Naturally Occuring Organohalogen Compounds — A Comprehensive Survery

  • G. W. Gribble
Part of the Fortschritte der Chemie organischer Naturstoffe / Progress in the Chemistry of Organic Natural Products book series (FORTCHEMIE (closed), volume 68)

Abstract

Natural chlorine-, bromine-, iodine-, and fluorine-containing organic chemical compounds are abundant on our planet. Occurring on land, in the oceans, and in the atmosphere, they pervade every form of life. They are produced by marine and terrestrial plants, bacteria, fungi, insects, marine animals, and even mammals. Natural combustion processes, such as volcanoes and other geothermal events, and forest and brush fires contribute large quantities of halogenated compounds to the environment. In 40 years, the number of known natural organohalogens has multiplied 200 times, from a dozen in 1954 to nearly 2400 today (Table 1) (1–12).

References

  1. 1.
    Bracken, A.: Naturally Occurring Chlorine-Containing Organic Substances. Manufacturing Chemist 25, 533 (1954).Google Scholar
  2. 2.
    Petty, M.A.: An Introduction to the Origin and Biochemistry of Microbial Halometabolites. Bact. Rev. 25, 111 (1961).Google Scholar
  3. 3.
    Fowden, L.: The Occurrence and Metabolism of Carbon-Halogen Compounds. Proc. Roy. Soc. B171, 5 (1968).Google Scholar
  4. 4.
    Turner, W.B.: Fungal Metabolites. New York: Academic Press. 1971.Google Scholar
  5. 5.
    Siuda, J.F., and J.F. Debernardis: Naturally Occurring Halogenated Organic Compounds. Lloydia 36, 107 (1973).Google Scholar
  6. 6.
    Minale, L.: Natural Product Chemistry of the Marine Sponges. Pure Appl. Chem. 48, 7 (1976).Google Scholar
  7. 7.
    Thomson, R.H.: Halogenated Metabolites from Marine Animals and Plants. J. Indian Chem. Soc. 55, 1209 (1978).Google Scholar
  8. 8.
    Fenical, W.: Natural Halogenated Organics. In: Marine Organic Chemistry, Chap. 12 ( E.K. Duursma and R. Dawson, eds.). Amsterdam: Elsevier. 1981.Google Scholar
  9. 9.
    Turner, W.B., and D.C. Aldridge: Fungal Metabolites, 2nd ed. New York: Academic Press. 1983.Google Scholar
  10. 10.
    Engvild, K.C.: Chlorine-Containing Natural Compounds in Higher Plants. Phytochem. 25, 781 (1986).Google Scholar
  11. 11.
    Gribble, G.W.: Naturally Occurring Organohalogen Compounds—A Survey. J. Nat. Prod. 55, 1353 (1992).Google Scholar
  12. 12.
    Naumann, K.: Chlorchemie der Natur. Chem. Zeit. 27, 33 (1993).Google Scholar
  13. 13.
    Scheuer, P.J.: Chemistry of Marine Natural Products. New York: Academic Press. 1973.Google Scholar
  14. 14.
    Fenical, W.: Halogenation in the Rhodophyta—A Review. J. Phycol. 11, 245 (1975).Google Scholar
  15. 15.
    Minale, L., G. Cimino, S. De Stefano, and G. Sodano: Natural Products from Porifera. Progr. Chem. Org. Nat. Prod. 33, 1 (1976).Google Scholar
  16. 16.
    Baker, J.T.: Some Metabolites from Australian Marine Organisms. Pure Appl. Chem. 48, 35 (1976).Google Scholar
  17. 17.
    Scheuer, P.J.: The Varied and Fascinating Chemistry of Marine Mollusks. Is. J. Chem. 16, 52 (1977).Google Scholar
  18. 18.
    Faulkner, D.J.: Interesting Aspects of Marine Natural Products Chemistry. Tetrahedron 33, 1421 (1977).Google Scholar
  19. 19.
    Marine Natural Products, Vols. I-V (P.J. Scheuer, ed.). New York: Academic Press. 1981.Google Scholar
  20. 20.
    Krebs, H.C.: Recent Developments in the Field of Marine Natural Products with Emphasis on Biologically Active Compounds. Progr. Chem. Org. Nat. Prod. 49, 151 (1986).Google Scholar
  21. 21.
    Rinehart, Jr., K.L., P.D. Shaw, L.S. Shield, J.B. Gloer, G.C. Harbour, M.E.S. Koker, D. Samain, R.E. Schwartz, A.A. Tymiak, D.L. Weller, G.T. Carter, M.H.G. Munro, R.G. Hughes, Jr., H. E. Renis, E.B. Swynenberg, D.A. Stringfellow, J.J. Vavra, J.H. Coats, G.E. Zurenko, S.L. Kuentzel, L.H. LI, G.J. Bakus, R.C. Brusca, L.L. Craft, D.N. Young, and J.L. Connor: Marine Natural Products as Sources of Antiviral, Antimicrobial, and Antineoplastic Agents. Pure Appl. Chem. 53, 795 (1981).Google Scholar
  22. 22.
    Müller, G., and W. Schmitz: Halogenorganische Verbindungen in aquatischen Sedimenten: Antropogene und Biogene. Chem. Zeit. 109, 415 (1985).Google Scholar
  23. 23.
    Faulkner, D.J.: Marine Natural Products: Metabolites of Marine Algae and Herbivorous Marine Molluscs. Nat. Prod. Rep. 1, 251 (1984).Google Scholar
  24. 24.
    Faulkner, D.J.: Marine Natural Products: Metabolites of Marine Invertebrates. Nat. Prod. Rep. 1, 551 (1984).Google Scholar
  25. 25.
    Faulkner, D.J.: Marine Natural Products. Nat. Prod. Rep. 3, 1 (1986).Google Scholar
  26. 26.
    Faulkner, D.J.: Marine Natural Products. Nat. Prod. Rep. 4, 539 (1987).Google Scholar
  27. 27.
    Faulkner, D.J.: Marine Natural Products. Nat. Prod. Rep. 5, 613 (1988).Google Scholar
  28. 28.
    Faulkner, D.J.: Marine Natural Products. Nat. Prod. Rep. 7, 269 (1990).Google Scholar
  29. 29.
    Faulkner, D.J.: Marine Natural Products. Nat. Prod. Rep. 8, 97 (1991).Google Scholar
  30. 30.
    Faulkner, D.J.: Marine Natural Products. Nat. Prod. Rep. 9, 323 (1992).Google Scholar
  31. 31.
    Faulkner, DJ.: Marine Natural Products. Nat. Prod. Rep. 10, 497 (1993).Google Scholar
  32. 32.
    Moore, R.E.: Marine Aliphatic Natural Products. Aliphatic and Related Natural Prod. Chem. 1, 20 (1979).Google Scholar
  33. 33.
    Thomson, R.H.: Marine Natural Products. Chem. Brit. 14, 133 (1978).Google Scholar
  34. 34.
    Christophersen, C: Secondary Metabolites from Marine Bryozoans. A Review. Acta Chem. Scand. B39, 517 (1985).Google Scholar
  35. 35.
    Asplund, G., and A. Grimvall: Organohalogens in Nature. Environ. Sei. Technol. 25, 1346 (1991).Google Scholar
  36. 36.
    Fleming, B.: Chlorinated Organics in Perspective: From Drinking Water to Mill Effluent. Pulp & Paper April, 115 (1991).Google Scholar
  37. 37.
    Premuzic, E.: Chemistry of Natural Products Derived from Marine Sources. Progr. Chem. Org. Nat. Prod. 29, 417 (1971).Google Scholar
  38. 38.
    Hopp, V.: Chlor und seine Verbindungenihr Kreislauf in Natur und Technik. Chem. Zeit. 115, 341 (1991).Google Scholar
  39. 39.
    Harper, D.B., and D. O’hagan: The Fluorinated Natural Products. Nat. Prod. Rep. 11, 123 (1994).Google Scholar
  40. 40.
    Gribble, G.W.: The Natural Production of Chlorinated Compounds. Environ. Sci. Technol. 28, 310A (1994).Google Scholar
  41. 41.
    Goldberg, E.D.: The Oceans as a Chemical System. In: The Sea, 2 (M.N. Hill, ed.), pp. 3–25. New York: Wiley-Interscience. 1963.Google Scholar
  42. 42.
    Stijve, T.: Inorganic Bromide in Higher Fungi. Z. Naturforsch. 39C, 863 (1984).Google Scholar
  43. 43.
    Isidorov, V.A.: Organic Chemistry of the Earth’s Atmosphere, p. 107. Berlin, Heidelberg: Springer. 1990.Google Scholar
  44. 44.
    Keene, W.C., A.A. P. Pszenny, D.J. Jacob, R.A. Duce, J.N. Galloway, J J. Schultz-Tokos, H. Sievering, and J.F. Boatman: The Geochemical Cycling of Reactive Chlorine Through the Marine Troposphere. Global Biogeochem. Cycles 4, 407 (1990).Google Scholar
  45. 45.
    Stolarski, R.S., and R.J. Cicerone: Stratospheric Chlorine: A Possible Sink for Ozone. Can. J. Chem. 52, 1610 (1974).Google Scholar
  46. 46.
    Symonds, R.B., W.I. Rose, and M.H. Reed: Contribution of CI-and F-Bearing Gases to the Atmosphere by Volcanoes. Nature 334, 415 (1988).Google Scholar
  47. 47.
    Tabazadeh, A., and R.P. Turco: Stratospheric Chlorine Injection by Volcanic Eruptions: HCl Scavenging and Implications for Ozone. Science 260, 1082 (1993).Google Scholar
  48. 48.
    Westrich, H.R., and T.M. Gerlach: Magmatic Gas Source for the Stratospheric S02 Cloud from the June 15, 1991, Eruption of Mount Pinatubo. Geology 20, 867 (1992).Google Scholar
  49. 49.
    Johnston, D.A.: Volcanic Contribution of Chlorine to the Stratosphere: More Significant to Ozone than Previously Estimated? Science 209, 491 (1980).Google Scholar
  50. 50.
    Symonds, R.B., W.I. Rose, T.M. Gerlach, P.H. Briggs, and R.S. Harmon: Evaluation of Gases, Condensates, and S02 Emissions from Augustine Volcano, Alaska: The Degassing of a Cl-Rich Volcanic System. Bull. Volcanol. 52, 355 (1990).Google Scholar
  51. 51.
    Symonds, R.B., M.H. Reed, and W.I. Rose: Origin, Speciation, and Fluxes of Trace-Element Gases at Augustine Volcano, Alaska: Insights into Magma Degassing and Fumarolic Processes. Geochim. Cosmochim. Acta 56, 633 (1992).Google Scholar
  52. 52.
    Oskarsson, N.: The Interaction Between Volcanic Gases and Tephra. Fluorine Adhering to Tephra of the 1970 Hekla Eruption. J. Volcanol. Geother. Res. 8, 251 (1980).Google Scholar
  53. 53.
    Woods, D.C., R.L. Chuan, and W.I. Rose: Halite Particles Injected into the Stratosphere by the 1982 El Chichon Eruption. Science 230, 170 (1985).Google Scholar
  54. 54.
    Mankin, W.G., and M.T. Coffey: Increased Stratospheric Hydrogen Chloride in the El Chichón Cloud. Science 226, 170 (1983).Google Scholar
  55. 55.
    Cadle, R.D., A.L. Lazrus, B.J. Huebert, L.E. Heidt, W.I. Rose, D.C Woods, R.L. Chuan, R.E. Stoiber, D.B. Smith, and R.A. Zielinski: Atmospheric Implications of Studies of Central American Volcanic Eruption Clouds. J. Geophys. Res. 84, 6961 (1979).Google Scholar
  56. 56.
    Olmez, I., D.L. Finnegan, and W.H. Zoller: Iridium Emissions from Kilauea Volcano. J. Geophys. Res. 91, 653 (1986).Google Scholar
  57. 57.
    Blake, G.A., J. Keene, and T.G. Phillips: Chlorine in Dense Interstellar Clouds: The Abundance of HCl in OMC-1. Astrophys. J. 295, 501 (1985).Google Scholar
  58. 58.
    Winnewisser, G., and E. Herbst: Organic Molecules in Space. Top. Curr. Chem. 139, 119 (1987).Google Scholar
  59. 59.
    Sauvageau, C: Algae Containing Free Iodine. Rev. Bot. App. Agr. Col. 6, 169 (1926); Chem. Abstr. 20, 3485 (1926).Google Scholar
  60. 60.
    Kylin, H.: The Occurrence of Iodides, Bromides and Iodide-Oxidases in Marine Algae. Z. Physiol. Chem. 186, 50 (1929).Google Scholar
  61. 61.
    Low, E.M.: Iodine and Bromine in Sponges. J. Mar. Res. 8, 97 (1949).Google Scholar
  62. 62.
    Faulkner, D.J.: Natural Organohalogen Compounds. In: The Handbook of Environmental Chemistry, Vol. 1, Part A (O. Hutzinger, ed.), p. 229. Berlin: Springer. 1980.Google Scholar
  63. 63.
    Isidorov, V.A.: Organic Chemistry of the Earth’s Atmosphere, p. 49. Berlin, Heidelberg: Springer. 1990.Google Scholar
  64. 64.
    Gregson, R.P., B.A. Baldo, P.G. Thomas, R.J. Quinn, P.R. Bergquist, J.F. Stephens, and A.R. Horne: Fluorine Is a Major Constituent of the Marine Sponge Halichondria moorei. Science 206, 1108 (1979).Google Scholar
  65. 65.
    Rodriguez, J.M.: Probing Stratospheric Ozone. Science 261, 1128 (1993).Google Scholar
  66. 66.
    Cicerone, R.J.: Fires, Atmospheric Chemistry, and the Ozone Layer. Science 263, 1243 (1994).Google Scholar
  67. 67.
    Pearson, C.R.: Cl and C2 Halocarbons. In: The Handbook of Environmental Chemistry, Vol. 3/Part B ( O. Hutzinger, ed.). Berlin, Heidelberg: Springer. 1982.Google Scholar
  68. 68.
    Leisinger, T.: Microorganisms and Xenobiotic Compounds. Experientia 39, 1183 (1983).Google Scholar
  69. 69.
    Rasmussen, R.A., L.E. Rasmussen, M.A.K. Khalil, and R.W. Dalluge: Concentration Distribution of Methyl Chloride in the Atmosphere. J. Geophys. Res. 85, 7350 (1980).Google Scholar
  70. 70.
    Harper, D.B.: Halomethane from Halide Ion—A Highly Efficient Fungal Conversion of Environmental Significance. Nature 315, 55 (1985).Google Scholar
  71. 71.
    Edwards, P.R., I. Campbell, and G.S. Milne: The Impact of Chloromethanes on the Environment, Part 2: Methyl Chloride and Methylene Chloride. Chem. Ind., 619 (1982).Google Scholar
  72. 72.
    Cowan, M.I., A.T. Glen, S.A. Hutchinson, M.E. MacCartney, J.M. Mackintosh, and A.M. Moss: Production of Volatile Metabolites by Species of Fomes. Trans. Br. Mycol. Soc. 60, 347 (1973).Google Scholar
  73. 73.
    White, R.H.: Biosynthesis of Methyl Chloride in the Fungus Phellinus pomaceus. Arch. Microbiol. 132, 100 (1982).Google Scholar
  74. 74.
    Harper, D.B., J.T. Kennedy, and J.T.G. Hamilton: Chloromethane Biosynthesis in Poroid Fungi. Phytochem. 27, 3147 (1988).Google Scholar
  75. 75.
    Harper, D.B., and J.T. Kennedy: Effect of Growth Conditions on Halomethane Production by Phellinus Species: Biological and Environmental Implications. J. Gen. Microbiol. 132, 1231 (1986).Google Scholar
  76. 76.
