Dec. 1966. Chem. Abstr. 74, 112405 v (1971).Google Scholar
- 425.Sowa, T., K. Sato, S. Ouchi, T. Osawa, and S. Seo (Asahi Chem. Industry Co., Ltd.): Selective phosphorizing to give nucleotides. Jap. Pat. 71 04,986 (Cl. C 07 d), 6. Feb. 1971, Appl. 7. Jan. 1967. Chem. Abstr. 75, 36578 g (1971).Google Scholar
- 426.Sporn, M. B., D. M. Berkowitz, R. P. Glinski, A. B. Ash, and C. L. Stevens: Irreversible inhibition of nuclear exoribonuclease by thymidine-3’-fluorophosphate and p-haloacetamidophenyl nucleotides. Science 164, 1408 (1969).CrossRefGoogle Scholar
- 427.Srivastava, P. C., and M. M. Dhar: The use of a purine cyclonucleoside for the synthesis of a dinucleoside phosphate. Tetrahedron Letters 47 (1968).Google Scholar
- 428.Srivastava, P. C., K. L. Nagpal, and M. M. Dhar: The synthesis of a natural di-nucleoside phosphate derivative with the aid of a purine cyclonucleoside. Experientia 24, 657 (1968).CrossRefGoogle Scholar
- 429.Srivastava, P. C., K. L. Nagpal, and M. M. Dhar: Synthesis of dinucleoside phosphates by reaction of 5’-chloro-5’-deoxy- nucleosides with nucleotide anions. Experientia 25, 356 (1969).CrossRefGoogle Scholar
- 429a.Stuart, A., and H. G. Khorana: Studies on polynucleotides. XXXIII. The labelling of end groups in polynucleotide chains: The selective acetylation of terminal hydroxyl groups in deoxyribopolynucleotides. J. Biol. Chem. 239, 3885 (1964).Google Scholar
- 430.Sulston, J., R. Lohrmann, L. E. Orgel, and H. Todd Miles: Nonenzymatic synthesis of oligoadenylates on a polyuridylic acid template. Proc. Nat. Acad. Sci. (U.S.) 59, 726 (1968).CrossRefGoogle Scholar
- 431.Sulston, J., R. Lohrmann, L. E. Orgel, and H. Todd Miles: Specificity of oligonucleotide synthesis directed by polyuridylic acid. Proc. Nat. Acad. Sci. (U.S.) 60, 409 (1968).CrossRefGoogle Scholar
- 432.Sulston, J., R. Lohrmann, L. E. Orgel, H. Schneider-Bernloehr, B. J. Weimann, and H. Todd Miles: Non-enzymic oligonucleotide synthesis on a polycytidylate template. J. Mol. Biol. 40, 227 (1969).CrossRefGoogle Scholar
- 433.Sussman, J. L., I. Barzilay, M. Keren-Zur, and Y. Lapidot: Correlation of the differences in conformation between 2’-5’ and 3’-5’ dinucleoside monophosphates with their behaviour on a Sephadex LH-20 column. Biochim. Biophys. Acta 308, 189 (1973).CrossRefGoogle Scholar
- 434.Swierkowski, M., and D. Shugar: Poly 5-ethyluridylic acid, a polyuridylic acid analogue. J. Mol. Biol. 47, 57 (1970).CrossRefGoogle Scholar
- 435.Tajima, K., and T. Hata: Simple protecting group protection-purification handle for polynucleotide synthesis. II. Bull. Chem. Soc. Japan 45, 2608 (1972).CrossRefGoogle Scholar
- 436.Taunton-Rigby, A., Y.-H. Kim, C. J. Crosscup, and N. A. Starkovsky: Oligonucleotide synthesis. II. The use of substituted trityl groups. J. Org. Chem. 37, 956 (1972).CrossRefGoogle Scholar
- 437.Taunton-Rigby, A.: Oligonucleotide synthesis. III. Enzymatically removable acyl protecting groups. J. Org. Chem. 38, 977 (1973).CrossRefGoogle Scholar
- 438.Tazawa, I., S. Tazawa, L. M. Stempel, and P. O. P. Ts’o: L-adenylyl-(3’-5’)-Ladenosine and L-adenylyl-(2’-5’)-L-adenosine. Biochemistry 9, 3499 (1970).CrossRefGoogle Scholar
- 439.Thang, M. N., and M. Grunberg-Manago: Enzymatic synthesis of polyguanylic acid and copolymers containing guanylic acid. In: Methods in enzymology, XII B, 522 (L. Grossman and K. Moldave, eds.). New York-London: Academic Press. 1968.Google Scholar
