Origins of Algae and their Plastids pp 187-219

Part of the Plant Systematics and Evolution book series (SYSTEMATICS, volume 11) | Cite as

Phylogenetic relationships of the ‘golden algae’ (haptophytes, heterokont chromophytes) and their plastids

  • Linda K. Medlin
  • Wiebe H. C. F. Kooistra
  • Daniel Potter
  • Gary W. Saunders
  • Robert A. Andersen

Abstract

The phylogenetic relationships of the “golden algae”, like all algae, were rarely addressed before the advent of electron microscopy because, based upon light microscopy, each group was so distinct that shared characters were not apparent. Electron microscopy has provided many new characters that have initiated phylogenetic discussions about the relationships among the “golden algae”. Consequently, new taxa have been described or old ones revised, many of which now include non-algal protists and fungi. The haptophytes were first placed in the class Chrysophyceae but ultrastructural data have provided evidence to classify them separately. Molecular studies have greatly enhanced phylogenetic analyses based on morphology and have led to the description of additional new taxa. We took available nucleotide sequence data for the nuclear-encoded SSU rRNA, fucoxanthin/ chlorophyll photosystem I/II, and actin genes and the plastid-encoded SSU rRNA, tufA, and rbcL genes and analysed these to evaluate phylogenetic relationships among the “golden algae”, viz., the Haptophyceae (= Prymnesiophyceae) and the heterokont chromophytes (also known as chromophytes, heterokont algae, autotrophic stramenopiles). Using molecular clock calculations, we estimated the average and earliest probable time of origin of these two groups and their plastids. The origin of the haptophyte host-cell lineages appears to be more ancient than the origin of its plastid, suggesting that an endosymbiotic origin of plastids occurred late in the evolutionary history of this group. The pigmented heterokonts (heterokont chromophytes) also arose later, following an endosymbiotic event that led to the transfer of photosynthetic capacity to their heterotrophic ancestors. Photosynthetic haptophytes and heterokont chromophytes both appear to have arisen at or shortly before the Permian-Triassic boundary. Our data support the hypothesis that the haptophyte and heterokont chromophyte plastids have independent origins (i.e., two separate secondary endosymbioses) even though their plastids are similar in structure and pigmentation. Present evidence is insufficient to evaluate conclusively the possible monophyletic relationship of the haptophyte and heterokont protist host cells, even though haptophytes lack tripartite flagellar hairs. The molecular data, albeit weak, consistently fail to present the heterokont chromophytes and haptophytes as monophyletic. Phylogenetic resolution among all classes of heterokont chromophytes remains elusive even though molecular evidence has established the phylogenetic alliance of some classes (e.g., Phaeophyceae and Xanthophyceae).

Keywords

Chrysophyceae Haptophyceae. — Actin chloroplast chromophyte diatoms heterokont plastid phylogeny rbcstramenopiles SSU rRNA tuf

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agardh, C. A., 1820: Species Algarum. 1. — Lund.Google Scholar
  2. Andersen, R. A., 1987: Synurophyceae classis nov., a new class of algae. — Amer. J. Bot. 74: 337–353.Google Scholar
  3. — 1991: The cytoskeleton of chromophyte alga. — Protoplasma 164: 143–159.Google Scholar
  4. Saunders, G. W., Paskind, M. P., Sexton, J. P., 1993: The ultrastructure and 18S rRNA gene sequence for Pelagomonas calceolata gen. & sp. nov., and the description of a new algal class, the Pelagophyceae classis nov. — J. Phycol. 29: 701–715.Google Scholar