    Turner, E.M., M. Wright, T. Ward, D.J. Osborne, and R. Self: Production of Ethylene and Other Volátiles and Changes in Cellulase and Lacease Activities During the Life Cycle of the Cultivated Mushroom, Agaricus bisporus. J. Gen. Microbiol. 91, 167 (1975).Google Scholar
  77. 77.
    Gschwend, P.M., J.K. Macfarland, and K.A. Newman: Volatile Halogenated Organic Compounds Released to Seawater from Temperate Marine Macroalgae. Science 227, 1033 (1985).Google Scholar
  78. 78.
    Wuosmaa, A.M., and L.P. Hager: Methyl Chloride Transferase: A Carbocation Route for Biosynthesis of Halometabolites. Science 249, 160 (1990).Google Scholar
  79. 79.
    Manley, S.L., and M.N. Dastoor: Methyl Halide (CH3X) Production from the Giant Kelp, Macrocystis, and Estimates of Global CH3X Production by Kelp. Limnol. Oceanogr. 32, 709 (1987).Google Scholar
  80. 80.
    Blackman, A.J., N.W. Davies, and C.E. Ralph: Volatile and Odorous Compounds from the Bryozoan Biftustra perfragilis. Biochem. Syst. Ecol. 20, 339 (1992).Google Scholar
  81. 81.
    Isidorov, V.A., I.G. Zenkevich, and B.V. Ioffe: Volatile Organic Compounds in the Atmosphere of Forests. Atmos. Environ. 19, 1 (1985).Google Scholar
  82. 82.
    Wever, R.: Formation of Halogenated Gases, by Natural Sources. In: Microbial Production and Consumption of Greenhouse Gases: Methane, Nitrogen Oxides, and Halomethanes, Chap. 15 ( J.E. Rogers and W.B. Whitman, eds.). Washington, D.C.: American Society for Microbiology. 1991Google Scholar
  83. 83.
    Harper, D.B., J.T.G. Hamilton, J.T. Kennedy, and K.J. McNally: Chloromethane, a Novel Methyl Donor for Biosynthesis of Esters and Anisóles in Phellinus pomaceus. Appl. Environ. Microbiol. 55, 1981 (1989).Google Scholar
  84. 84.
    Harper, D.B., J.A. Buswell, J.T. Kennedy, and J.T.G. Hamilton: Chloromethane, Methyl Donor in Veratryl Alcohol Biosynthesis in Phanerochaete chrysosporium and Other Lignin-Degrading Fungi. Appl. Environ. Microbiol. 56, 3450 (1990).Google Scholar
  85. 85.
    Harper, D.B., J.A. Buswell, and J.T. Kennedy: Effect of Chloromethane on Veratryl Alcohol and Lignin Peroxidase Production by the Fungus Phanerochaete chrysosporium. J. Gen. Microbiol. 137, 2867 (1991).Google Scholar
  86. 86.
    Isidorov, V.A.: Natural Sources of Organic Components of the Atmosphere. In: Organic Chemistry of the Earth’s Atmosphere, Chap. 3. Berlin, Heidelberg: Springer. 1990.Google Scholar
  87. 87.
    Palmer, T.Y.: Combustion Sources of Atmospheric Chlorine. Nature 263, 44 (1976).Google Scholar
  88. 88.
    Crutzen, P.J., and M.O. Andreae: Biomass Burning in the Tropics: Impact on Atmospheric Chemistry and Biogeochemical Cycles. Science 250, 1669 (1990).Google Scholar
  89. 89.
    Lovelock, J.E.: Natural Halocarbons in the Air and in the Sea. Nature 256, 193 (1975).Google Scholar
  90. 90.
    Stephens, E.R., and F.R. Burleson: Distribution of Light Hydrocarbons in Ambient Air. J. Air.Pollut. Control Assoc. 19, 929 (1969).Google Scholar
  91. 91.
    Tassios, S., and D.R. Packham: The Release of Methyl Chloride from Biomass Burning in Australia. J. Air Pollut. Control Assoc. 35, 41 (1985).Google Scholar
  92. 92.
    Guerin, M.R.: Organic Chemistry of the Atmosphere, Chap. 3 (L.D. Hansen and D.J. Eatough, eds.). Boca Raton, FL: CRC Press. 1991.Google Scholar
  93. 93.
    Stoiber, R.E., D.C. Leggett, T.F. Jenkins, R.P. Murrmann, and W.I. Rose, JR.: Organic Compounds in Volcanic Gas from Santiaguito Volcano, Guatemala. Geol. Soc. Amer. Bull. 82, 2299 (1971).Google Scholar
  94. 94.
    Rasmussen, R.A., M.A.K. Khalil, R.W. Dalluge, S.A. Penkett, and B. Jones: Carbonyl Sulfide and Carbon Disulfide from the Eruptions of Mount St. Helens. Science 215, 665 (1982).Google Scholar
  95. 95.
    Cadle, R.D.: A Comparison of Volcanic with Other Fluxes of Atmospheric Trace Gas Constituents. Rev. Geophys. Space Phys. 18, 746 (1980).Google Scholar
  96. 96.
    Gerlach, T.M.: Evaluation of Volcanic Gas Analyses from Kilauea Volcano. J. Volcan. Geotherm. Res. 7, 295 (1980).Google Scholar
  97. 97.
    Inn, E.C.Y., J.F. Vedder, E.P. Condon, and D. O’Hara: Gaseous Constituents in the Plume from Eruptions of Mount St. Helens. Science 211, 821 (1981).Google Scholar
  98. 98.
    Degroot, W.F.: Methyl Chloride as a Gaseous Tracer for Wood Burning? Letter to the Editor. Environ. Sci. Technol. 23, 252 (1989).Google Scholar
  99. 99.
    Edgerton, S.A., M.A.K. Khalil, and R.A. Rasmussen: Emissions from Wood Burning. Letter to the Editor. Environ. Sci. Technol. 23, 906 (1989).Google Scholar
  100. 100.
    Varnes, J.L.: The Release of Methyl Chloride from Potato Tubers. Am. Potato J. 59, 593 (1982).Google Scholar
  101. 101.
    Grimsrud, E.P., and R.A. Rasmussen: Survey and Analysis of Halocarbons in the Atmosphere by Gas Chromatography-Mass Spectrometry. Atmos. Environ. 9, 1014 (1975).Google Scholar
  102. 102.
    McConnell, O., and W. Fenical: Halogen Chemistry of the Red Alga Asparagopsis. Phytochem. 16, 367 (1977).Google Scholar
  103. 103.
    Isidorov, V.A., E.B. Prilepsky, and V.G. Povarov: Photochemically and Optically Active Components of Minerals and Gas Emissions of Mining Plants. J. Ecol. Chem. N2–3, 201 (1993).Google Scholar
  104. 104.
    Edwards, P.R., I. Campbell, and G.S. Milne: The Impact of Chloromethanes on the Environment, Part 1: The Atmospheric Chlorine Cycle. Chem. Ind. (London), 574 (1982).Google Scholar
  105. 105.
    Lovelock, J.E., R.J. Maggs, and R.J. Wade: Halogenated Hydrocarbons in and over the Atlantic. Nature 241, 194 (1973).Google Scholar
  106. 106.
    Isidorov, V.A., V.G. Povarov, and E.B. Prilepsky: Geological Sources of Volatile Organic Components in Regions of Seismic and Volcanic Activity. J. Ecol. Chem. Nl, 19 (1993).Google Scholar
  107. 107.
    Pyysalo, H.: Identification of Volatile Compounds in Seven Edible Fresh Mushrooms. Acta Chem. Scand. B30, 235 (1976).Google Scholar
  108. 108.
    Gil, V., and A.J. Macleod: Some Glucosinolates of Farsetia aegyptia and Farsetia ramosissima. Phytochem. 19, 227 (1980).Google Scholar
  109. 109.
    Macleod, A.J., and N.G. Detroconis: Volatile Flavor Components of Sapodilla Fruit. J. Agrie. Food Chem. 30, 515 (1982).Google Scholar
  110. 110.
    Choi, S.H., and H. Kato: Volatile Components of Sergia lucens and Its Fermented Product. Agrie. Biol. Chem. 48, 1479 (1984).Google Scholar
  111. 111.
    Kameoka, H., K. Kubo, and M. Miyazawa: Volatile Flavor Components of Malabar-Nightshade (Basella rubra L.). J. Food Comp. Anal. 4, 315 (1991).Google Scholar
  112. 112.
    Fogelqvist, E.: Carbon Tetrachloride, Tetrachloroethylene, 1,1,1-Trichloroethane and Bromoform in Arctic Seawater. J. Geophys. Res. 90, 9181 (1985).Google Scholar
  113. 113.
    Krysell, M., and D.W.R. Wallace: Arctic Ocean Ventilation Studied with a Suite of Anthropogenic Halocarbon Traces. Science 242, 746 (1988).Google Scholar
  114. 114.
    Lovelock, J.E.: Atmospheric Halocarbons and Stratospheric Ozone. Nature 252, 292 (1974).Google Scholar
  115. 115.
    Yagi, K., J. Williams, N.-Y. Wang, and R.J. Cicerone: Agricultural Soil Fumigation as a Source of Atmospheric Methyl Bromide. Proc. Natl. Acad. Sci. USA 90, 8420 (1993).Google Scholar
  116. 116.
    Berg, W.W., L.E. Heidt, W. Pollock, P.D. Sperry, R.J. Cicerone, and E.S, Gladney: Brominated Organic Species in the Arctic Atmosphere. Geophys. Res. Lett. 11, 429 (1984).Google Scholar
  117. 117.
    Rasmussen, R.A., and M.A.K. Khalil: Gaseous Bromine in the Arctic Haze. Geophys. Res. Lett. 11, 433 (1984).Google Scholar
  118. 118.
    Cicerone, R.J., L.E. Heidt, and W.H. Pollock: Measurements of Atmospheric Methyl Bromide and Bromoform. J. Geophys. Res. 93, 3745 (1988).Google Scholar
  119. 119.
    Manley, S.L., and M.N. Dastoor: Methyl Iodide (CH3I) Production by Kelp and Associated Microbes. Mar. Biol. 98, 477 (1988).Google Scholar
  120. 120.
    Sharp, G.J., Y. Yokouchi, and H. Akimoto: Trace Analysis of Organobromine Compounds in Air by Adsorbent Trapping and Capillary Gas Chromatography Mass Spectroscopy. Environ. Sci. Technoi. 26, 815 (1992).Google Scholar
  121. 121.
    Sturges, W.T., C.W. Sullivan, R.C. Schnell, L.E. Heidt, and W.H. Pollock: Bromoalkane Production by Antarctic Ice Algae. Tellus 45B, 120 (1993).Google Scholar
  122. 122.
    Class, TH., R. Kohnle, and K. Ballschmiter: Chemistry of Organic Traces in the Air VII: Bromo-and Bromochloromethanes in Air Over the Atlantic Ocean. Chemosphere 15, 429 (1986).Google Scholar
  123. 123.
    Manley, S.L., K. Goodwin, and W.J. North: Laboratory Production of Bromoform, Methylene Bromide, and Methyl Iodide by Macroalgae and Distribution in Nearshore Southern California Waters. Limnol. Oceanogr. 37, 1652 (1992).Google Scholar
  124. 124.
    Reifenhäuser, W., and K.G. Heumann: Determinations of Methyl Iodide in the Antarctic Atmosphere and the South Polar Sea. Atmos. Environ. 26A, 2905 (1992).Google Scholar
  125. 125.
    Rasmussen, R.A., M.A.K. Khalil, R. Gunawardena, and S.D. Hoyt: Atmospheric Methyl Iodide (CH3I). J. Geophys. Res. 87, 3086 (1982).Google Scholar
  126. 126.
    Singh, H.B., L.J. Salas, and R.E. Stiles: Methyl Halides in and over the Eastern Pacific. J. Geophys. Res. 88, 3684 (1983).Google Scholar
  127. 127.
    Butler, J.H.: The Potential Role of the Ocean in Regulating Atmospheric CH3Br. Geophys. Res. Lett. 21, 185 (1994).Google Scholar
  128. 128.
    Khalil, M.A.K., R.A. Rasmussen, and R. Gunawardena: Atmospheric Methyl Bromide: Trends and Global Mass Balance. J. Geophys. Res. 98, 2887 (1993).Google Scholar
  129. 129.
    Singh, H.B., and M. Kanakidou: An Investigation of the Atmospheric Sources and Sinks of Methyl Bromide. Geophys. Res. Lett. 20, 133 (1993).Google Scholar
  130. 130.
    Berg, W.W., P.D. Sperry, K.A. Rahn, and E.S. Gladney: Atmospheric Bromine in the Arctic. J. Geophys. Res. 88, 6719 (1983).Google Scholar
  131. 131.
    Sturges, W.T., and L.A. Barrie: Chlorine, Bromine and Iodine in Arctic Aerosols. Atmos. Environ. 22, 1179 (1988).Google Scholar
  132. 132.
    Burreson, B.J., R.E. Moore, and P.P. Roller: Volatile Halogen Compounds in the Alga Asparagopsis taxiformis (Rhodophyta). J. Agric. Food. Chem. 24, 856 (1976).Google Scholar
  133. 133.
    Moore, R.E.: Volatile Compounds from Marine Algae. Acct. Chem. Res. 10, 40 (1977).Google Scholar
  134. 134.
    Class, T., and K. Ballschmiter: Chemistry of Organic Traces in Air, VIII: Sources and Distribution of Bromo-and Bromochloromethanes in Marine Air and Surface Water of the Atlantic Ocean. J. Atmos. Chem. 6, 35 (1988).Google Scholar
  135. 135.
    Schall, C, and K.G. Heumann: GC Determination of Volatile Organoiodine and Organobromine Compounds in Arctic Seawater and Air Samples. Fresenius’ J. Anal. Chem. 346, 717 (1993).Google Scholar
  136. 136.
    Tokarczyk, R., and R.M. Moore: Production of Volatile Organohalogens by Phytoplankton Cultures. Geophys. Res. Lett. 21, 285 (1994).Google Scholar
  137. 137.
    Klick, S.: The Release of Volatile Halocarbons to Seawater by Untreated and Heavy Metal Exposed Samples of the Brown Seaweed Fucus vesiculosus. Marine Chem. 42, 211 (1993).Google Scholar
  138. 138.
    Reifenhäuser, W., and K.G. Heumann: Bromo-and Bromochloromethanes in the Antarctic Atmosphere and the South Polar Sea. Chemosphere 24, 1293 (1992).Google Scholar
  139. 139.
    Weyer, R., M.G.M. Tromp, B.E. Krenn, A. Marjani, and M. VAL Tol: Brominating Activity of the Seaweed Ascophyllum nodosum: Impact on the Biosphere. Environ. Sci. Technol. 25, 446 (1991).Google Scholar
  140. 140.
    Dyrssen, D., and E. Fogelqvist: Bromoform Concentrations of the Arctic Ocean in the Svalbard Area. Oceanol. Acta 4, 313 (1981).Google Scholar
  141. 141.
    Krysell, M.: Bromoform in the Nansen Basin in the Arctic Ocean. Marine Chem. 33, 187 (1991).Google Scholar
  142. 142.
    Theiler, R., J.C. Cook, L.P. Hager, and J.F. Siuda: Halohydrocarbon Synthesis by Bromoperoxidase. Science 202, 1094 (1978).Google Scholar
  143. 143.
    Beissner, R.S., W.J. Guilford, R.M. Coates, and L.P. Hager: Synthesis of Brominated Heptanones and Bromoform by a Bromoperoxidase of Marine Origin. Biochem. 20, 3724 (1981).Google Scholar
  144. 144.
    Klick, S., and K. Abrahamsson: Biogenic Volatile lodated Hydrocarbons in the Ocean. J. Geophys. Res. 97, 12683 (1992).Google Scholar
  145. 145.