- 440.Tigerstrom, R. V., and M. Smith: Oligodeoxyribonucleotides: Chemical synthesis in anhydrous base. Science 167, 1266 (1970).CrossRefGoogle Scholar
- 441.Tikhomirova-Sidorova, N. S., E. M. Kogan, V. A. Sysoev, and G. E. Ustyuzhanin: Alcoholysis of pyrimidine nucleoside 2’,3’-cyclophosphates with purine nucleosides in frozen solutions in presence of pancreatic ribonuclease. Zh. Obshch. Khim. 41, 2570 (1971).Google Scholar
- 442.Tikhomirova-Sidorova, N. S., G. E. Ustyuzhanin, T. N. Kalacheva, and V. I. Kalugina: Hydrolytic and synthetic activity of guanylic ribonuclease of actinomycetes in frozen solutions. Zh. Obshch. Khim. 41, 2108 (1971).Google Scholar
- 442a.Torrence, P. F., J. A. Waters, and B. Witkop: Unexpected conformational stability of poly(2’-azido-2’-deoxyuridylic acid). J. Amer. Chem. Soc. 94, 3638 (1972).CrossRefGoogle Scholar
- 443.Torrence, P. F., and B. Witkop: Enzymatic synthesis of polynucleotides containing 5,6-methylene-and 5,6-dihydropyrimidines. Biochemistry 11, 1737 (1972).CrossRefGoogle Scholar
- 444.Torrence, P. F., A. M. Bopst, J. A. Waters, and B. Witkop: Synthesis and characterization of potential interferon inducers. Poly(2’-azido-2’-deoxyuridylic acid). Biochemistry 12, 3962 (1973).CrossRefGoogle Scholar
- 445.Torrence, P. F., J. A. Waters, C. E. Buckler, and B. Witkop: Effect of pyrimidine and ribose modifications on the antiviral activity of synthetic polynucleotides. Biochem. Biophys. Res. Commun. 52, 890 (1973).CrossRefGoogle Scholar
- 446.Tsiapalis, C. M., and S. A. Narang: On the fidelity of phage T4-induced polynucleotide ligase in the joining of chemically synthesized deoxyribooligonucleotides. Biochem. Biophys. Res. Commun. 39, 631 (1970).CrossRefGoogle Scholar
- 447.Tsou, K. C., and K. F. Yip: Synthesis of deoxyoligonucleotides on an isotactic polymer support. J. Macromol. Sci. Chem. A7 (5), 1097 (1973).Google Scholar
- 448.Uchic, J. T., M. Uchic, and A. D. Broom: Studies on polyribonucleotides. Synthesis of a polyinosinic: 6-thioinosinic acid copolymer. Biochem. Biophys. Res. Commun. 51, 494 (1973).CrossRefGoogle Scholar
- 449.Uchic, J. T., M. Uchic, and A. D. Broom: Studies on polyribonucleotides. Polymerization of 6-chloropurine riboside5’-diphosphate; personal communication.Google Scholar
- 450.Uchida, T., T. Arima, and F. Egami: Specificity of RNase U2. J. Biochem. (Tokyo) 67, 91 (1970).Google Scholar
- 451.Ueda, T., and J. J. Fox: Mononucleotides. Advan. Carbohyd. Chem. Biochem. 22, 307 (1967).Google Scholar
- 452.Ueda, T.,and I. Kawai: A convenient synthesis of ribonucleoside 2’,3’-cyclic phosphates from ribonucleosides and ribonucleotides. Chem. Pharm. Bull. (Tokyo) 18, 2303 (1970).CrossRefGoogle Scholar
- 453.Uesugi, S., M. Yasumoto, M. Ikehara, K. N. Fang, and P. O. P. Ts’o: Synthesis and properties of the dinucleoside monophosphate of adenine 8-thiocyclonucleoside. J. Amer. Chem. Soc. 94, 5480 (1972).CrossRefGoogle Scholar
- 454.van de Sande, J. H., M. H. Caruthers, V. Sgaramella, T. Yamada, and H. G. Khorana: Studies on Polynucleotides. CXIV. Total synthesis of the structural gene for an alanine transfer RNA from yeast. Enzymic joining of the chemically synthesized segments to form the DNA duplex corresponding to nucleotide sequence 46 to 77. J. Mol. Biol. 72, 457 (1972).CrossRefGoogle Scholar
- 455.Verlander, M. S., R. Lohrmann, and L. E. Orgel: Catalysts for the selfpolymerization of adenosine cyclic 2’,3’-phosphate. J. Mol. Evol. 2, 303 (1973).CrossRefGoogle Scholar