  5. Ariztia, E. V., Andersen, R. A., Sogin, M. L., 1991: A new phylogeny for chromophyte algae using 16S-like rRNA sequences from Mallomonas papillosa (Synurophyceae) and Tribonema aequale (Xanthophyceae). — J. Phycol. 27: 428–436.Google Scholar
  6. Bhattacharya, D., Medlin, L., 1995: The phylogeny of plastids: A review based on comparison of small subunit ribosomal RNA coding regions. — J. Phycol 31: 489–498.Google Scholar
  7. Ehlting, J., 1995: Actin coding regions: gene family evolution and use as a phylogenetic marker. — Arch. Protistenk. 145: 155–164.Google Scholar
  8. Medlin, L., Wainright, P. O., Ariztia, E. V., Bibeau, C., Stickel, S. K., Sogin, M. L., 1992: Algae containing chlorophylls a and c are paraphyletic: molecular evolutionary analysis of the Chromophyta. — Evolution 46: 1801–1817.Google Scholar
  9. Helmchen, T., Melkonian, M., 1995: Molecular evolutionary analyses of nuclearencoded small subunit ribosomal RNA identify an independent rhizopod lineage containing the Euglyphidae and the Chlorarachniophyta. — J. Eukaryote Microbiol. 42: 65–69.Google Scholar
  10. Bjørnland, T., Liaaen-Jensen, S., 1989: Distribution patterns of carotenoids in relation to chromophyte phylogeny and systematics. — In Green, J. C., Leadbeater, B. S. C., Diver, W. L., (Eds): The chromophyte algae: problems and prospectives, pp. 37–60. — Syst. Ass. Spec. Vol. 38. — Oxford: Clarendon Press.Google Scholar
  11. Blackman, F. F., 1900: The primitive algae and the flagellata. An account of modern work bearing on the evolution of algae. — Ann. Bot. 14: 647–688.Google Scholar
  12. Bourrelly, P., 1957: Recherches sur les Chrysophycées: morphologie, phylogénie, systématique. — Rev. Algol. Mém. Hors-Séri. 1: 1–412.Google Scholar
  13. — 1968: Les Algues d’eau douce. 2. Algues jaunes & brunes. — Paris: Boubée.Google Scholar
  14. Caron, L., Douady, D., Quinet-Szely, De Goër, S., Berkaloff, C., 1996: Gene structure of a chlorophyll a/c binding protein from a brown alga: Presence of an intron and phylogenetic implications. — J. Molec. Evol. 43: 270–280.PubMedGoogle Scholar
  15. Cavalier-Smith, T., 1975: The origin of nuclei and of eukaryotic cells. — Nature 256: 463–468.Google Scholar
  16. — 1982: The origins of plastids. — Biol. J. Linn. Soc. 17: 289–306.Google Scholar
  17. — 1986: The kingdom Chromista: Origin and systematics. — In Round F. E., Chapman D. J., (Eds): Progress in phycological research, 4, pp. 319–358. — Bristol: Biopress.Google Scholar
  18. — 1989: The kingdom Chromista. — In Green, J. C., Leadbeater, B. S. C., Diver, W. L., (Eds): The chromophytic algae: problems and perspectives, pp. 381–407. — Oxford: Clarendon Press.Google Scholar
  19. — 1993: Kingdom Protozoa and its 18 phyla. — Microbiol. Rev. 57: 953–994.PubMedGoogle Scholar
  20. Chao, E. E., 1996: 18S rRNA sequence of Heterosigma carterae (Raphidophyceae), and the phylogeny of the heterokont algae (Ochrophyta). — Phycologia 35: 500–510.Google Scholar
  21. Allsopp, M. T. E. P., Chao, E. E., 1994: Chimeric conundra: Are nucleomorphs and chromists monophyletic or polyphyletic? — Proc. Natl. Acad. Sci. USA 91: 11368–11372.Google Scholar
  22. Chao, E. E., Allsopp, M. T. E. P., 1995: Ribosomal RNA evidence for chloroplast loss within Heterokonta: Pedinellid relationships and a revised classification of Ochristan algae. — Arch. Protistenk. 145: 209–220.Google Scholar