    Burreson, B.J., R.E. Moore, and P. Roller: Haloforms in the Essential Oil of the Alga Asparagopsis taxiformis (Rhodophyta). Tetrahedron Lett., 473 (1975).Google Scholar
  146. 146.
    Moore, R.M., and R. Tokarczyk: Chloro-Iodomethane in N. Atlantic Waters: A Potentially Significant Source of Atmospheric Iodine. Geophys. Res. Lett. 19, 1779 (1992).Google Scholar
  147. 147.
    Moore, R.M., and R. Tokarczyk: Volatile Biogenic Halocarbons in the Northwest Atlantic. Global Biogeochem. Cycles 7, 195 (1993).Google Scholar
  148. 148.
    Fabian, P., R. Borchers, B.C. Kruger, and S. Lai: CF4 and C2F6 in the Atmosphere. J. Geophys. Res. 92, 9831 (1987).Google Scholar
  149. 149.
    Cicerone, R.J.: Atmospheric Carbon Tetrafluoride: A Nearly Inert Gas. Science 206, 59 (1979).Google Scholar
  150. 150.
    Sturges, W.T., G.F. Cota, and P.T. Buckley: Bromoform Emission from Arctic Ice Algae. Nature 358, 660 (1992).Google Scholar
  151. 151.
    Mano, S., and M.O. Andreae: Emission of Methyl Bromide from Biomass Burning. Science 263, 1255 (1994).Google Scholar
  152. 152.
    Woolard, F.X., R.E. moore, and P.P. Roller: Halogenated Acetamides, But-3-en-2-ols, and Isopropanols from Asparagopsis taxiformis (Delile) Trev. Tetrahedron 32, 2843 (1976).Google Scholar
  153. 153.
    Fenical, W.: Polyhaloketones from the Red Seaweed Asparagopsis taxiformis. Tetrahedron Lett, 4463 (1974).Google Scholar
  154. 154.
    Combaut, G, Y. Bruneau, J. Teste, and L. Codomier: Composes Halogenes d’une Algue Rouge, Falkenbergia rufolanosa Tetrasporophyte d’Asparagopsis armata. Phytochem. 17, 1661 (1978).Google Scholar
  155. 155.
    Siuda, J.F, G.R. Vanblaricom, P.D. Shaw, R.D. Johnson, R.H. White, L.P. Hager, and K.L. Rinehart Jr.: l-Iodo-3,3-dibromo-2-heptanone, 1,1,3,3-Tetrabromo-2-heptanone, and Related Compounds from the Red Alga Bonnemaisonia hamifera. J. Am. Chem. Soc. 97, 937 (1975).Google Scholar
  156. 156.
    Jacobsen, N, and J.O. Madsen: Halogenated Metabolites Including Brominated 2-Heptanols and 2-Heptyl Acetates from the Tetrasporophyte of the Red Alga Bonnemaisonia hamifera. Tetrahedron Lett, 3065 (1978).Google Scholar
  157. 157.
    Mcconnell, O.J, and W. Fenical: Polyhalogenated l-Octene-3-ones, Antibacterial Metabolites from the Red Seaweed Bonnemaisonia asparagoides. Tetrahedron Lett, 1851 (1977).Google Scholar
  158. 158.
    McConnell, O.J, and W. Fenical: Halogen Chemistry of the Red Alga Bonnemaisonia. Phytochem. 19, 233 (1980).Google Scholar
  159. 159.
    Mcconnell, O.J, and W. Fenical: Halogenated Metabolites-Including Favorsky Rearrangement Products-from the Red Seaweed Bonnemaisonia nootkana. Tetrahedron Lett., 4159 (1977).Google Scholar
  160. 160.
    Rose, A.F., J.A. Pettus JR., and J.J. Sims: Marine Natural Products, XIII: Isolation and Synthesis of Some Halogenated Ketones from the Red Seaweed Delisea fimbriata. Tetrahedron Lett., 1847 (1977).Google Scholar
  161. 161.
    De Nys, R., J.C. Coll, and B.F. Bgwden: Delisea pulchra (cf. fimbriata) Revisited. The Structural Determination of Two New Metabolites from the Red Alga Delisea pulchra. Aust. J. Chem. 45, 1625 (1992).Google Scholar
  162. 162.
    Kazlauskas, R., R.O. Lidgard, and R.J. Wells: New Polybrominated Metabolites from the Red Alga Ptilonia australasica. Tetrahedron Lett., 3165 (1978).Google Scholar
  163. 163.
    Ohta, K., and M. Takagi: Antimicrobial Compounds of the Marine Red Alga Marginisporum aberrans. Phytochem. 16, 1085 (1977).Google Scholar
  164. 164.
    Peters, R.A., and M. Shorthouse: Identification of a Volatile Constituent Formed by Homogenates of Acacia georginae Exposed to Fluoride. Nature 231, 123 (1971).Google Scholar
  165. 165.
    Kubota, K., K. Yokoyama, T. Yamanishi, and S. Akatsuka: Odor of Dried Shell Powder of Antarctic Krills and Liquid Seasoning of the Hydrolysate. Nippon Nogei Kagaku Kaishi 54, 727 (1980); Chem. Abstr. 94, 63937 (1980).Google Scholar
  166. 166.
    Franssen, M.C.R., M.A. Posthumus, and H.C. Van DER PLAS: New Halometabolites from Caldariomyces fumago. Phytochem. 27, 1093 (1988).Google Scholar
  167. 167.
    Nicod, F., F. Tillequin, and J. Vaquette: Metabolite Halogene Nouveau, Substance Majoritaire de Ptilonia magellanica, Algue Rhodophycee. J. Nat. Prod. 50, 259 (1987).Google Scholar
  168. 168.
    Yanagisawa, I., and H. Yoshikawa: A Bromine Compound Isolated from Human Cerebrospinal Fluid. Biochim. Biophys. Acta 329, 283 (1973).Google Scholar
  169. 169.
    Mynderse, J.S., and R.E. Moore: The Isolation of (-)-£-l-Chlorotridec-l-ene-6,8-diol from a Marine Cyanophyte. Phytochem. 17, 1325 (1978).Google Scholar
  170. 170.
    Nozoe, S., N. Ishii, G. Kusano, K. Kikuchi, and T. Ohta: Neocarzilins A and B, Novel Polyenones from Streptomyces carzinostaticus. Tetrahedron Lett. 33, 7547 (1992).Google Scholar
  171. 171.
    Nozoe, S., K. Kikuchi, N. Ishii, and T. Ohta: Synthesis of Neocarzilin A: An Absolute Stereochemistry. Tetrahedron Lett. 33, 7551 (1992).Google Scholar
  172. 172.
    Kazlauskas, R., P.T. Murphy, and R.J. Wells: A Brominated Metabolite from the Red Alga Vidalia spiralis. Aust. J. Chem. 35, 219 (1982).Google Scholar
  173. 173.
    Clutterbuck, P.W., S.L. Mukhopadhyay, A.E. Oxford, and H. Raistrick: Studies in the Biochemistry of Micro-Organisms 65. (A) A Survey of Chlorine Metabolism by Moulds. (B) Caldariomycin, C5H8O2CI2, a Metabolic Product of Caldariomyces fumago Woronichin. Biochem. J. 34, 664 (1940).Google Scholar
  174. 174.
    Beckwith, J.R., and L.P. Hager: Synthesis of D,L-Caldariomycin. J. Org. Chem. 26, 5206 (1961).Google Scholar
  175. 175.
    Johnson, S.M., I.C. Paul, K.L. Rinehart, JR., and R. Srinivasan: The Absolute Configuration of Caldariomycin. J. Am. Chem. Soc. 90, 136 (1968).Google Scholar
  176. 176.
    Patterson, E.L., W.W. Andres, and L.A. Mitscher: Isolation of the Bromo Analogue of Caldariomycin from Caldariomyces fumago. Appl. Microb. 15, 528 (1967).Google Scholar
  177. 177.
    Nakanishi, S., K. Ando, I. Kawamoto, T. Yasuzawa, H. Sano, and H. Kase: KS-504 Compounds, Novel Inhibitors of Ca + 2 and Calmodulin-Dependent Cyclic Nucleotide Phosphodiesterase from Mollisia ventosa. J. Antibiot. 42, 1775 (1989).Google Scholar
  178. 178.
    Hirayama, N., and E. Shimizu: Structures of Novel Calmodulin Inhibitors KS504a, KS504b and KS504e. Acta Cryst. C46, 1515 (1990).Google Scholar
  179. 179.
    Mcgahren, W.J., J.H. Van Den Hende, and L.A. Mitscher: Chlorinated Cyclopentenone Fungiotoxic Metabolites from the Fungus Sporomia affinis. J. Am. Chem. Soc. 91, 157 (1969).Google Scholar
  180. 180.
    Giles, D., and W.B. Turner: Chlorine-Containing Metabolites of Periconia macrospinosa. J. Chem. Soc. (C), 2187 (1969).Google Scholar
  181. 181.
    Strunz, G.M., A.S. Court, J. Komlossy, and M.A. Stillwell: Structures of Cryptosporiopsin: A New Antibiotic Substance Produced by a Species of Cryptosporiopsis. Can. J. Chem. 47, 2087 (1969).Google Scholar
  182. 182.
    Strunz, G.M., A.S. Court, J. Komlossy, and M.A. Stillwell: Addendum: Cryptosporiopsin, an Amended Structure. Can. J. Chem. 47, 3700 (1969).Google Scholar
  183. 183.
    Strunz, G.M., P.I. Kazinoti, and M.A. Stillwell: A New Chlorinated Cyclopentenone Produced by a Cryptosporiopsis sp. Can. J. Chem. 52, 3623 (1974).Google Scholar
  184. 184.
    Lousberg, RJ.J.Ch., Y. Tirilly, and M. Moreau: Isolation of (-)-Cryptosporiopsin, a Chlorinated Cyclopentenone Fungitoxic Metabolite from Phialophora asteris f. sp. helianthi. Experientia 32, 331 (1976).Google Scholar
  185. 185.
    Singh, J., K.L. Dhar, and C.K. Atal: Studies on the Genus Piper, Part XI: Occurrence of Pipoxide Chlorohydrin from Piper hookeri. Indian J. Pharm. 33, 50 (1971).Google Scholar
  186. 186.
    Joshi, B.S., D.H. Gawad, and H. Fühler: Revised Structures of Pipoxide and Pipoxide Chlorohydrin. Tetrahedron Lett., 2427 (1979).Google Scholar
  187. 187.
    Sakamura, S., K. Nabeta, S. Yamada, and A. Ichihara: Minor Constituents from Phyllosticta sp. and Their Correlation with Epoxydon (Phyllosinol). Agric. Biol. Chem. 39, 403 (1975).Google Scholar
  188. 188.
    Sakamura, S., J. Ito, and R. Sakai: Phytotoxic Metabolites of Phyllosticta sp. Agric. Biol. Chem. 35, 105 (1971).Google Scholar
  189. 189.
    Nabeta, K., A. Ichihara, and S. Sakamura: Biosynthesis of Epoxydon and Related Compounds by Phyllosticta sp. Agric. Biol. Chem. 39, 409 (1975).Google Scholar
  190. 190.
    Kiriyama, N., Y. Higuchi, and Y. Yamamoto: Studies on the Metabolic Products of Aspergillus terreus, II: Structure and Biosynthesis of the Metabolites of the Strain ATCC 12238. Chem. Pharm. Bull. (Japan) 25, 1265 (1977).Google Scholar
  191. 191.
    Stadler, M., H. Anke, W.-R. Arendholz, F. Hansske, U. Anders, O. Sterner, and K.-E. Bergquist: Lachnumon and Lachnumol A, New Metabolites with Nematicidal and Antimicrobial Activities from the Ascomycete Lachnum papyraceum (Karst.) Karst, I: Producing Organism, Fermentation, Isolation and Biological Activities. J. Antibiot. 46, 961 (1993).Google Scholar
  192. 192.
    Stadler, M., H. Anke, K.-E. Bergquist, and O. Sterner: Lachnumon and Lachnumol A, New Metabolites with Nematicidal and Antimicrobial Activities from the Ascomycete Lachnum papyraceum (Karst.) Karst, II: Structural Elucidation. J. Anti¬biot. 46, 968 (1993).Google Scholar
  193. 193.
    Higa, T., and P.J. Scheuer: Constituents of the Hemichordate Ptychodera flava laysanica. Mar. Nat. Prod. NATO Conf., 35 (1977).Google Scholar
  194. 194.
    Higa, T., R.K. Okuda, R.M. Severns, P.J. Scheuer, C.-H. He, X. Changfu, and J. Clardy: Unprecedented Constituents of a New Species of Acorn Worm. Tetrahedron 43, 1063 (1987).Google Scholar
  195. 195.
    Corgiat, J.M., F.C. Dobbs, M.W. Burger, and P.J. Scheuer: Organohalogen Constituents of the Acorn Worm Ptychodera bahamensis. Comp. Biochem. Physiol. 106B, 83 (1993).Google Scholar
  196. 196.
    Bollinger, P., and T. Zardin-Tartaglia: Isolierung und Strukturaufklärung von Mikrolin. Helv. Chim. Acta 59, 1809 (1976).Google Scholar
  197. 197.
    Weber, H.P., and T.J. Petcher: Die Kristallstruktur und absolute Konfiguration von Mikrolin. Helv. Chim. Acta 59, 1821 (1976).Google Scholar
  198. 198.
    Trofast, J., and B. Wickberg: Mycorrhizin A and Chloromycorrhizin A, Two Antibiotics from a Mycorrhizal Fungus of Monotropa hypopitys L. Tetrahedron 33, 875 (1977).Google Scholar
  199. 199.
    Stalhandske, C., C. Svensson, and C. Sarnstrand: Chloromycorrhizin A. Acta Cryst. B33, 870 (1977).Google Scholar
  200. 200.
    Chexal, K.K., CH. Tamm, J. Clardy, and K. Hirotsu: Gilmicolin and Mycor-rhizinol, Two New Metabolites of GilmanieUa humicola Barron. Helv. Chim. Acta 62, 1129 (1979).Google Scholar
  201. 201.
    Kitamura, E., A. Hirota, M. Nakagawa, M. Nakayama, H. Nozaki, T. Tada, M. Nukina, and H. Hirota: (R, 6R, 9S, 10S)-9-Chloro-10-hydroxy-8-methox-carbonyl-4-methylene-2,5-dioxabicyclo[4.4.0]dec-3-one-7-ene, A First Chlorine-Containing Shikimate-Related Metabolite from Fungi. Tetrahedron Lett. 31, 4605 (1990).Google Scholar
  202. 202.
    Curtin, T.P., and J. Reilly: Sclerotiorin, C2oH2i05Cl, a Chlorine-Containing Metabolic Product of Penicillium sclerotiorin. Biochem. J. 34, 1419 (1940).Google Scholar
  203. 203.
    Birkinshaw, J.H.: Studies in the Biochemistry of Micro-Organisms, 89: Metabolic Products of Penicillium multicolor G.-M. and. P. with Special Reference to Sclerotiorin. Biochem. J. 52, 283 (1952).Google Scholar
  204. 204.
    Udagawa, S.: (-)-Sclerotiorin, a Major Metabolite of Penicillium hirayamae. Chem. Pharm. Bull. (Japan) 11, 366 (1963).Google Scholar
  205. 205.
    Gregory, E.M., and W.B. Turner: 7-epi-Sclerotiorin. Chem. Ind., 1625 (1963).Google Scholar
  206. 206.
    Ellestad, G.A., and W.B. Whalley: The Chemistry of Fungi, Part LII: (-)-Sclerotiorin. J. Chem. Soc., 7260 (1965).Google Scholar
  207. 207.