- 456.Verlander, M. S., and L. E. Orgel: Analysis of high molecular weight material from the polymerization of adenosine cyclic 2’,3’-phosphate. J. Mol. Evol. 3, 115 (1974).CrossRefGoogle Scholar
- 457.Weber, H., and H. G. Khorana: Studies on Polynucleotides. CIV. Total synthesis of the structural gene for an alanine transfer ribonucleic acid from yeast. Chemical synthesis of an icosadeoxynucleotide corresponding to the nucleotide sequence 21 to 40. J. Mol. Biol. 72, 219 (1972).CrossRefGoogle Scholar
- 458.Weimann, G., and H. G. Khorana: Studies on Polynucleotides. XVII. On the mechanism of internucleotide bond synthesis by the carbodiimide method. J. Amer. Chem. Soc. 84, 4329 (1962).CrossRefGoogle Scholar
- 459.Weimann, B. J., R. Lohrmann, L. E. Orgel, H. Schneider-Bernloehr, and J. E. Sulston: Template-directed synthesis with adenosine-5’-phosphorimidazolide. Science 161, 387 (1968).CrossRefGoogle Scholar
- 460.Weith, H. L., J. L. Wiebers, and P. T. Gilham: Synthesis of cellulose derivatives containing the dihydroxyboryl group and a study of their capacity to form specific complexes with sugars and nucleic acid components. Biochem. 9, 4396 (1970).CrossRefGoogle Scholar
- 461.Wells, R. D., and R. M. Wartell: Review of synthesis of specific DNA polymers. Biochem. Mol. Biol. (ed. K. Burton). Butterworth and Medical and Technical Publishing Co. (1973).Google Scholar
- 462.Werstiuk, E. S., and T. Neilson: Oligoribonucleotide Synthesis. IV. Approach to block synthesis. Can. J. Chem. 50, 1283 (1972).CrossRefGoogle Scholar
- 463.Werstiuk, E. S., and T. Neilson: Oligoribonucleotide synthesis. VI. Selective de-blocking of the 5’-O-triphenylmethoxyacetyl grouping in protected dinucleotides. Can. J. Chem. 51, 1889 (1973).CrossRefGoogle Scholar
- 464.Westheimer, F. H., C. Clapp, and J. Wiseman: Monomeric metaphosphates and metaphosphorimidates. XXIV th IUPAC Congress of Pure and Applied Chemistry, Hamburg,1973, Abstracts of Papers, p. 410.Google Scholar
- 465.Wightman, R. H., S. A. Narang, and K. Itakura: A novel phosphate protecting group for oligonucleotide synthesis. Can. J. Chem. 50, 456 (1972).CrossRefGoogle Scholar
- 466.Windholz, T. B., and D. B. R. Johnston: Trichloroethoxycarbonyl: a generally applicable protecting group. Tetrahedron Letters 2555 (1967).Google Scholar
- 467.Wu, R., C.-P. D. Tu, and R. Padmanabhan: Nucleotide sequence analysis of DNA. XII. The chemical synthesis and sequence analysis of a dodecadeoxynucleotide which binds to the endolysin gene of bacteriophage lambda. Biochem. Biophys. Res. Commun. 55, 1092 (1973).CrossRefGoogle Scholar
- 467a.Wu, R.: personal communication.Google Scholar
- 468.Wünsch, E.: Synthese von Peptidnaturstoffen. Problematik des heutigen Forschungsstandes. Angew. Chem. 83, 773 (1971).CrossRefGoogle Scholar
- 469.Yamashita, T., and T. Kato(Ajinomoto Co, Inc.): 2’,3’-O-Substituted nucleoside 5’-phosphates. Jap. Pat. 69 27,979 (Cl. 16E 611.2), 19. Nov. 1969, Appl. 3. Dec. 1966. Chem. Abstr. 72, 21913 b (1970).Google Scholar
- 470.Yip, K. F., and K. C. Tsou: A new polymer-support method for the synthesis of ribooligonucleotide. J. Amer. Chem. Soc. 93, 3272 (1971).CrossRefGoogle Scholar
- 471.Yonei, S., A. Kuninaka, and H. Yoshino (Yamasa Shoyu Co., Ltd.): Jap. Pat. 71 31,865 (Cl. C 07 d), 17. Sep. 1971, Appl. 7. Feb. 1969. Chem. Abstr. 75, 152051 d (1971).Google Scholar