  23. Allsopp, M. T. E. P., Haueber, M. M., Gothe, G., Chao, E. E., Couch, J. A., Maier, U.-G., 1996: Chromobiote phylogeny: the enigmatic alga Reticulosphaera japonensis is an aberrant haptophyte, not a heterokont. — Eur. J. Phycol. 31: 255–264.Google Scholar
  24. Chadefaud, M., 1950: Les cellules nageuses des algues dans l’embranchment des Chromophycées. — Compt. Rend. Hebd. Séances Sci. 231: 788–790.Google Scholar
  25. Chesnick, J. M., Morden, C. W., Schmieg, A. M., 1996: Identity of the endosymbiont of Peridinium foliaceum (Pyrrhophyta): Analysis of the rbcLS Operon. — J. Phycol. 32: 850–857.Google Scholar
  26. Christensen, T., 1962: Alger. — In Böcher, T. W., Lange, M., Sørensen, T., (Ed.): Botanik, 2/2, pp. 1–178. — Copenhagen: Munksgaard.Google Scholar
  27. — 1989: The Chromophyta, past and present. — In Green, J. C., Leadbeater, B. S. C., Diver, W. L., (Eds): The chromophyte algae: problems and perspectives, pp. 1–12. — Oxford: Clarendon Press.Google Scholar
  28. Craigie, J. S., 1974: Storage Products. — In Stewart, W. D. P., (Ed.): Algal physiology and biochemistry, pp. 206–235. — Berkeley, CA: University of California Press.Google Scholar
  29. Delwiche, C. F., Palmer, J. D., 1996: Rampant horizontal transfer and duplication of Rubisco genes in Eubacteria and plastids. — Molec. Biol. Evol. 13: 873–882.PubMedGoogle Scholar
  30. Kuhsel, M., Palmer, J. D., 1995: Phylogenetic analysis of tufA sequences indicates a cyanobacterial origin of all plastids. — Molec. Phylogenet. Evol. 4: 110–128.PubMedGoogle Scholar
  31. Dodge, J. D., 1975: The fine structure of algal cells. — New York: Academic Press.Google Scholar
  32. Ehrenberg, C. G., 1838: Die Infusionsthierchen als vollkommene Organismen. — Leipzig: Voss.Google Scholar
  33. Erwin, D. H., 1994: The Permo-Triassic extinction. — Nature 367: 231–236.Google Scholar
  34. Felsenstein, J., 1985: Confidence limits on phylogenies: an approach using the bootstrap. — Evolution 39: 783–791.Google Scholar
  35. Fritsch, F. E., 1945: The structure and reproduction of the algae. 2. — Cambridge: Cambridge University Press.Google Scholar
  36. Fujiwara, S., Sawada, M. H., Someya, J., Minaka, N., Nishikawa, S., 1995: Molecular phylogenetic analysis of the rbcL in Prymnesiophyta. — J. Phycol. 30: 863–871.Google Scholar
  37. Gersonde, R., Harwood, D. M., 1990: Lower Cretaceous diatoms from ODP Leg 113 site 693 (Weddell Sea). I: Vegetative cells. — In Barker, P. F., Kennett, J. P., et al. (Eds): Proceedings of the Ocean Drilling Program, scientific results, 113, pp. 365–402. — College Station, TX: Ocean Drilling Program.Google Scholar
  38. Gibbs, S. P., 1978: The chloroplasts of Euglena may have evolved from symbiotic green algae. — Canad. J. Bot. 56: 2882–2889.Google Scholar
  39. — 1981: The chloroplasts of some algal groups may have evolved from endosymbiotic eukaryotic algae. — Ann. New York. Acad. Sci. 361: 193–208.Google Scholar
  40. — 1993: The origin of algal chloroplasts. — In Lewin, R. A., (Ed.): Origins of plastids, pp 107–121. — New York: Chapman and Hall.Google Scholar
  41. Green, B. R., Durnford, D. G., 1996: The chlorophyll-carotenoid proteins of oxygenic photosynthesis. — Annual. Rev. Pl. Physiol. Pl. Mol. Biol. 47: 685–714.Google Scholar
  42. Green, J. C., 1989: Relationships between the chromophyte algae: the evidence from studies of mitosis. — In Green, J. C., Leadbeater, B. S. C., Diver, W. L., (Eds): The chromophyte algae: problems and perspectives, pp. 189–206. — Oxford: Clarendon Press.Google Scholar
  43. Leadbeater, B. S. C., (Eds), 1994: The haptophyte algae. — Oxford: Clarendon Press.Google Scholar
  44. — — Diver, W. L., (Eds), 1989: The chromophyte algae: problems and perspectives. — Oxford: Clarendon Press.Google Scholar