    Dean, F.M., J. Staunton, and W.B. Whalley: The Chemistry of Fungi, Part XXXVI: A Revised Structure for Sclerotiorin. J. Chem. Soc., 3004 (1959).Google Scholar
  208. 208.
    Whalley, W.B., G. Ferguson, W.C. Marsh, and R.J. Restjvo: The Chemistry of Fungi, Part LXVIII: The Absolute Configuration of (+)-Sclerotiorin and of the Azaphilones. J. Chem. Soc., Perkin Trans. 1, 1366 (1976).Google Scholar
  209. 209.
    Gray, R.W., and W.B. Whalley: The Chemistry of Fungi, Part LXIII: Rubrorotiorin, a Metabolite of Penicillium hirayamae Udagawa. J. Chem. Soc. C, 3575 (1971).Google Scholar
  210. 210.
    Gray, R.W., and W.B. Whalley: (-)-7-Epi-5-Chloroisorotiorin, a Novel Metabolite. J. Chem. Soc, Chem. Commun, 762 (1970).Google Scholar
  211. 211.
    Takahashi, M, K. Koyama, and S. Natori: Four New Azaphilones from Chaetomium globosum var. flavor-viridae. Chem. Pharm. Bull (Japan) 38, 625 (1990).Google Scholar
  212. 212.
    Omura, S., H. Tanaka, K. Matsuzaki, H. Ikeda, and R. Masuma: Isochromophilones I and II, Novel Inhibitors Against gpl20-CD4 Binding from Penicillium sp. J. Antibiot. 46, 1908 (1993).Google Scholar
  213. 213.
    Rose, A.F, P.J. Scheuer, J.P. Springer, and J. Clardy: Stylocheilamide, an Unusual Constituent of the Sea Hare Stylocheilus longicauda. J. Am. Chem. Soc. 100, 7665 (1978).Google Scholar
  214. 214.
    Naylor, S, F.J. Hanke, L.V. Manes, and P. Crews: Chemical and Biological Aspects of Marine Monoterpenes. Progr. Chem. Org. Nat. Prod. 44, 189 (1983).Google Scholar
  215. 215.
    Faulkner, D.J, and M.O. Stallard: 7-Chloro-3,7-dimethyl-l,4,6-tribromo-l-octen-3-ol, a Novel Monoterpene Alcohol from Aplysia californica. Tetrahedron Lett., 1171 (1973).Google Scholar
  216. 216.
    Faulkner, D.J., and M.O. Stallard, J. Fayos, and J. Clardy: (3R, 4S, lS)-trans, irans-3,7-Dimethyl-l,8,8-tribromo-3,4,7-trichloro-l,5-octadiene, a Novel Monoterpene from the Sea Hare, Aplysia californica. J. Am. Chem. Soc. 95, 3413 (1973).Google Scholar
  217. 217.
    Stallard, M.O., and DJ. Faulkner: Chemical Constituents of the Digestive Gland of the Sea Hare Aplysia californica-I. Comp. Biochem. Physiol. 49B, 25 (1974).Google Scholar
  218. 218.
    Willcott, M.R., R.E. Davis, D.J. Faulkner, and M.O. Stallard: The Configuration and Conformation of 7-Chloro-1,6-dibromo-3,7-dimethyl-3,4-epoxy-1octene. Tetrahedron Lett., 3967 (1973).Google Scholar
  219. 219.
    Crews, P., and E. Kho: Cartilagineal, an Unusual Monoterpene Aldehyde from Marine Alga. J. Org. Chem. 39, 3303 (1974).Google Scholar
  220. 220.
    Ichikawa, N., Y. Naya, and S. Enomoto: New Halogenated Monoterpenes from Desmia (Chondrococcus) hornemanni. Chem. Lett., 1333 (1974).Google Scholar
  221. 221.
    Naya, Y., Y. Hirose, and N. Ichikawa: Labile Halogenated Monoterpenes from Desmia (Chondrococcus) japonicus Harvey. Chem. Lett., 839 (1976).Google Scholar
  222. 222.
    Mynderse, J.S., and D.J. Faulkner: Polyhalogenated Monoterpenes from the Red Alga Plocamium cartilagineum. Tetrahedron 31, 1963 (1975).Google Scholar
  223. 223.
    Imperato, F., L. Minale, and R. Riccio: Constituents of the Digestive Gland of Molluscs of the Genus Aplysia, II: Halogenated Monoterpenes from Aplysia limacina. Experientia 33, 1273 (1977).Google Scholar
  224. 224.
    Crews, P., S. Naylor, F.J. Hanke, E.R. Hogue, E. Kho, and-R. Braslau: Halogen Regiochemistry and Substituent Stereochemistry Determination in Marine Mono–terpenes by 13C NMR. J. Org. Chem. 49, 1371 (1984).Google Scholar
  225. 225.
    Konig, G.M., A.D. Wright, and O. Sticher: A New Polyhalogenated Monoterpene from the Red Alga Plocamium cartilagineum. J. Nat. Prod. 53, 1615 (1990).Google Scholar
  226. 226.
    Stierle, D.B., and J.J. Sims: Marine Natural Products, XV: Polyhalogenated Cyclic Monoterpenes from the Red Alga Plocamium cartilagineum of Antarctica. Tetrahedron 35, 1261 (1979).Google Scholar
  227. 227.
    Stierle, D.B., R.M. Wing, and J.J. Sims: Marine Natural Products, XVI: Polyhalogenated Acyclic Monoterpenes from the Red Alga Plocamium of Antarctica. Tetrahedron 35, 2855 (1979).Google Scholar
  228. 228.
    Ireland, C., M.O. Stallard, D.J. Faulkner, J. Finer, and J. Clardy: Some Chemical Constituents of the Digestive Gland of the Sea Hare Aplysia californica. J. Org. Chem. 41, 2461 (1976).Google Scholar
  229. 229.
    Blunt, J.W., N.J. Bowman, M.H.G. Munro, M.J. Parsons, G.J. Wright, and Y.K. Kon: Polyhalogenated Monoterpenes of the New Zealand Marine Red Alga Plocamium cartilagineum. Aust. J. Chem. 38, 519 (1985).Google Scholar
  230. 230.
    Kazlauskas, R., P.T. Murphy, R.J. Quinn, and R.J. Wells: Two Polyhalogenated Monoterpenes from the Red Alga Plocamium costatum. Tetrahedron Lett., 4451 (1976).Google Scholar
  231. 231.
    Crews, P.: Monoterpene Halogenation by the Red Alga Plocamium oregonum. J, Org. Chem. 42, 2634 (1977).Google Scholar
  232. 232.
    Crews, P., and E. Kho-Wiseman: Acyclic Polyhalogenated Monoterpenes from the Red Alga Plocamium violaceum. J. Org. Chem. 42, 2812 (1977).Google Scholar
  233. 233.
    Blunt, J.W., M.P. Hartshorn, M.H.G. Munro, and S.C. Yorke: A Novel, C8 Dichlorodienol Metabolite of the Red Alga Plocamium cruciferum. Tetrahedron Lett., 4417 (1978).Google Scholar
  234. 234.
    Bates, P., J.W. Blunt, M.P. Hartshorn, A.J. Jones, M.H.G. Munro, W.T. Robinson, and S.C. Yorke: Halogenated Metabolites of the Red Alga Plocamium cruciferum. Aust. J. Chem. 32, 2545 (1979).Google Scholar
  235. 235.
    Stierle, D.B., and J.J. Sims: Plocamenone, A Unique Halogenated Monoterpene from the Red Alga, Plocamium. Tetrahedron Lett. 25, 153 (1984).Google Scholar
  236. 236.
    Coll, J.C., B.W. Skelton, A.H. White, and A.D. Wright: Tropical Marine Algae, II: The Structure Determination of New Halogenated Monoterpenes from Plocamium hamatum (Rhodophyta, Gigartinales, Plocamiaceae). Aust. J. Chem. 41, 1743 (1988).Google Scholar
  237. 237.
    Dunlop, R.W., P.T. Murphy, and R.J. Wells: A New Polyhalogenated Monoterpene from the Red Alga Plocamium angustum. Aust. J. Chem. 32, 2735 (1979).Google Scholar
  238. 238.
    Sims, J.J., A.F. Rose, and R.R. Izac: Applications of 13C-NMR to Marine Natural Products. In: Marine Natural Products, Vol. 2, Chap. 5 ( P.J. Scheuer, ed.). New York: Academic Press. 1978.Google Scholar
  239. 239.
    Leary, J.V., R. Kfir, J.J. Sims, and D.W. Fulbright: The Mutagenicity of Natural Products from Marine Algae. Mutation Res. 68. 301 (1979).Google Scholar
  240. 240.
    Burreson, B.J., F.X. Woolard, and R.E. Moore: Evidence for the Biogenesis of Halogenated Myrcenes from the Red Alga Chondrococcus hornemanni. Chem. Lett., 1111 (1975).Google Scholar
  241. 241.
    Burreson, B.J., F.X. Woolard, and R.E. Moore: Chondrocole A and B, Two Halogenated Dimethylhexahydrobenzofurans from the Red Alga Chondrococcus hornemanni. Tetrahedron Lett., 2155 (1975).Google Scholar
  242. 242.
    Woolard, F.X., R.E. Moore, M. Mahendran, and A. Sivapalan: (-)-3-Bromo-methyl-3-chloro 7-methyl-l,6-octadiene from Sri Lankan Chondrococcus hornemanni. Phytochem. 15, 1069 (1976).Google Scholar
  243. 243.
    Coll, J.C., and A.D. Wright: Tropical Marine Algae, I: New Halogenated Monoterpenes from Chondrococcus hornemannii (Rhodophyta, Gigartinales, Rhizophyllidaceae). Aust. J. Chem. 40, 1893 (1987).Google Scholar
  244. 244.
    Coll, J.C., and A.D. Wright: Tropical Marine Algae, VI: New Monoterpenes from Several Collections of Chondrococcus hornemannii (Rhodophyta, Gigartinales, Rhizophyllidaceae). Aust. J. Chem. 42, 1983 (1989).Google Scholar
  245. 245.
    Wright, A.D., G.M. König, O. Sticher, and R. De Nys: Five New Monoterpenes from the Marine Red Alga Portieria hornemannii. Tetrahedron 47, 5717 (1991).Google Scholar
  246. 246.
    Katayama, A., K. Ina, H. Nozaki, and M. Nakayama: Structure Elucidation of Kurodainol, a Novel Halogenated Monoterpene from Sea Hare (Aplysia kurodai). Agric. Biol. Chem. 46, 859 (1982).Google Scholar
  247. 247.
    Miyamoto, T., R. Higuchi, T. Komori, T. Fujioka, and K. Mihashi: Isolation and Structures of New Isoprenoids, Aplykurodin A and B, and Some Halogenated Terpenoids from the Marine Mollusk, Aplysia kurodai, Collected Along the Coast of Fukuoka. Chem. Abstr. 104, 183529n (1986).Google Scholar
  248. 248.
    Miyamoto, T., R. Higuchi, N. Marubayashi, and T. Komori: Studies on the Constituents of Marine Opisthobranchia, IV: Two New Polyhalogenated Monoterpenes from the Sea Hare Aplysia kurodai. Liebigs Ann. Chem., 1191 (1988).Google Scholar
  249. 249.
    De Nopoli, L., E. Fattorusso, S. Magno, and L. Mayol: Acyclic Polyhalogenated Monoterpenes from Four Marine Hydroids. Biochem. Sys. Ecol. 12, 321 (1984).Google Scholar
  250. 250.
    Crews, P., L. Campbell, and E. Heron: Different Chemical Types of Plocamium violaceum (Rhodophyta) from the Monterey Bay Region, California. J. Phycol. 13, 297 (1977).Google Scholar
  251. 251.
    Mynderse, J.S., and D.J. Faulkner: Variations in the Halogenated Monoterpene Metabolites of Plocamium cartilagineum and P. violaceum. Phytochem. 17, 237 (1978).Google Scholar
  252. 252.
    Mynderse, J.S., and D.J. Faulkner: Violacene, a Polyhalogenated Monocyclic Monoterpene from the Red Alga Plocamium violaceum. J. Am. Chem. Soc. 96, 6771 (1974).Google Scholar
  253. 253.
    Engen, D.V., J. Clardy, E. Kho-Wiseman, P. Crews, M.D. Higgs, and D.J. Faulkner: Violacene: A Reassignment of Structure. Tetrahedron Lett., 29 (1978).Google Scholar
  254. 254.
    Crews, P., E. Kho-Wiseman, and P. Montana: Halogenated Aiicyclic Monoter-penes from the Red Algae Plocamium. J. Org. Chem. 43, 116 (1978).Google Scholar
  255. 255.
    Mynderse, J.S, D.J. Faulkner, J. Finer, and J. Clardy: (1, 25, 4S, 5/?)-L-Bro-mo-iras-2-chlorovinyl-4,5-dichloro-l,5-dimethylcyclohexane, a New Monoterpene Skeletal Type from the Red Alga Plocamium vioiaceum. Tetrahedron Lett., 2175 (1975).Google Scholar
  256. 256.
    Crews, P., and E. Kho: Plocamene B, a New Cyclic Monoterpene Skeleton from a Red Marine Alga. J. Org. Chem. 40, 2568 (1975).Google Scholar
  257. 257.
    Higgs, M.D., D.J. Vanderah, and D.J. Faulkner: Polyhalogenated Monoterpenes from Plocamium cartilagineum from the British Coast. Tetrahedron 33, 2775 (1977).Google Scholar
  258. 258.
    Norton, R.S., R.G. Warren, and R.J. Wells: Three New Polyhalogenated Monoterpenes from Plocamium Species. Tetrahedron Lett., 3905 (1977).Google Scholar
  259. 259.
    González, A.G., J.M. Arteaga, J.D. Martín, M.L. Rodríguez, J. Fayos, and M. Martínez-Ripolls: Two New Polyhalogenated Monoterpenes from the Red Alga Plocamium cartilagineum. Phytochem. 17, 947 (1978).Google Scholar
  260. 260.
    Rivera, P., L. Astudillo, J. Rovirosa, and A. San-Martín: Halogenated Monoterpenes of the Red Alga Shottera nicaensis. Biochem. Sys. Eco]. 15, 3 (1987).Google Scholar
  261. 261.
    San-Martín, A., R. Negrete, and J. Rovirosa: Insecticide and Acaricide Activities of Polyhalogenated Monoterpenes from Chilean Plocamium cartilagineum. Phytochem. 30, 2165 (1991).Google Scholar
  262. 262.
    Capon, R.J., L.M. Engelhardt, E.L. Ghisalberti, P.R. Jefferies, V.A. Patrick, and A.H. White: Structural Studies of Polyhalogenated Monoterpenes from Plocamium Species. Aust. J. Chem. 37, 537 (1984).Google Scholar
  263. 263.
    Watanabe, K., M. Miyakado, N. Ohno, A. Okada, K. Yanagi, and K. Moriguchi: A Polyhalogenated Insecticidal Monoterpene from the Red Alga Plocamium telfairiae. Phytochem. 28, 77 (1989).Google Scholar
  264. 264.
    Combaut, G., J.-M. Kornprobst, and J. Mollion: Chemistry of Seaweeds from Senegal. Chem. Abstr. 97, 69273m (1982).Google Scholar
  265. 265.
    Castedo, L., M.L. Garcia, E. Quinoa, and R. Riguera: Marine Natural Products from the Galician Coast, Part II: Halogenated Monoterpenes from Plocamium coccineum of Northwest Spain. J. Nat. Prod. 47, 724 (1984).Google Scholar
  266. 266.
    Sardina, F.J., E. Quiñoá, L. Castedo, and R. Riguera: Structural Elucidation of Marine Halogenated Monoterpenes by 2D-NMR and NOE Difference Spectroscopy. A Stereochemical Correction. Chem. Lett., 697 (1985).Google Scholar
  267. 267.