- 472.Yoshikawa, M., T. Kato, and T. Takenishi: Selective phosphorylation of unprotected nucleosides. Bull. Chem. Soc. Jap. 42, 3505 (1969).CrossRefGoogle Scholar
- 473.Yoshikawa, M., M. Sakuraba, and K. Kusashio: Phosphorylation. IV. Phosphorylation of nucleosides with phosphorus trihalide. Bull. Chem. Soc. Jap. 43, 456 (1970).CrossRefGoogle Scholar
- 474.Yurkevich, A. M., L. S. Varshavskaya, and I. I. Kolodkina: Reaction of nucleosides with diphenylboric acid esters. Zh. Obshch. Khim. 38, 2115 (1968).Google Scholar
- 475.Yurkevich, A. M., I. I. Kolodkina, L. S. Varshavskaya, V. I. Borodulina-Shvetz, I. P. Rudakova, and N. A. Preobrazhenski: The reaction of phenylboronic acid with nucleosides and mononucleosides. Tetrahedron 25, 477 (1969).CrossRefGoogle Scholar
- 476.Zarytova, V. F., V. K. Potapov, Z. A. Shabarova, and D. G. Knorre: Synthesis of oligonucleotides on polymer supports. Synthesis of oligodeoxynucleotides containing deoxyguanylic acid. Dokl. Akad. Nauk SSSR 199, 1072 (1970).Google Scholar
- 477.Zemlicka, J., J. Beranek, and J. Smrt: Preparation and methanolysis of uridine, 6-azauridine and 6-aza-cytidine-O-formyl derivatives. Coll. Czech. Chem. Comm. 27, 2784 (1962).Google Scholar
- 478.Zemlicka, J., and J. Smrt: The reaction of O2,5’-cyclouridine and O2,5’-cyclocytidine derivatives with nucleotides — A new approach to the synthesis of the 3’-5’-internucleotidic bond. Tetrahedron Letters 2081 (1964).Google Scholar
- 479.Zemlicka, J.: 2’,3’-O-(ethoxymethylene)uridine. Synthetic procedures in nucleic acid chemistry. 1, 422. New York: Wiley. 1968.Google Scholar
- 480.Zemlicka, J., and S. Chladek: New method of dephosphorylation of ribonucleoside2’(3’)-phosphates. Tetrahedron Letters 715 (1969).Google Scholar
- 481.Zemlicka, J.: Nucleic acid components and their analogues. CXXXII. Alkylation of some nucleic acid components and their analogues with dimethylformamide acetals. Collect. Czech. Chem. Commun. 35, 3572 (1970).CrossRefGoogle Scholar
- 482.Zemlicka, J.: Acetalation and acetylation of pyrimidine nucleosides in dioxane-acetonitrilehydrogen chloride. J. Org. Chem. 36, 2383 (1971).CrossRefGoogle Scholar
- 483.Zemlicka, J.,and S. Chladek: Synthesis of 2’(3’)-O-glycyl derivatives ofcytidylyl-(3’-5’)inosine and 2’-deoxycytidylyl-(3’-5’)-adenosine. Biochemistry 10, 1521 (1971).CrossRefGoogle Scholar
- 484.Zemlicka, J., and J. P. Horwitz: Nucleosides. XIII. The concurrent introduction of two different blocking groups into some ribonucleosides. J. Org. Chem. 36, 2809 (1971).CrossRefGoogle Scholar
- 485.Zhenodarova, S. M., and M. I. Habarova: The enzymic synthesis of adenylyl-(3’-5’)cytidine. Biochim. Biophys. Acta 169, 559 (1968).CrossRefGoogle Scholar
- 486.Zmudzka, B., and D. Shugar: Role of the 2’-hydroxyl in polynucleotide conformation: poly 2’-O-methyluridylic acid. Acta Biochim. Polon. 18, 321 (1971).Google Scholar
- 487.Zmudzka, B., M. Tichy, and D. Shugar: The structure of poly 2’-O-methylcytidylic acid and its complexes with polyinosinic acid. Acta Biochim. Polon. 19, 149 (1972).Google Scholar
- 488.Zwierzak, A., and R. Gramze: Organophosphorus esters II. Novel approach to the synthesis of S-alkyl phosphorothioates. Z. Naturforsch. 26b, 386 (1971).Google Scholar
- 489.Zwierzak, A., and M. Kluba: Organophosphorus esters — I. t-butyl as protecting group in phosphorylation via nucleophilic displacement. Tetrahedron Letters 3163 (1971).Google Scholar