  45. Gu, X., Li, W.-H., 1996: Bias-corrected paralinear and LogDet distances and tests of molecular clocks and phylogenies under nonstationary nucleotide frequencies. — Molec. Biol. Evol. 13: 1375–1383.PubMedGoogle Scholar
  46. Harvey, W. H., 1836: Algae. — In Mackay, J. T., (Ed.): Flora Hibernica, pp. 157–254. — Dublin.Google Scholar
  47. Hibberd, D. J., 1976: The ultrastructure and taxonomy of the Chrysophyceae and Prymnesiophyceae (Haptophyceae): a survey with some new observations on the ultrastructure of the Chrysophyceae. — Bot. J. Linn. Soc. 72: 55–80.Google Scholar
  48. Leedale, G. F., 1971: A new algal class — the Eustigmatophyceae. — Taxon 20: 523–525.Google Scholar
  49. Hillis, D. M., Bull, J. J., 1993: An empirical test of bootstrapping as a method for assessing confidence in phylogenetic analysis. — Syst. Biol. 42: 182–192.Google Scholar
  50. Moritz, C., 1990: An overview of applications of molecular systematics. — In Hillis, D. M., Moritz, C., (Eds): Molecular systematics, pp. 502–515. — Sunderland, MA: Sinauer.Google Scholar
  51. — — Mable, B. K., 1996: Molecular systematics. — Sunderland, MA: Sinauer.Google Scholar
  52. Jeffrey, S. W., 1989: Chlorophyll c pigments and their distribution in the chromophyte algae. — In Green, J. C., Leadbeater, B. S. C., Diver, W. L., (Eds): The chromophyte algae: problems and perspectives, pp. 13–36. — Oxford: Clarendon Press.Google Scholar
  53. Jordan, R., Green, J. C., 1994: A check-list of the extant Haptophyta of the world. — J. Mar. Biol. Assoc. U.K. 74: 149–174.Google Scholar
  54. Keeling, P. J., Doolittle, W. F., 1996: Alpha-tubulin from early-diverging eukaryotic lineages and the evolution of the tubulin family. — Molec. Biol. Evol. 13: 1297–1305.PubMedGoogle Scholar
  55. Kimura, M., 1980: A simple method for estimating evolutionary rates of base substitution through comparative studies of sequence evolution. — J. Molec. Evol. 16: 111–120.PubMedGoogle Scholar
  56. Klebs, G., 1893: Flagellatenstudien. II. — Z. Wiss. Zool. 55: 353–445.Google Scholar
  57. Klein, R. M., Cronquist, A., 1967: A consideration of the evolutionary and taxonomic significance of some biochemical, micromorphological, and physiological characters in the thallophytes. — Quart. Rev. Biol. 42: 105–296.PubMedGoogle Scholar
  58. Knoll, A. H., 1992: The early evolution of eukaryotes: a geological perspective. — Science 256: 622–627.PubMedGoogle Scholar
  59. Köhler, S., Delwiche, C. F., Denny, P. W., Tilney, L. G., Webster, P.; Wilson, R. J., Palmer, J. D., Roos, D. S., 1997: A plastid of probable green algal origin in apicomplexan parasites. — Science 275: 1485–1489.PubMedGoogle Scholar
  60. Kooistra, W. H. C. E., Medlin, L. K., 1996: Evolution of the diatoms (Bacillariophyta): IV. A reconstruction of their age from small subunit rRNA coding regions and the fossil record. — Molec. Phylogenet. Evol. 6: 391–407.PubMedGoogle Scholar
  61. Kowallik, K. V., 1992: Origin and evolution of plastids from chlorophyll-a + c-containing algae: suggested ancestral relationships to red and green algal plastids. — In Lewin, R. A., (Ed.): Origins of plastids, pp. 223–263. — New York: Chapman and Hall.Google Scholar
  62. Kumar, S., Tamura, K., Nei, M., 1993: MEGA: molecular evolutionary genetics analysis, version 1.0. — University Park, PA: Institute of Molecular Evolutionary Genetics, Pennsylvania State University.Google Scholar
  63. Kützing, F. T., 1834: Synopsis diatomearum oder Versuch einer systematischen Zusammenstellung der Diatomeen. — Halle.Google Scholar