    Barrow, K.D., and C.A. Temple: Biosynthesis of Halogenated Monoterpenes in Plocamium cartilagineum. Phytochem. 24, 1697 (1985).Google Scholar
  268. 268.
    Crews, P., P. Ng, E. Kho-Wiseman, and C. Pace: Halogenated Monoterpenes of the Red Alga Microcladia. Phytochem. 15, 1707 (1976).Google Scholar
  269. 269.
    Sakata, K., Y. Iwase, K. Ina, and D. Fujita: Halogenated Terpenes Isolated from the Red Alga Plocamium leptophyllum as Feeding Inhibitors for Marine Herbivores. Nippon Suisan Gakkaishi 57, 743 (1991).Google Scholar
  270. 270.
    Aazizi, M.A., G.M. Assef, and R. Faure: Gelidene, a New Polyhalogenated Monocyclic Monoterpene from the Red Marine Alga Gelidium sesquipedale. J. Nat. Prod. 52, 829 (1989).Google Scholar
  271. 271.
    Woolard, F.X., R.E. Moore, D. Van Engen, and J. Clardy: The Structure and Absolute Configuration of Chondrocolactone, A Halogenated Monoterpene from the Red Alga Chondrococcus hornemanni, and a Revised Structure for Chondrocole A. Tetrahedron Lett., 2367 (1978).Google Scholar
  272. 272.
    Crews, P., B.L. Myers, S. Naylor, E.L. Clason, R.S. Jacobs, and G.B. Staal: Bio-Active Monoterpenes from Red Seaweeds. Phytochem. 23, 1449 (1984).Google Scholar
  273. 273.
    McConnell, O.J., and W. Fenical: Ochtodene and Ochtodiol: Novel Polyhalogenated Cyclic Monoterpenes from the Red Seaweed Ochtodes secundiramea. J. Org. Chem. 43, 4238 (1978).Google Scholar
  274. 274.
    Gerwick, W.H.: 2 Chloro l,6(S),8 tribromo 3 (8)(Z) ochtodene: A Metabolite of the Tropical Red Seaweed Ochtodes secundiramea. Phytochem. 23, 1323 (1984).Google Scholar
  275. 275.
    Paul, Y.J., O.J. McConnell, and W. Fenical: Cyclic Monoterpenoid Feeding Deterrents from the Red Marine Alga Ochtodes crockeri. J. Org. Chem. 45, 3401 (1980).Google Scholar
  276. 276.
    Sumathykutty, M.A., and J.M. Rao: 8-Hentriacontanol and Other Constituents from Piper attenuatum. Phytochem. 30, 2075 (1991).Google Scholar
  277. 277.
    Stierle, D.B., R.M. Wing, and J.J. SIMS: Marine Natural Products, XI: Costatone and Costatolide, New Halogenated Monoterpenes from the Red Seaweed, Plocamium costatum. Tetrahedron Lett., 4455 (1976).Google Scholar
  278. 278.
    Kusumi, T., H. Uchida, Y. Inouye, M. Ishitsuka, H. Yamamoto, and H. Kakisawa: Novel Cytotoxic Monoterpenes Having a Halogenated Tetrahydropyran from Aplysia kurodai. J. Org. Chem. 52, 4597 (1987).Google Scholar
  279. 279.
    Watanabe, K., K. Umeda, Y. Kurita, C. Takayama, and M. Miyakado: Two Insecticidal Monoterpenes, Telfairine and Aplysiaterpenoid A, from the Red Alga Plocamium telfairiae: Structure Elucidation, Biological Activity, and Molecular Topographical Consideration by a Semiempirical Molecular Orbital Study. Pestic. Biochem. Physiol. 37, 275 (1990).Google Scholar
  280. 280.
    Kupchan, S.M., J.E. Kelsey, M. Maruyama, and J.M. Cassady: Eupachlorin Acetate, A Novel Chloro-Sesquiterpenoid Lactone Tumor Inhibitor from Eupatorium rotundifolium. Tetrahedron Lett., 3517 (1968).Google Scholar
  281. 281.
    Kupchan, S.M., J.E. Kelsey, M. Maruyama, J.M. Cassady, J.C. Hemingway, and J.R. Knox: Tumor Inhibitors, XLI: Structural Elucidation of Tumor-Inhibitory Sesquiterpene Lactones from Eupatorium rotundifolium. J. Org. Chem. 34, 3876 (1969).Google Scholar
  282. 282.
    Harley-Mason, J., A.T. Hewson, O. Kennard, and R.C. Pettersen: Isolation of Centaurea repens Centaurepensin, a Guaianolide Sesquiterpene Lactone Ester Containing Two Chlorine Atoms; Determination of Structure and Absolute Configuration by X-Ray Crystallography. J. Chem. Soc., Chem. Commun., 460 (1972).Google Scholar
  283. 283.
    Lopez De Lerma, J., J. Fayos, S. García-Blanco, and M. Martínez-Ripoll: Centaurepensin. A Redetermination of Its Absolute Configuration by X-Ray Crystallography. Acta Cryst. B34, 2669 (1978).Google Scholar
  284. 284.
    Cassady, J.M., D. Abramson, P. Cowall, C. Chang, J.L. Mclaughlin, and Y. Aynehchi: Centaurepensin: A Cytotoxic Constituent of Centaurea solstitialis and C. repens (Asteraceae). J. Nat. Prod. 42, 427 (1979).Google Scholar
  285. 285.
    Stevens, K.L., and R.Y. Wong: Structure of Chlororepdiolide, a New Sesquiterpene Lactone from Centaurea repens. J. Nat. Prod. 49, 833 (1986).Google Scholar
  286. 286.
    Evstratova, R.I., V.I. Scheichenko, and K.S. Rybalko: The Structure of Acroptilin-A Sesquiterpene Lactone from Acroptilon repens. Khim. Prir. Soedin., 161 (1973).Google Scholar
  287. 287.
    Stevens, K.L., and R.Y. Wong: Acroptilin C19H23C107. Cryst. Struct. Comm. 11, 949 (1982).Google Scholar
  288. 288.
    González, A.G,, J. Bermejo, J.L. Bretón, and J. Triana: Constituents of Com-positae, XV: Chlorohyssopifolin A and B, Two New Sesquiterpene Lactones Isolated from Centaurea hyssopifolia Vahl. Tetrahedron Lett., 2017 (1972).Google Scholar
  289. 289.
    González, A.G., J. Bermejo, J.L. Bretón, G.M. Massanet, and J. Triana: Chlorohyssopifolin C, D, E and Vahlenin, Four New Sesquiterpene Lactones from Centaurea hyssopifolia. Phytochem. 13, 1193 (1974).Google Scholar
  290. 290.
    González, A.G., J. Bermejo, J.L. Breton, G.M. Massanet, B. Domínguez, and J.M. Amaro: The Chemistry of the Compositae, Part XXXI: Absolute Configuration of the Sesquiterpene Lactones Centaurepensin (Chlorohyssopifolin A), Acroptilin (Chlorohyssopifolin C), and Repin. J. Chem. Soc., Perkin Trans. 1, 1663 (1976).Google Scholar
  291. 291.
    González, A.G., J. Bermejo, J.M. Amaro, G.M. Massanet, A. Galindo, and I. Cabrera: Sesquiterpene Lactones from Centaurea linifolia Vahl. Can. J. Chem. 56, 491 (1978).Google Scholar
  292. 292.
    Rustaiyan, A., L. Nazarians, and F. Bohlmann: Guaianolides from Acroptilon repens. Phytochem. 20, 1152 (1981).Google Scholar
  293. 293.
    Sham’Yanov, I.D., A. Mallabaev, and G.P. Sidyakin: Structure of Sesquiterpene Lactone Elegin. Khim. Prir. Soedin., 442 (1978).Google Scholar
  294. 294.
    Sham’Yanov, I.D., A. Mallabaev, and G.P. Sidyakin: Salegin-A New Sesquiterpene Lactone from Saussurea elegans. Khim. Prir. Soedin., 865 (1979).Google Scholar
  295. 295.
    Merrill, G.B., and K.L. Stevens: Sesquiterpene Lactones from Centaurea solstitialis. Phytochem. 24, 2013 (1985).Google Scholar
  296. 296.
    González, A.G., J. Bermejo, and G.M. Massanet: Aportación al Estudio Quimiotaxonomico del Genero Centaurea: Determinación Estructural de las Lactonas Sesquiterpenicas Presentes en Centaureas de Canarias y de la Peninsula Ibérica. Rev. Latinoamer. Quim. 8, 176 (1977).Google Scholar
  297. 297.
    El-Dahmy, S., F. Bohlmann, T.M. Sarg, A. Ateya, and N. Farreg: New Guaianolides from Centaurea aegyptica. Planta Med. 51, 176 (1985).Google Scholar
  298. 298.
    Sarg, T.M., M. EL-Domiaty, and S. El-Dahmy: Further Guaianolides from Centaurea aegyptica. Sci. Pharm. 55, 107 (1987).Google Scholar
  299. 299.
    Jakupovic, J., Y. Jia, V.P. Pathak, F. Bohlmann, and R.M. King: Bisabolone Derivatives and Sesquiterpene Lactones from Centaurea Species. Planta Med. 52, 399 (1986).Google Scholar
  300. 300.
    Dawidar, A.M., M.A. Metwally, M. Abou-Elzahab, and M. Abdel-Mogib: Chemical Constituents of Two Centaurea Species. Pharmazie 44, 735 (1989).Google Scholar
  301. 301.
    Al-Easa, H.S., J. Mann, and A.-F. Rizk: Guaianolides from Centaurea sinaica. Phytochem. 29, 1324 (1990).Google Scholar
  302. 302.
    Daniewski, W.M., and G. Nowak: Further Sesquiterpene Lactones of Centaurea bella. Phytochem. 32, 204 (1993).Google Scholar
  303. 303.
    Óksüz, S., S. Serin, and G. Topcu: Sesquiterpene Lactones from Centaurea hermannii. Phytochem. 35, 435 (1994).Google Scholar
  304. 304.
    Rustaiyan, A., Z. Sharif, A. Tajarodi, J. Ziesche, and F. Bohlmann. Neue Guaianolide aus Centaurea imperalis. Planta Med. 50, 193 (1984).Google Scholar
  305. 305.
    Nowak, G., M. Holub, and M. Budesinsky: Sesquiterpene Lactones, XXXVI: Sesquiterpene Lactones in Several Subgenera of the Genus Centaurea L. Acta Soc. Bot. Pol. 58, 95 (1989).Google Scholar
  306. 306.
    Singh, P., and M. Bhala: Guaianolides from Saussurea candicans. Phytochem. 27, 1203 (1988).Google Scholar
  307. 307.
    Todorova, M.N., I.V. Ognyanov, and S. Shatar: Sesquiterpene Lactones in Mongolian Saussurea lipshitzii. Collect. Czech. Chem. Commun. 56, 1106 (1991).Google Scholar
  308. 308.
    Jakupovic, J., R. Boeker, A. Schuster, F. Bohlmann, and S.B. Jones: Further Guaianolides and 5-Alkylcoumarins from Gutenbergia and Bothriocline Species. Phytochem. 26, 1069 (1987).Google Scholar
  309. 309.
    Marco, J.A., J.F. Sanz, R. Albiach, A. Rustaiyan, and Z. Habibi: Bisabolene Derivatives and Sesquiterpene Lactones from Cousinia Species. Phytochem. 32, 395 (1993).Google Scholar
  310. 310.
    Yusupov, M.I., A. Mallabaev, SH.Z. Kasymov, and G.P. Sidyakin: Biebsanin-A New Sesquiterpene Lactone from Achillea biebersteinii. Khim. Prir. Soedin. 15, 580 (1979).Google Scholar
  311. 311.
    Bohlmann, F., J. Jakupovic, R.M. King, and H. Robinson: New Germacranolides, Guaianolides and Rearranged Guaianolides from Lasiolaena santosii. Phytochem. 20, 1613 (1981).Google Scholar
  312. 312.
    Bohlmann, F., J. Jakupovic, A. Schuster, R.M. King, and H. Robinson: Guaianolides and Homoditerpenes from Lasiolaena morii. Phytochem. 21, 161 (1982).Google Scholar
  313. 313.
    Vichnewski, W., P. Kulanthaivel, V.L. Goedken, and W. Herz: Two Sesquiterpene Lactones from Trichogonia gardneri. Phytochem. 24, 291 (1985).Google Scholar
  314. 314.
    Castro, V., J. Jakupovic, and F. Bohlmann: Sesquiterpene Lactones from Mikania Species. Phytochem. 25, 1750 (1986).Google Scholar
  315. 315.
    Mata, R., G. Delgado, and A. Romo De Vivar: Sesquiterpene Lactones of Artemisia klotzchiana. Phytochem. 24, 1515 (1985).Google Scholar
  316. 316.
    Wagner, H., B. Fessler, H. Lotter, and V. Wray: New Chlorine-Containing Sesquiterpene Lactones from Chrysanthemum parthenium. Planta Med. 54, 171 (1988).Google Scholar
  317. 317.
    Ali, A.A., O.M. Abdallah, and W. Steglich: Chlorosesquiterpene Lactones from Ambrosia maritima. Pharmazie 44, 800 (1989).Google Scholar
  318. 318.
    Gil, R.R., J.A. Pastoriza, J.C. Oberti, A.B. Gutierrez, and W. Herz: Guaianolides from Stevia sanguinea. Phytochem. 28, 2841 (1989).Google Scholar
  319. 319.
    De Gutierrez, A.N., E.E. Sigstad, C.A.N. Catalan, A.B. Gutierrez, and W. Herz: Guaianolides from Kaunia lasiophthalma. Phytochem. 29, 1219 (1990).Google Scholar
  320. 320.
    Reis, L.V., M.R. Tavares, F.M.S.B. Palma, and M.J. Marcelo-Curto: Sesquiterpene Lactones from Cynara humilis. Phytochem. 31, 1285 (1992).Google Scholar
  321. 321.
    Ali, A.A., N.A. El-Emary, A.A. Khalifa, and A.W. Frahm: Guaianolides from Venidium fastuosum. Phytochem. 31, 2781 (1992).Google Scholar
  322. 322.
    Bohlmann, F., U. Fritz, R.M. King, and H. Robinson: Fourteen Heliangolides from Calea Species. Phytochem. 20, 743 (1981).Google Scholar
  323. 323.
    Bohlmann, F., R.K. Gupta, R.M. King, and H. Robinson: Three Furanoheliangolides from Calea villosa. Phytochem. 21, 2593 (1982).Google Scholar
  324. 324.
    Herz, W., and P. Kulanthaivel: Sesquiterpene Lactones from Liatris acidota, L. aspera and L. mucronata. Phytochem. 22, 513 (1983).Google Scholar
  325. 325.
    Jakupovic, J., S. Banerjee, V. Castro, F. Bohlmann, A. Schuster, J.D. Msonthi, and S. Keeley: Poskeanolide, A Seco-Germacranolide, and Other Sesquiterpene Lactones from Vernonia Species. Phytochem. 25, 1359 (1986).Google Scholar
  326. 326.
    Arriaga-Giner, F.J., J. Borges-Del-Castillo, M.T. Manresa-Ferrero, P. Vasquez-Bueno, F. Rodriguez-Luis, and S. Valdes-Iraheta: Eudesmane Derivatives from Pluchea odorata. Phytochem. 22, 1767 (1983).Google Scholar
  327. 327.
    Yoshihira, K., M. Fukuoka, M. Kuroyanagi, and S. Natori: 1-Indanone Derivatives from Bracken, Pteridium acquilinum var. latiusculum. Chem. Pharm. Bull. (Japan) 19, 1491 (1971).Google Scholar
  328. 328.