  64. Lackey, J. B., 1939: Notes on plankton flagellates from the Scioto River. — Lloydia 2: 128–143.Google Scholar
  65. Lamouroux, J. V. R., 1813: Essai sur les genres de la famille des thalassiophytes non articulées. — Ann. Mus. Hist. Nat. 20: 21–47, 115–139, 267–293.Google Scholar
  66. LaRoche, J., Henry, D., Wyman, K., Sukenik, A., Falkowski, P., 1994: Cloning and nucleotide sequence of a cDNA encoding a major fucoxanthin-chlorophyll alc-containing protein from the chrysophyte Isochrysis galbana: implications for the evolution of the cab gene family. — Pl. Molec. Biol. 25: 355–368.Google Scholar
  67. Leipe, D. D., Wainright, M. L., Gunderson, J. H., Porter, D., Patterson, D. J., Valois, F., Himmerich, S., Sogin, M. L., 1994: The stramenopiles from a molecular perspective: 16S-like rRNA sequences from Labyrintuloides minuta and Cafeteria roenbergensis. — Phycologia 33: 369–377.Google Scholar
  68. Liaud, M.-F., Bandt, U., Scherzinger, M., Cerff, R., 1997: Evolutionary origin of cryptomonad microalgae: Two novel chloroplast/cytosol-specific GAPDH genes as potential markers of ancestral endosymbiont and host cell components. — J. Molec. Evol. 44: [Suppl 1]: S28–S37.PubMedGoogle Scholar
  69. Linneaus, C., 1753: Species plantarum. — Stockholm.Google Scholar
  70. Lockhart, P. J., Howe, C. J., Bryant, D. A., Beanland, M. D., Penny, D., 1994: Substitutional bias confounds inference of cyanelle origins from sequence data. — J. Molec. Evol. 34: 153–162.Google Scholar
  71. Lohmann, H., 1913: Über Coccolithophoriden. — Verh. Deutsch. Zool Ges. 23: 143–164.Google Scholar
  72. Loiseaux de Goër, S., 1994: Plastid lineages. — Progr. Phycol. Res. 10: 137–177.Google Scholar
  73. Luther, A., 1899: Über Chlorosaccus eine neue Gattung der Süsswasseralgen. — Beih. Kongl. Svenska Vetensk. — Akad. Handl. 24 (III, 13): 1–22.Google Scholar
  74. McFadden, G. I., Gilson, P R., Waller, R. F., 1995: Molecular phylogeny of chlorarachniophytes based on plastid rRNA and rbcL sequences. — Arch. Protistenk. 145: 231–239.Google Scholar
  75. Margulis, L., 1981: Symbiosis in cell evolution. — San Francisco: Freeman.Google Scholar
  76. Medlin, L. K., Cooper, A., Hill, C., Wrieden-Prigge, S., Wellbrock, U., 1995: Phylogenetic position of the Chromista plastids from 16S rDNA coding regions. — Curr. Genet. 28: 560–565.PubMedGoogle Scholar
  77. Barker, G. L. A., Campbell, L., Green, J. C., Hayes, P. K., Marie, D., Wrieden, S., Vaulot, D., 1996a: Genetic characterization of Emiliania huxleyi (Haptophyta). — J. Mar. Syst. 9: 13–31.Google Scholar
  78. Gersonde, R., Kooistra, W. H. C. F., Wellbrock, U., 1996b: Evolution of the diatoms (Bacillariophyta): II. Nuclear-encoded small-subunit rRNA sequence comparisons confirm a paraphyletic origin for the centric diatoms. — Molec. Biol. Evol. 13: 67–75.PubMedGoogle Scholar
  79. — — — Sims, P. A., Wellbrock, U., 1996C: Evolution of the diatoms (Bacillariophyta): III. The age of the Thalassiosirales. — Beih. Nova Hedwigia 11: 221–234.Google Scholar
  80. — — — — — 1997: Is the origin of diatoms related to the end-Permian mass extinction. — In Jahn, R., Meyer, B., Preisig, N. R. (Eds): Nova Hedwigia Festschrift für U. GEISSLER pp. 1–13. — Stuttgart: J. Cramer.Google Scholar
  81. Mereschkowsky, C., 1905: Über Natur und Ursprung der Chromotaphoren im Pflanzenreiche. — Biol. Centralbl. 25: 593–604.Google Scholar
  82. Müller, O. M. F., 1786: Animacula infusoria fluviatilia et marina. — Copenhagen: Moller.Google Scholar
  83. Moestrup, Ø., 1992: Taxonomy and phylogeny of the Heterokontophyta. — In Stabenau, H., (Ed.): Phylogenetic changes in peroxisomes of algae, phylogeny, of plant peroxisomes, pp. 383–399. — Oldenburg: University of Oldenburg.Google Scholar