    Hayashi, Y., M. Nishizawa, S. Harita, and T. Sakan: Structures and Syntheses of Hypolepin A, B, and C, Sesquiterpenes from Hypolepis punctata. Chem. Lett., 375 (1972).Google Scholar
  329. 329.
    Fukuoka, M., M. Kuroyanagi, M. Toyama, K. Yoshihira, and S. Natori: Pterosins J, K, and L and Six Acylated Pterosins from Bracken Pteridium aquilinum var. latiusculum. Chem. Pharm. Bull. (Japan) 20, 2282 (1972).Google Scholar
  330. 330.
    Murakami, T., K. Owashi, N. Tanaka, T. Satake, and C.-M. Chen: Chemische Untersuchungen der Inhaltsstoffe von Dennstaedtia scabra (Wall.) Moore. Chem. Pharm. Bull. (Japan) 23, 1630 (1975).Google Scholar
  331. 331.
    Murakami, T., S. Taguchi, and C.-M. Chen: Chemische Untersuchungen der Inhaltsstoffe von Hypolepis punctata (Thunb.) Mett. Chem. Pharm. Bull. (Japan) 24, 2241 (1976).Google Scholar
  332. 332.
    Fuküoka, M., M. Kuroyanagi, K. Yoshihira, and S. Natori: Chemical and Toxicological Studies on Bracken Fern, Pteridium aquilinum var. latiusculum, II: Structures of Pterosins, Sesquiterpenes Having 1-indanone Skeleton. Chem. Pharm. Bull. (Japan) 26, 2365 (1978).Google Scholar
  333. 333.
    Kuroyanagi, M., M. Fukuoka, K. Yoshihira, and S. Natori: Chemical and Toxicological Studies on Bracken Fern, Pteridium aquilinum var. latiusculum, III: Further Characterization of Pterosins and Pterosides, Sesquiterpenes and the Glucosides Having 1-Indanone Skeleton, from the Rhizomes. Chem. Pharm. Bull. (Japan) 27, 592 (1979).Google Scholar
  334. 334.
    Kobayashi, A., and K. Koshimizu: Cytotoxic Effects of Bracken Fern Constituents, Pterosins, on Sea Urchin Embryos and a Ciliate. Agric. Bioll Chem. 44, 393 (1980).Google Scholar
  335. 335.
    Murakami, T., T. Satake, K. Ninomiya, H. Iida, K. Yamauchi, N. Tanaka, Y. Saiki, and C.-M. Chen: Pterosin-Derivate aus der Familie Pteridaceae. Phytochem. 19, 1743 (1980).Google Scholar
  336. 336.
    Takana, N., T. Murakami, Y. Saiki, C.-M. Chen, and L.D. Gomez P: Chemical and Chemotaxonomical Studies of Ferns, XXXVII: Chemical Studies on the Constituents of Costa Rican Ferns (2). Chem. Pharm. Bull. (Japan) 29, 3455 (1981).Google Scholar
  337. 337.
    Tanaka, N., T. Satake, A. Takahashi, M. Mochizuki, T. Murakami, Y. Saiki, J.-Z. Yang, and C.-M. Chen: Chemical and Chemotaxonomical Studies of Ferns, XXXIX: Chemical Studies on the Constituents of Pteris beita Tagawa and Pteridium aquilinum subsp. wightianum (Wall) Shich. Chem. Pharm. Bull. (Japan) 30, 3640 (1982).Google Scholar
  338. 338.
    Kuraishi, T., T. murakami, T. Taniguchi, Y. Kobuki, H. Maehashi, N. Tanaka, Y. Saiki, and C.-M. Chen: Chemical and Chemotaxonomical Studies of Ferns, LIV: Pterosin Derivatives of the Genus Microlepia (Pteridaceae). Chem. Pharm. Bull. (Japan) 33, 2305 (1985).Google Scholar
  339. 339.
    Murakami, T., H. Maehashi, N. Tanaka, T. Satake, T. Kuraishi, Y. Komazawa, Y. Saiki, and C.-M. Chen: Chemical and Chemotaxonomical Studies of Filices. LV: Studies on the Constituents of Several Species of Pteris. J. Pharmacol. Soc. Japan (Yakugaku Zasshi) 105, 640 (1985).Google Scholar
  340. 340.
    Ahmad, V.U., T.A. Farooqui, K. Fizza, A. Sultana, and R. Khatoon: Three New Eudesmane Sesquiterpenes from Pluchea arguta. J. Nat. Prod 55, 730 (1992).Google Scholar
  341. 341.
    Hashimoto, T., M. Tori, and Y. Asakawa: Drimane-Type Sesquiterpenoids from the Liverwort Makinoa crispata. Phytochem. 28, 3377 (1989).Google Scholar
  342. 342.
    Garg, S.N., S.K. Agarwal, K. Fidelis, M.B. Hossain, and D. Van der Helm: New Jaeschkeanadiol Derivatives from Ferula jaeschkeana. J. Nat Prod. 56, 539 (1993).Google Scholar
  343. 343.
    Martin, J.D., and J. Darias: Algal Sesquiterpenoids. In: Marine Natural Products, Vol. I,. Chap. 3 ( P.J. Scheuer, ed.). New York: Academic Press. 1978.Google Scholar
  344. 344.
    Erickson, K.L.: Constituents of Laurencia. In: Marine Natural Products, Vol. V, Chap. 4 ( P.J. Scheuer, ed.). New York: Academic Press. 1983.Google Scholar
  345. 345.
    White, R.H., and L.P. Hager: A Biogenetic Sequence of Halogenated Sesquiterpenes from Laurencia intricata. In: Dahlem Workshop on the Nature of Seawater, (E.D. Goldberg, ed.), pp. 633–650. Dahlem Conference: Berlin. 1975.Google Scholar
  346. 346.
    König, G.M., and A.D. Wright: New C15 Acetogenins and Sesquiterpenes from the Red Alga Laurencia sp. cf. L. gracilis. J. Nat Prod. 57, 477 (1994).Google Scholar
  347. 347.
    Vazquez, J.T., M. Chang, K. Nakanishi, J.D. Martín, V.S. Martín, and R. Pérez: Puertitols: Novel Sesquiterpenes from Laurencia obtusa. Structure Elucidation and Absolute Configuration and Conformation Based on Circular Dichroism. J. Nat. Prod. 51, 1257 (1988).Google Scholar
  348. 348.
    Norte, M., JJ. Fernández, and A. Padilla: Bisabolane Halogenated Sesquiterpenes from Laurencia. Phytochem. 31, 326 (1992).Google Scholar
  349. 349.
    Howard, B.M., and W. Fenical: a- and ß-Snyderol; New Bromo-Monocyclic Sesquiterpenes from the Seaweed Laurencia. Tetrahedron Lett., 41 (1976).Google Scholar
  350. 350.
    Ayyad, S.-E.N., A.-A.M. Dawidar, H.W. Dias, R.A. Howie, J. Jakupovic, and R.H. Thomson: Three Halogenated Metabolites from Laurencia obtusa. Phytochem. 29, 3193 (1990).Google Scholar
  351. 351.
    Paul, V.J., and W. Fenical: Palisadins A, B and Related Monocyclofarnesol-Derived Sesquiterpenoids from the Red Marine Alga Laurencia cf. palisada. Tetrahedron Lett. 21, 2787 (1980).Google Scholar
  352. 352.
    Norte, M., R. González, A. Padilla, J.J. Fernández, and J.T. Vázquez: New Halogenated Sesquiterpenes from the Red Alga Laurencia caespitosa. Can. J. Chem. 69, 518 (1991).Google Scholar
  353. 353.
    Wratten, S.J., and D.J. Faulkner: Carbonimidic Dichlorides from the Marine Sponge Pseudaxinyssa pitys. J. Am. Chem. Soc. 99, 7367 (1977).Google Scholar
  354. 354.
    Imre, S., S. Islimyeli, A. Oztunc, and R.H. Thomson: Obtusenol, a Sesquiterpene from Laurencia obtusa. Phytochem. 20, 833 (1981).Google Scholar
  355. 355.
    Van Tamelen, E.E., and E.J. Hessler: The Direct Brominative Cyclization of Methyl Farnesate. J. Chem. Soc., Chem. Commun., 411 (1966).Google Scholar
  356. 356.
    Faulkner, D.J.: 3ß-Bromo-8-epicaparrapi Oxide, the Major Metabolite oí Laurencia obtusa. Phytochem. 15, 1992 (1976).Google Scholar
  357. 357.
    Pettit, G.R, C.L. Herald, M.S. Allen, R.B. Von Dreele, L.D. Vanell, J.P.Y. Kao, and W. Blake: The Isolation and Structure of Aplysistatin. J. Am. Chem. Soc. 99, 262 (1977).Google Scholar
  358. 358.
    Capon, R., E.L. Ghisalberti, P.R. Jefferies, B.W. Skelton, and A.H. White: Sesquiterpene Metabolites from Laurencia filiformis. Tetrahedron 37, 1613 (1981).Google Scholar
  359. 359.
    De Nys, R., A.D. Wright, G.M. König, O. Sticher, and P.M. Alino: Five New Sesquiterpenes from the Red Alga Laurencia flexilis. J. Nat. Prod. 56, 877 (1993).Google Scholar
  360. 360.
    König, G.M., A.D. Wright, and F.R. Fronczek: X-Ray Crystal Structure of 3,4-Epoxypalisadin A. J. Nat. Prod. 57, 151 (1994).Google Scholar
  361. 361.
    Carney, J.R., A.T. Pham, W.Y. Yoshida, and P.J. Scheuer: Napalilactone, a New Halogenated Norsesquiterpenoid from the Soft Coral Lemnalia africana. Tetrahedron Lett. 33, 7115 (1992).Google Scholar
  362. 362.
    González, A.G., J. Darias, and J.D. Martín: Furocaespitane, a New Furan from Laurencia caespitosa. Tetrahedron Lett., 3625 (1973).Google Scholar
  363. 363.González, A.G., J.D. Martín, V.S. Martín, and M. Norte: Carbon-13 NMR Application to Laurencia Polyhalogenated Sesquiterpenes. Tetrahedron Lett., 2719 (1979).Google Scholar
  364. 364.
    Estrada, D.M., J.D. Martín, R. Pérez, P. Rivera, M.L. Rodríguez, and J.Z. Ruano: Furocaespitane and Related CI2 Metabolites from Laurencia caespitosa. Tetrahedron Lett. 28, 687 (1987).Google Scholar
  365. 365.
    Suzuki, M., E. Kurosawa, and T. Irie: Spirolaurenone, a New Sesquiterpenoid Containing Bromine from Laurencia glandulifera Kützing. Tetrahedron Lett., 4995 (1970).Google Scholar
  366. 366.
    Suzuki, M., N. Kowata, and E. Kurosawa: The Structure of Spirolaurenone, a Halogenated Sesquiterpenoid from the Red Alga Laurencia glandulifera Kiitzing. Tetrahedron 36, 1551 (1980).Google Scholar
  367. 367.
    Suzuki, M., E. Kurosawa, and T. Irie: Three New Sesquiterpenoids Containing Bromine, Minor Constituents of Laurencia glandulifera Kützing. Tetrahedron Lett., 821 (1974).Google Scholar
  368. 368.
    Suzuki, M., A. Furusaki, and E. Kurosawa: The Absolute Configurations of Halogenated Chamigrene Derivatives from the Marine Alga, Laurencia glandulifera Kützing. Tetrahedron 35, 823 (1979).Google Scholar
  369. 369.
    Suzuki, M., E. Kurosawa, and T. Irie: Glanduliferol, a New Halogenated Sesquiterpenoid from Laurencia glandulifera Kützing. Tetrahedron Lett., 1807 (1974).Google Scholar
  370. 370.
    Suzuki, M., and E. Kurosawa: Halogenated Chamigrene-Type Sesquiterpenoids from the Red Algae of the Genus Laurencia. Chem. Abstr. 92, 215566z (1980).Google Scholar
  371. 371.
    Sims, J.J., W. Fenical, R.M. Wing, and P. Radlick: Marine Natural Products, I: Pacifenol, a Rare Sesquiterpene Containing Bromine and Chlorine from the Red Alga, Laurencia pacifica. J. Am. Chem. Soc. 93, 3774 (1971).Google Scholar
  372. 372.
    Sims, J.J., W. Fenical, R.M. Wing, and P. Radlick: Marine Natural Products, IV: Prepacifenol, a Halogenated Epoxy Sesquiterpene and Precursor to Pacifenol from the Red Alga, Laurencia filiformis. J. Am. Chem. Soc. 95, 972 (1973).Google Scholar
  373. 373.
    Sims, J.J., W. Fenical, R.M. Wing, and P. Radlick: Marine Natural Products, III: Johnstonol, an Unusual Halogenated Epoxide from the Red Alga Laurencia johnstonii. Tetrahedron Lett., 195 (1972).Google Scholar
  374. 374.
    Howard, B.M., and W. Fenical: 10-Bromo-a-chamigrene. Tetrahedron Lett., 2519 (1976).Google Scholar
  375. 375.
    Wolinsky, L.E., and D.J. Faulkner: A Biomimetic Approach to the Synthesis of Laurencia Metabolites. Synthesis of 10-Bromo-a-chamigrene. J. Org. Chem. 41, 597 (1976).Google Scholar
  376. 376.
    Fenical, W.: Chemical Variation in a New Bromochamigrene Derivative from the Red Seaweed Laurencia pacifica. Phytochem. 15, 511 (1976).Google Scholar
  377. 377.
    Suzuki, M., E. Kurosawa, and A. Furusaki: The Structure and Absolute Stereo-chemistry of a Halogenated Chamigrene Derivative from the Red Alga Laurencia Species. Bull. Chem. Soc. Japan 61, 3371 (1988).Google Scholar
  378. 378.
    Selover, S.J., and P. Crews: Kylinone, a New Sesquiterpene Skeleton from the Marine Alga Laurencia pacifica. J. Org. Chem. 45, 69 (1980).Google Scholar
  379. 379.
    Howard, B.M., and W. Fenical: Structures and Chemistry of Two New Halogen-Containing Chamigrene Derivatives from Laurencia. Tetrahedron Lett., 1687 (1975).Google Scholar
  380. 380.
    Ichinose, I., and T. Kato: Biogenetic Type Synthesis of 10-Bromo-a-chamigrene. Chem. Lett., 61 (1979).Google Scholar
  381. 381.
    Bittner, M.L., M. Silva, V.J. Paul, and W. Fenical: A Rearranged Chamigrene Derivative and Its Potential Biogenetic Precursor from a New Species of the Marine Red Algal Genus Laurencia (Rhodomelaceae). Phytochem. 24, 987 (1985).Google Scholar
  382. 382.
    González, A.G., J. Darías, and J.D. Martín: Caespitol, a New Halogenated Sesquiterpene from Laurencia caespitosa. Tetrahedron Lett., 2381 (1973).Google Scholar
  383. 383.
    Mcmillan, J.A., I.C. Paul, R.H. White, and L.P. Hager: Molecular Structure of Acetoxyintricatol: A New Bromo Compound from Laurencia intricata. Tetrahedron Lett., 2039 (1974).Google Scholar
  384. 384.
    Sims, J.J., G.H.Y. Lin, and R.M. Wing: Marine Natural Products, X: Elatol, a Halogenated Sesquiterpene Alcohol from the Red Alga Laurencia elata. Tetrahedron Lett., 3487 (1974).Google Scholar
  385. 385.
    Waraszkiewicz, S.M., and K.L. Erickson: Halogenated Sesquiterpenoids from the Hawaiian Marine Alga Laurencia nidifica: Nidificene and Nidifidiene. Tetrahedron Lett., 2003 (1974).Google Scholar
  386. 386.