  84. Palmer, J. D., 1993: A genetic rainbow of plastids. — Nature 364: 762–763.Google Scholar
  85. Parke, M., Manton, I., Clarke, B., 1955: Studies on marine flagellates. II. Three new species of Chrysochromulina. — J. Mar. Biol. Assoc. U.K. 34: 579–609.Google Scholar
  86. — — — 1956: Studies on marine flagellates. III. Three further species of Chrysochromulina. — J. Mar. Biol. Assoc. U.K. 35: 387–414.Google Scholar
  87. — — — 1958: Studies on the marine flagellates. IV. Morphology and microanatomy of a new species of Chrysochromulina. — J. Mar. Biol. Assoc. U.K. 37: 209–228.Google Scholar
  88. Pascher, A., 1910: Chrysomonaden aus dem Hirschberger Großteiche. Untersuchungen über die Flora des Hirschberger Großteiches. I. Teil. — Monogr. Abh. Int. Rev. Gesamten Hydrobiol. Hydrogr. 1: 1–66.Google Scholar
  89. — 1913: Chrysomonadinae. — In Pascher, A., (Ed.): Süsswasser-Flora Deutschlands, Österreichs und der Schweiz, 2, pp. 7–15.Google Scholar
  90. Patterson, D. J., 1989: Stramenopiles: chromophytes from a protistan perspective. — In Leadbeater, B. S. C., Diver, W. L., (Eds): The chromophyte algae, pp. 357–379. — Oxford: Clarendon Press.Google Scholar
  91. Pérasso, R., Baroin, A., Qu, L. H., Bachellerie, J. P., Adoutte, A., 1989: Origin of the algae. — Nature 339: 142–144.PubMedGoogle Scholar
  92. Pickett-Heaps, J., Schmid, A-M. M., Edgar, L. A., 1990: The cell biology of diatom valve formation. — In Round, F. E., Chapman, D. J., (Eds): Progress in phycological research, pp., 1–168. — Bristol: Biopress.Google Scholar
  93. Potter, D., LaJeunesse, T. C., Saunders, G. W., Andersen, R. A., 1996: Convergent evolution masks extensive biodiversity among marine coccoid picoplankton. — Biodiversity conservation. 6: 99–107.Google Scholar
  94. Saunders, G. W., Andersen, R. A., 1997: Phylogenetic relationships of the Raphidophyceae and Xanthophyceae as inferred from nucleotide sequences of the 18S ribosomal RNA gene. — Amer. J. Bot. 84: 966–972.Google Scholar
  95. Rabenhorst, L., 1853: Süsswasser-Diatomeen (Bacillarien), für Freunde der Mikroskopie bearbeitet. — Leipzig.Google Scholar
  96. Raven, P. H., 1970: A multiple origin for plastids and mitochondria. — Science 169: 641–646.PubMedGoogle Scholar
  97. Rensing, S. A., Obrdlik, P., Rober-Kleber, N., Müller, S. B., Hofmann, C. J. B., Maier, U.-G., 1996: Molecular phylogeny of the stress-70 protein family with certain emphasis on algal relationships. — In: 1st European Phycological Congress, Abstracts, p. 16.Google Scholar
  98. Round, E E., Crawford, R. M., Mann, D. G., 1990: The diatoms: Biology and morphology of the genera. — Cambridge: Cambridge University Press.Google Scholar
  99. Rowan, K. S., 1989: Photosynthetic pigments of algae. — Cambridge: Cambridge University Press.Google Scholar
  100. Saitou, N., Nei, M., 1987: The neighbor-joining method: a new method for reconstructing phylogenetic trees. — Molec. Biol. Evol. 4: 406–425.PubMedGoogle Scholar
  101. Saunders, G. W., Druehl, D., 1992: Nucleotide sequences of the small-subunit ribosomal RNA genes from selected Laminariales (Phaeophyta): implications for kelp evolution. — J. Phycol. 28: 544–549.Google Scholar
  102. Potter, D., Paskind, M. P., Andersen, R. A., 1995: Cladistic analyses of combined traditional and molecular data sets reveal an algal lineage. — Proc. Natl. Acad. Sci. USA 92: 244–248.PubMedGoogle Scholar
  103. Hill, D. R. A., Tyler, P. A., 1997a: Phylogenetic affinities of Chrysonephele palustris (Chrysophyceae) based on inferred nuclear small-subunit ribosomal RNA sequence. — J. Phycol. 33: 132–134.Google Scholar