    Waraszkiewicz, S.M., and K.L. Erickson: Halogenated Sesquiterpenoids from the Hawaiian Marine Alga Laurencia nidifica, II: Nidifidienol. Tetrahedron Lett., 281 (1975).Google Scholar
  387. 387.
    Waraszkiewicz, S.M., and K.L. Erickson: Halogenated Sesquiterpenoids from the Hawaiian Marine Alga Laurencia nidifica, IV: Nidifocene. Tetrahedron Lett., 1443 (1976)Google Scholar
  388. 388.
    Waraszkiewicz, S.M., K.L. Erickson, J. Finer, and J. Clardy: Nidifocene: A Reassignment of Structure. Tetrahedron Lett., 2311 (1977).Google Scholar
  389. 389.
    Suzuki, T.: Two New Sesquiterpene Alcohols Containing Bromine from the Marine Alga, Laurencia nipponica Yamada. Chem. Lett., 541 (1980).Google Scholar
  390. 390.
    Kurata, K., A. Furusaki, C. Katayama, H. Kikuchi, and T. Suzuki: A New Labile Sesquiterpene Diol Having Bromine from the Marine Red Alga, Laurencia nipponica Yamada. Chem. Lett., 773 (1981).Google Scholar
  391. 391.
    Suzuki, T., H. Kikuchi, and E. Kurosawa: Six New Sesquiterpenoids from the Red Alga Laurencia nipponica Yamada. Bull. Chem. Soc. Japan 55, 1561 (1982).Google Scholar
  392. 392.
    Suzuki, M., M. Segawa, T. Suzuki, and E. Kurosawa: Structures of Halogenated Chamigrene Derivatives, Minor Constituents from the Red Alga Laurencia nipponica Yamada. Bull. Chem. Soc. Japan 56, 3824 (1983).Google Scholar
  393. 393.
    Kurata, K., T. Suzuki, M. Suzuki, E. Kurosawa, A. Furusaki, and T. Matsumoto: Laureacetal-D and-E, Two New Secochamigrane Derivatives from the Red Alga Laurencia nipponica Yamada. Chem. Lett., 557 (1983).Google Scholar
  394. 394.
    Kurata, K., T. Suzuki, M. Suzuki, E. Kurosawa, A. Furusaki, K. Suehiro, T. Matsumoto, and C. Katayama: Structures of Two New Halogenated Chamigrane-Type Sesquiterpenoids from the Red Alga Laurencia nipponica Yamada. Chem. Lett., 561 (1983).Google Scholar
  395. 395.
    Suzuki, M., M. Segawa, T. Suzuki, and E. Kurosawa: Structures of Two New Halochamigrene Derivatives from the Red Alga Laurencia nipponica Yamada. Bull. Chem. Soc. Japan 58, 2435 (1985).Google Scholar
  396. 396.
    Kikuchi, H., T. Suzuki, M. Suzuki, and E. Kurosawa: A New Chamigrane-Type Bromo Diether from the Red Alga Laurencia nipponica Yamada. Bull. Chem. Soc. Japan 58, 2437 (1985).Google Scholar
  397. 397.
    Watanabe, K., K. Umeda, and M. Miyakado: Isolation and Identification of Three Insecticidal Principles from the Red Alga Laurencia nipponica. Agrie. Biol. Chem. 53, 2513 (1989).Google Scholar
  398. 398.
    Kurata, K., T. Suzuki, M. Suzuki, E. Kurosawa, A. Furusaki, and T. Matsumoto: Laurencial, a Novel Sesquiterpene, a, P-Unsaturated Aldehyde from the Red Alga Laurencia nipponica Yamada. Chem. Lett., 299 (1983).Google Scholar
  399. 399.
    Furusaki, A., C. Katayama, T. Matsumoto, M. Suzuki, T. Suzuki, H. Kikuchi, and E. Kurosawa: The Crystal and Molecular Structure of 7,8–Epoxyhalochamigrene. Bull. Chem. Soc. Japan 55, 3398 (1982).Google Scholar
  400. 400.
    Fenical, W., and J.N. Norris: Chemotaxonomy in Marine Algae: Chemical Separation of Some Laurencia Species (Rhodophyta) from the Gulf of California. J. Phycol. 11, 104 (1975).Google Scholar
  401. 401.
    Suzuki, T., A. Furusaki, N. Hashiba, and E. Kurosawa: Novel Skeletal Bromo Ether from the Marine Alga, Laurencia nipponica Yamada. Tetrahedron Lett., 3731 (1977).Google Scholar
  402. 402.
    Suzuki, T., and E. Kurosawa: New Bromo Acetal from the Marine Alga, Laurencia nipponica Yamada. Chem. Lett., 301 (1979).Google Scholar
  403. 403.
    Suzuki, M., and E. Kurosawa: Two New Halogenated Sesquiterpenes from the Red Alga Laurencia majuscula Harvey. Tetrahedron Lett., 4805 (1978).Google Scholar
  404. 404.
    Suzuki, M., A. Furusaki, N. Hashiba, and E. Kurosawa: The Structures and Absolute Stereochemistry of Two Halogenated Chamigrenes from the Red Alga Laurencia majuscula Harvey. Tetrahedron Lett., 879 (1979).Google Scholar
  405. 405.
    Caccamese, S., A. Compagnini, and R.M. Toscano: Pacifenol from the Mediterranean Red Alga Laurencia majuscula. J. Nat. Prod. 49, 173 (1986).Google Scholar
  406. 406.
    Caccamese, S., A. Compagnini, R.M. Toscano, F. Nicolo, and G. Chapuis: A New Labile Bromoterpenoid from the Red Alga Laurencia majuscula: Dehydrochloroprepacifenol. Tetrahedron 43, 5393 (1987).Google Scholar
  407. 407.
    Coll, J.C., and A.D. Wright: Tropical Marine Algae, III: New Sesquiterpenes from Laurencia majuscula (Rhodophyta, Rhodophyceae, Ceramiales, Rhodomelaceae). Aust. J. Chem. 42, 1591 (1989).Google Scholar
  408. 408.
    Ojika, M., Y. Shizuri, and K. Yamada: A Halogenated Chamigrene Epoxide and Six Related Halogen-Containing Sesquiterpenes from the Red Alga Laurencia okamurai. Phytochem. 21, 2410 (1982).Google Scholar
  409. 409.
    Guella, G., G. Chiasera, I. Mancini, and F. Pietra: Conformational Analysis of Marine Polyhalogenated P–Chamigrenes Through Temperature-Dependent NMR Spectra. Helv. Chim. Acta 74, 774 (1991).Google Scholar
  410. 410.
    Wright, A.D., J.C. Coll, and I.R. Price: Tropical Marine Algae, VII: The Chemical Composition of Marine Algae from North Queensland Waters. J. Nat. Prod. 53. 845 (1990).Google Scholar
  411. 411.
    Capon, R.J., E.L. Ghisalberti, T.A. Mori, and P.R. Jefferies: Sesquiterpenes from Laurencia Sp. J. Nat. Prod. 51, 1302 (1988).Google Scholar
  412. 412.
    De Nys, R., J.C. Coll, and B.F. Bowden: Tropical Marine Algae, VIII: The Structural Determination of Novel Sesquiterpenoid Metabolites from the Red Alga Laurencia majuscula. Aust. J. Chem. 45, 1611 (1992).Google Scholar
  413. 413.
    González, A.G., J. Darías, A. Díaz, J.D. Fourneron, J.D. Martín, and C. Pérez: Evidence for the Biogenesis of Halogenated Chamigrenes from the Red Alga Lauren¬cia obtusa. Tetrahedron Lett., 3051 (1976).Google Scholar
  414. 414.
    González, A.G., J.D. Martín, V.S. Martín, M. Norte, J. Fayos, and M. Martínez-Ripoll: A New Polyhalogenated Sesquiterpene from Laurencia obtusa. Tetrahedron Lett, 2035 (1978).Google Scholar
  415. 415.
    Perales, A, M. Martínez-Ripoll, and J. Fayos: Structure of Obtusol Acetate, a Halogenated Chamigrene–Type Sesquiterpene. Acta Cryst. B35, 2771 (1979).Google Scholar
  416. 416.
    González, A.G, J.D. Martín, V.S. Martín, M. Martínez-Ripoll, and J. Fayos: X-Ray Study of Sesquiterpene Constituents of the Alga L. obtusa Leads to Structure Revision. Tetrahedron Lett., 2717 (1979).Google Scholar
  417. 417.
    Gerwick, W.H, A. Lopez, R. Davila, and R. Albors: Two New Chamigrene Sesquiterpenoids from the Tropical Red Alga Laurencia obtusa. J. Nat. Prod. 50, 1131 (1987).Google Scholar
  418. 418.
    Brennan, M.R., K.L. Erickson, D.A. Minott, and K.O. Pascol: Chamigrane Metabolites from a Jamaican Variety of Laurencia obtusa. Phytochem. 26, 1053 (1987).Google Scholar
  419. 419.
    Kennedy, D.J., I.A. Selby, and R.H. Thomson: Chamigrane Metabolites from Laurencia obtusa and L. scoparia. Phytochem. 27, 1761 (1988).Google Scholar
  420. 420.
    Martín, J.D., P. Caballero, J.J. Fernandez, M. Norte, R. Peréz, and M.L. Rodriguez: Metabolites from Laurencia obtusa. Phytochem. 28, 3365 (1989).Google Scholar
  421. 421.
    González, A.G., J. Darías, J.D. Martín, V.S. Martín, M. Norte, and C. Pérez: Laurencia Sesquiterpene Biogenetic-Type Interconversions. Tetrahedron Lett. 21, 1151 (1980).Google Scholar
  422. 422.
    Elsworth, J.F., and R.H. Thomson: A New Chamigrane from Laurencia gíomerata. J. Nat. Prod. 52, 893 (1989).Google Scholar
  423. 423.
    González, A.G., J. Darias, J.D. Martín, and C. Pérez: Revised Structure of Caespitol and Its Correlation with Isocaespitol. Tetrahedron Lett., 1249 (1974).Google Scholar
  424. 424.
    Baño, S., M.S. Ali, and V.U. Ahmad: Marine Natural Products, VI: A Halogenated Chamigrene Epoxide from the Red Alga Laurencia pinnatifida. Planta Med. 53, 508 (1987).Google Scholar
  425. 425.
    Baño, S., M.S. Ali, and V.U. Ahmad: Marine Natural Products, VIII: Two Minor Halogenated Sesquiterpenoids from the Red Alga Laurencia pinnatifida. Sci. Pharm. 56, 125 (1988).Google Scholar
  426. 426.
    Baño, S., M.S. Ali, and V.U. Ahmad: Marine Natural Products, IX: A New Halogenated Sesquiterpene Pinnatifidone from the Red Alga Laurencia pinnatifida. Z. Naturforsch. 43B, 1347 (1988).Google Scholar
  427. 427.
    Ahmad, V.U., and M.S. Ali: Terpenoids from Marine Red Alga Laurencia pinnatifida. Phytochem. 30, 4172 (1991).Google Scholar
  428. 428.
    Atta-Ur-Rahman, V.U. Ahmad, S. Bano, S.A. Abbas, K.A. Alvi, M.S. Ali, H.S.M. Lu, and J. Clardy: Pinnatazane, a Bridged Cyclic Ether Sesquiterpene from Laurencia pinnatifida. Phytochem. 27, 3879 (1988).Google Scholar
  429. 429.
    Stallard, M.O., and D.J. Faulkner: Chemical Constituents of the Digestive Gland of the Sea Hare Aplysia californica, II: Chemical Transformations. Comp. Biocbem. Physiol. 49B, 37 (1974).Google Scholar
  430. 430.
    Faulkner, D.J., M.O. Stallard, and C. Ireland: Prepacifenol Epoxide, a Halogenated Sesquiterpene Diepoxide. Tetrahedron Lett., 3571 (1974).Google Scholar
  431. 431.
    González, A.G., J.D. Martín, M. Norte, R. Pérez, V. Weyler, A. Perales, and J. Fayos: New Halogenated Constituents of the Digestive Gland of the Sea Hare Aplysia dactylomela. Tetrahedron Lett. 24, 847 (1983).Google Scholar
  432. 432.
    Sakai, R., T. Higa, C.W. Jefford, and G. Bernardinelli: The Absolute Configurations and Biogenesis of Some New Halogenated Chamigrenes from the Sea Hare Aplysia dactylomela. Helv. Chim. Acta 69, 91 (1986).Google Scholar
  433. 433.
    Rao, C.B., C. Satyanarayana, D.V. Rao, E. Fahy, and DJ. Faulkner: Metabolites of Aplysia dactylomela from the Indian Ocean. Indian J. Chem. B28, 322 (1989).Google Scholar
  434. 434.
    Iwata, C, T. Akiyama, and K. Miyashita: Synthesis of Four Possible Isomers of 9-(Bromomethylene)-l,2,5-trimethylspiro[5.5]undeca-l,7-dien-3-one: Structure Elu¬cidation of a Brominated Rearranged Chamigrane–Type Sesquiterpene. Chem. Pharm. Bull. (Japan) 36, 2872 (1988).Google Scholar
  435. 435.
    Guella, G., I. Mancini, G. Chiasera, and F. Pietra: Rogiolol Acetate: A Novel ß-Chamigrene-Type Sesquiterpene Isolated from a Marine Sponge. Helv. Chim. Acta 73, 1612 (1990).Google Scholar
  436. 436.
    Guella, G., I. Mancini, and F. Pietra: C15 Acetogenins and Terpenes of the Dictyoceratid Sponge Spongia zimocca of II Rogiolo: A Case of Seaweed-Metabolite Transfer to, and Elaboration Within, a Sponge? Comp. Biochem. Physiol. B103, 1019 (1992).Google Scholar
  437. 437.
    Cox, P.J., and R.A. Howie: Structure of 2,10-Dibromo-3-chloro-7R,SS-epoxychamigrene. Z. Kristallogr. 188, 1 (1989).Google Scholar
  438. 438.
    Denys, R., G.M. König, A.D. Wright, and O. Sticher: Two Metabolites from the Red Alga Laurencia fiexilis. Phytochem. 34, 725 (1993).Google Scholar
  439. 439.
    González, A.G., J.D. Martín, V.S. Martín, R. Pérez, B. Tagle, and J. Clardy: Rhodolaureol and Rhodolauradiol, Two New Halogenated Tricyclic Sesquiterpenes from a Marine Alga. J. Chem. Soc., Chem. Commun., 260 (1985).Google Scholar
  440. 440.
    González, A.G., J.D. Martín, V.S. Martín, M. Norte, and R. Pérez: Biomimetic Approach to the Syntheses of Rhodolaureol and Rhodolauradiol. Tetrahedron Lett 23, 2395 (1982).Google Scholar
  441. 441.
    Kazlauskas, R., P.T. Murphy, R.J. Wells, J.J. Daly, and W.E. Oberhánsli: Heterocladol, a Halogenated Selinane Sesquiterpene of Biosynthetic Significance from the Red Alga Laurencia filiformis: Its Isolation, Crystal Structure and Absolute Configuration. Aust. J. Chem. 30, 2679 (1977).Google Scholar
  442. 442.
    Howard, B.M., and W. Fenical: Structure, Chemistry, and Absolute Configuration of 1 (S)-Bromo-4(.R)-hydroxyl-(-)-selin-7-ene from a Marine Red Alga Laurencia sp. J. Org. Chem. 42, 2518 (1977).Google Scholar
  443. 443.
    Rose, A.F., and J.J. SIMS: Marine Natural Products, XIV: 1-S-Bromo-4-iMiydroxy-selin-7-ene, a Metabolite of the Marine Alga Laurencia sp. Tetrahedron Lett., 2935 (1977).Google Scholar
  444. 444.
    Rose, A.F., J.J. Sims, R.M. Wing, and G.M. Wiger: Marine Natural Products, XVII: The Structure of (lS,4i?,7R)-l-Bromo-4-hydroxy-7-chloroselinane, a Metabolite of the Marine Alga Laurencia sp. Tetrahedron Lett., 2533 (1978).Google Scholar
  445. 445.
    Dieter, R.K., R. Kinnel, J. Meinwald, and T. Eisner: Brasiidol and Isobrasudol: Two Bromosesquiterpenes. Tetrahedron Lett., 1645 (1979).Google Scholar
  446. 446.
    Brennan, M.R., and K.L. Erickson: Austradiol Acetate and Austradiol Diacetate, 4,6-Dihydroxy-(+)-selinane Derivatives from an Australian Laurencia sp. J. Org. Chem. 47, 3917 (1982).Google Scholar
  447. 447.
    Barnekow, D.E., J.H. Cardellina II, A.S. Zektzer, and G.E. Martin: Novel Cytotoxic and Phytotoxic Halogenated Sesquiterpenes from the Green Alga Neomeris annulata. J. Am. Chem. Soc. Ill, 3511 (1989).Google Scholar
  448. 448.
    Barnekow, D.E., and J.H. Cardellina II: Determining the Absolute Configuration of Hindered Secondary Alcohols-A Modified Horeau’s Method. Tetrahedron Lett. 30, 3629 (1989).Google Scholar
  449. 449.
    Talpir, R., A. Rudi, Y. Kashman, Y. Loya, and A. Hizi: Three New Sesquiterpene Hydroquinones from Marine Origin. Tetrahedron 50, 4179 (1994).Google Scholar
  450. 450.
    Burgoyne, D.L., E.J. Dumdei, and R.J. Andersen: Acanthenes A to C: A Chloro, Isothiocyanate, Formamide Sesquiterpene Triad Isolated from the Northeastern Pacific Marine Sponge Acanthella sp. and the Dorid Nudibranch Cadlina luteomar– ginata. Tetrahedron 49, 4503 (1993).Google Scholar
  451. 451.
    Wratten, S.J., D.J. Faulkner, D. Van Engen, and J. Clardy: A Vinyl Carbonimidic Dichloride from the Marine Sponge Pseudaxinyssa pitys. Tetrahedron Lett., 1391 (1978).Google Scholar
  452. 452.
    Wratten, S.J., and D.J. Faulkner: Minor Carbonimidic Dichlorides from the Marine Sponge Pseudaxinyssa pitys. Tetrahedron Lett., 1395 (1978).Google Scholar
  453. 453.
    Hall, S.S., D.J. Faulkner, J. Fayos, and J. Clardy: Oppositol, a Brominated Sesquiterpene Alcohol of a New Skeletal Class from the Red Alga, Laurencia subopposita. J. Am. Chem. Soc. 95, 7187 (1973).Google Scholar
  454. 454.
    Wratten, S.J., and D.J. Faulkner: Metabolites of the Red Alga Laurencia subopposita. J. Org. Chem. 42, 3343 (1977).Google Scholar
  455. 455.
    González, A.G., J.M. Aguiar, J.D. Martín, and M. Norte: Three New Sesquiterpenoids from the Marine Alga Laurencia perforata. Tetrahedron Lett., 2499 (1975).Google Scholar
  456. 456.
    González, A.G., J.M. Aguiar, J. Darías, E. González, J.D. Martín, V.S. Martín, and C. Pérez: Perforenol, a New Polyhalogenated Sesquiterpene from Laurencia perforata. Tetrahedron Lett., 3931 (1978).Google Scholar
  457. 457.
    Coll, J.C., B.W. Skelton, A.H. White, and A.D. Wright: Tropical Marine Algae, V: The Structure Determination of Two Novel Sesquiterpenes from the Red Alga Laurencia teñera (Rhodophyceae, Ceramiales, Rhodomelaceae). Aust. J. Chem. 42, 1695 (1989).Google Scholar
  458. 458.
    González, A.G., J. Darías, J.D. Martín, G Pérez, J.J. Sims, G.H.Y. Lin, and R.M. Wing: Isocaespitol, a New Halogenated Sesquiterpene from Laurencia caespitosa. Tetrahedron 31, 2449 (1975).Google Scholar
  459. 459.
    González, A.G., J.D. Martín, C. Pérez, M.A. Ramírez, and F. Ravelo: Total Synthesis of 8-Desoxyisocaespitol, a New Polyhaiogenated Sesquiterpene from Laurencia caespitosa. Tetrahedron Lett. 21, 187 (1980).Google Scholar
  460. 460.
    Chang, M., J.T. Vazquez, K. Nakanishi, F. Cataldo, D.M. Estrada, J. Fernandez, A. Gallardo, J.D. Martin, M. Norte, R. Pérez, and M.L. Rodríguez: Regular and Irregular Sesquiterpenes Containing a Halogenated Hydropyran from Laurencia caespitosa. Phytochem. 28, 1417 (1989).Google Scholar
  461. 461.
    González, A.G., J.D. Martín, M. Norte, R. Pérez, P. Rivera, J.Z. Ruano, M.L. Rodríguez, J. Fayos, and A. Perales: X-Ray Structure Determination of New Brominated Metabolites Isolated from the Red Seaweed Laurencia obtusa. Tetrahedron Lett. 24, 4143 (1983).Google Scholar
  462. 462.
    Hollenbeak, K.H., F.J. Schmitz, M.B. Hossain, and D. Van der Helm: Marine Natural Products. Deodactol, Antineoplastic Sesquiterpenoid from the Sea Hare Aplysia dactylomela. Tetrahedron 35, 541 (1979).Google Scholar
  463. 463.
    Schmitz, F.J., D.P. Michaud, and K.H. Hollenbeak: Marine Natural Products: Dihydroxydeodactol Monoacetate, a Halogenated Sesquiterpene Ether from the Sea Hare Aplysia dactylomela. J. Org. Chem. 45, 1525 (1980).Google Scholar
  464. 464.
    Gopichand, Y., F.J. Schmitz, J. Shelly, A. Rahman, and D. Van der Helm: Marine Natural Products: Halogenated Acetylenic Ethers from the Sea Hare Aplysia dactylomela. J. Org. Chem. 46, 5192 (1981).Google Scholar
  465. 465.
    González, A.G., V. Darías, and E. Estévez: Chemotherapeutic Activity of Polyhaiogenated Terpenes from Spanish Algae. Planta Med. 44, 44 (1982).Google Scholar
  466. 466.
    Murakami, T., and N. Tanaka: Occurrence, Structure and Taxonomic Implications of Fern Constituents. Progr. Chem. Org. Nat. Prod. 54, 1 (1988).Google Scholar
  467. 467.
    Gonález, A.G., J. Darías, and J.D. Martín: Biomimetic Interconversions of Two New Types of Metabolite from Laurencia perforata. Tetrahedron Lett., 3375 (1977).Google Scholar
  468. 468.
    González, A.G., J. Darías, J.D. Martín, and M.A. Melián: Total Synthesis of Racemic Perforenone and 3-Debromoperforatone. Tetrahedron Lett., 481 (1978).Google Scholar
  469. 469.
    Sham’Yanov, I.D., A. Mallabaev, U. Rakhmankulov, and G.P. Sidyakin: Sesquiterpene Lactones of Saussurea elegans. Khim. Prir. Soedin. 12, 819 (1976).Google Scholar
  470. 470.
    Yamamura, S., and Y. Hirata: Structures of Aplysin and Aplysinol, Naturally Occurring Bromo-Compounds. Tetrahedron 19, 1485 (1963).Google Scholar
  471. 471.
    Irie, T., M. Suzuki, and Y. Hayakawa: Isolation of Aplysin, Debromoaplysin, and Aplysinol from Laurencia okamurai Yamada. Bull. Chem. Soc. Japan 42, 843 (1969).Google Scholar
  472. 472.
    Cameron, A.F., G. Ferguson, and J.M. Robertson: The Crystal Structure and Absolute Stereochemistry of Laurinterol. The Absolute Stereochemistry of Aplysin. J. Chem. Soc, Chem. Commun, 271 (1967).Google Scholar
  473. 473.
    Cameron, A.F, G. Ferguson, and J.M. Robertson: Laurencia Natural Products, Part II: Crystal Structure and Absolute Stereochemistry of Laurinterol Acetate, a Bicyclo[3.1.0]hexane Derivative. J. Chem. Soc. (B), 692 (1969).Google Scholar
  474. 474.
    McMillan, J.A, I.C. Paul, S. Caccamese, and K.L. Rinehart JR.: Aplysinol from Laurencia decidua: Crystal Structure and Absolute Stereochemistry. Tetrahedron Lett., 4219 (1976).Google Scholar
  475. 475.
    Irie, T., A. Fukuzawa, M. Izawa, and E. Kurosawa: Laurenisol, A New Sesquiterpenoid Containing Bromine from Laurencia nipponica Yamada. Tetrahedron Lett., 1343 (1969).Google Scholar
  476. 476.
    Irie, T., M. Suzuki, E. Kurosawa, and T. Masamune: Laurinterol, Debromolaurinterol and Isolaurinterol, Constituents of Laurencia intermedia Yamada. Tetrahedron 26, 3271 (1970).Google Scholar
  477. 477.
    Suzuki, T., M. Suzuki, and E. Kurosawa: a-Bromocuparene and oc-Isobromocuparene, New Bromo Compounds from Laurencia Species. Tetrahedron Lett., 3057 (1975).Google Scholar
  478. 478.
    Kazlauskas, R., P.T. Murphy, R.J. Quinn, and R.J. Wells: New Laurene Derivatives from Laurencia filiformis. Aust. J. Chem. 29, 2533 (1976).Google Scholar
  479. 479.
    Suzuki, M., and E. Kurosawa: New Bromo Compounds from Laurencia glandulifera Kiitzing. Tetrahedron Lett., 4817 (1976).Google Scholar
  480. 480.
    Izak, R.R., and J.J. Sims: Marine Natural Products, 18: lodinated Sesquiterpenes from the Red Algae Genus Laurencia. J. Am. Chem. Soc. 101, 6136 (1979).Google Scholar
  481. 481.
    Izak, R.R., J.S. Drage, and J.J. Sims: Caraibical, a New Aromatic Sesquiterpene from the Marine Alga Laurencia caraibica. Tetrahedron Lett. 22, 1799 (1981).Google Scholar
  482. 482.
    Irie, T., Y. Yasunari, T. Suzuki, N. Imai, E. Kurosawa, and T. Masamune: A New Sesquiterpene Hydrocarbon from Laurencia glandulifera. Tetrahedron Lett., 3619 (1965).Google Scholar
  483. 483.
    Suzuki, M., and E. Kurosawa: New Aromatic Sesquiterpenoids from the Red Alga Laurencia okamurai Yamada. Tetrahedron Lett., 2503 (1978).Google Scholar
  484. 484.
    Suzuki, M., and E. Kurosawa: Halogenated and Non-Halogenated Aromatic Sesquiterpenes from the Red Algae Laurencia okamurai Yamada. Bull. Chem. Soc. Japan 52, 3352 (1979).Google Scholar
  485. 485.
    Caccamese, S., L.P. Hager, K.L. Rinehart JR., and R.B. Setzer: Characterization of Laurencia Species by Gas Chromatography-Mass Spectrometry. Bot. Mar. 22, 41 (1979).Google Scholar
  486. 486.
    Suzuki, M., and E. Kurosawa: Halogenated Sesquiterpene Phenols and Ethers from the Red Alga Laurencia glandulifera Kiitzing. Bull. Chem. Soc. Japan 52, 3349 (1979).Google Scholar
  487. 487.
    Blunt, J.W., R.J. Lake, and M.H.G. Munro: Sesquiterpenes from the Marine Red Alga Laurencia distichophylla. Phytochem. 23, 1951 (1984).Google Scholar
  488. 488.
    González, A.G., J.M. Arteaga, J.J. Fernandez, J.D. Martín, M. Norte, and J.Z. Ruano: Terpenoids of the Red Alga Laurencia pinnatifida. Tetrahedron 40, 2751 (1984).Google Scholar
  489. 489.
    Wright, A.D., G.M. Kónig, R. de Nys, and O. Sticher: Seven New Metabolites from the Marine Red Alga Laurencia majuscula. J. Nat. Prod. 56, 394 (1993).Google Scholar
  490. 490.
    González, A.G., J.M. Aguiar, J.D. Martín, and M.L. Rodríguez: Perforen, a New Halogenated Sesquiterpene from the Red Alga Laurencia perforata. Tetrahedron Lett., 205 (1976).Google Scholar
  491. 491.
    Ichiba, T., and T. Higa: New Cuparene-Derived Sesquiterpenes with Unprecedented Oxygenation Patterns from the Sea Hare Aplysia dactylomela. J. Org. Chem. 51, 3364 (1986).Google Scholar
  492. 492.
    Ohta, K., and M. Takagi: Halogenated Sesquiterpenes from the Marine Red Alga Marginisporum aberrans. Phytochem. 16, 1062 (1977).Google Scholar
  493. 493.
    Afaq-Husain, S., M. Shameel, K. Usmanghani, M. Ahmad, S. Perveen, and V.U. Ahmad: Brominated Sesquiterpene Metabolites of Hypnea pannosa Gigartinales. J. Appl. Phycol. 3, 111 (1991).Google Scholar
  494. 494.
    Hógberg, H.-E., R.H. Thomson, and T.J. King: The Cymopols, a Group of Prenylated Bromohydroquinones from the Green Calcareous Alga Cymopolia barbata. J. Chem. Soc., Perkin Trans. 1, 1696 (1976).Google Scholar
  495. 495.
    Mcconnell, O.J., P.A. Hughes, and N.M. Targett: Diastereomers of Cyclocymopol and Cyclocymopol Monomethyl Ether from Cymopolia barbata. Phytochem. 21, 2139 (1982).Google Scholar
  496. 496.
    Estrada, D.M., J.D. Martín, and C. Pérez: A New Brominated Monoterpenoid Quinol from Cymopolia barbata. J. Nat. Prod. 50, 735 (1987).Google Scholar
  497. 497.
    Wall, M.E., M.C. Wani, G. Manikumar, H. Taylor, T.J. Hughes, K. Gaetano, W.H. Gerwick, A.T. McPhail, and D.R. McPhail: Plant Antimutagenic Agents, 7: Structure and Antimutagenic Properties of Cymobarbatol and 4-Isocymobarbatol, New Cymopols from Green Alga (Cymopolia barbata). J. Nat. Prod. 52, 1092 (1989).Google Scholar
  498. 498.
    Park, M., W. Fenical, and M.E. Hay: Debromoisocymobarbatol, a New Chromanol Feeding Deterrent from the Marine Alga Cymopolia barbata. Phytochem. 31, 4115 (1992).Google Scholar
  499. 499.
    Garson, M.J., D.C. Manker, K.E. Maxwell, B.W. Skelton, and A.H. White: Novel Brominated Metabolites from a Dictyocerated Sponge of the Cacospongia Genus. Aust. J. Chem. 42, 611 (1989).Google Scholar
  500. 500.
    Ravi, B.N., H.P. Perzanowski, R.A. Ross, T.R. Erdman, P.J. Scheuer, J. Finer, and J. Clardy: Recent Research in Marine Natural Products: The Puupehenones. Pure Appl. Chem. 51, 1893 (1979).Google Scholar
  501. 501.
    Aiello, A., E. Fattorusso, and M. Menna: A New Antibiotic Chloro-Sesquiter-pene from the Caribbean Sponge Smenospongia aurea. Z. Naturforsch. 48B, 209 (1993).Google Scholar

Copyright information

© Springer-Verlag Wien 1996

Authors and Affiliations

  • G. W. Gribble
    • 1
  1. 1.Department of ChemistryDartmouth CollegeHanoverUSA

Personalised recommendations