  104. Potter, D., Andersen, R. A., 1997b: Phylogenetic affinities of the Sarcinochrysidales and Chrysomeridales (Heterokonta) based on analyses of molecular and combined data. — J. Phycol. 33: 310–318.Google Scholar
  105. Scamper, A. F. W., 1883: Über die Entwicklung der Chlorophyllkörner und Farbkörper. — Bot. Zeitung (Berlin) 41: 105–112.Google Scholar
  106. Silva, P. C., 1980: Names of classes and families of living algae. — Regnum Veg. 103: 1–156.Google Scholar
  107. Sleigh, M. A., 1989: Protozoa and other protists. — London: Arnold.Google Scholar
  108. Stackhouse, J., 1809: Tentamen marino-cryptogamicum, ordinem novum, in genera et species distributum, in Classe XXIVta Linnaei sistens. — Mém. Soc. Imp. Naturalistes Moscou 2: 50–97.Google Scholar
  109. Starmach, K., 1985: Chrysophyceae und Haptophyceae. — In Ettl, H., Gerloff, J., Heynig, H., Mollenhauer, D., (Eds): Süsswasserflora von Mitteleuropa 1. — Stuttgart: G. Fischer.Google Scholar
  110. Stein, F. von, 1878: Der Organismus der Infusionsthiere. 3. — Leipzig.Google Scholar
  111. Stewart, K. D., Mattox, K., 1970: Phylogeny of phytoflagellates. — In Cox, E. R., (Ed.): Phytoflagellates, pp. 433–462. — New York: Elsevier/North-Holland.Google Scholar
  112. Swofford, D. L., 1993: PAUP, Phylogenetic analysis using parsimony, version 3.1, program and documentation. — Champaign, IL: Illinois Natural History Survey, University of Illinois.Google Scholar
  113. Taggart, R. E., Parker, L. R., 1976: A new fossil alga from the Silurian of Michigan. — Amer. J. Bot. 63: 1390–1392.Google Scholar
  114. Takezaki, N., Rzhetsky, A., Nei, M., 1995: Phylogenetic test of the molecular clock and linearized trees. — Molec. Biol. Evol. 12: 823–833.PubMedGoogle Scholar
  115. Taylor, F. J. R., 1976: Flagellate phylogeny: a study in conflicts. — J. Protozool. 23: 28–40.Google Scholar
  116. Valentin, K., Cattolico, R. R., Zetzche, K., 1992: Phylogenetic origin of the plastids. — In Lewin, R. A., (Ed.): Origins of plastids, pp. 193–221. — New York: Chapman and Hall.Google Scholar
  117. Van den Hoek, C., 1978: Algen: Einführung in die Phykologie. — Stuttgart: Thieme.Google Scholar
  118. Van der Auwera, G., De Wachter, R., 1996: Large-subunit rRNA sequence of the chytridiomycete Blastocladiella emersonii, and implication for the evolution of zoosporic fungi. — J. Molec. Evol. 43: 476–483.PubMedGoogle Scholar
  119. Vesk, M., Jeffrey, S. W., 1987: Ultrastructure and pigments of two strains of the picoplanktonic alga Pelagococcus subviridis (Chrysophyceae). — J. Phycol. 23: 322–336.Google Scholar
  120. Vlk, W., 1938: Über den Bau der Geissei. — Arch. Protistenk. 90: 448–488.Google Scholar
  121. Vögel, H., Fischer, S., Valentin, K., 1996: A model for the evolution of the plastid sec apparatus inferred from secY gene phylogeny. — Pl. Molec. Biol. 32: 685–692.Google Scholar
  122. Wainright, P. O., Hickle, G., Sogin, M. L., Stickel, S. K., 1993: Monophyletic origins of the Metazoa: an evolutionary link with the fungi. — Science 260: 340–342.PubMedGoogle Scholar
  123. Wang, M. C., Bartnicia Garcia, S., 1974: Mycolaminarins: Storage (1→3) — β-D-glucans from the cytoplasm of the fungus Phytophthora palmivora. — Carbohydrate Res. 37: 331–338.Google Scholar
  124. Williams, D. M., 1991: Phylogenetic relationships among the Chromista: a review and preliminary analysis. — Cladistics 7: 141–156.Google Scholar
  125. Wray, G. A., Levington, J. S., Shapiro, L. H., 1996: Molecular evidence for deep Precambrian divergences among metazoan phyla. — Science 274: 568–573.Google Scholar
  126. Wu, C.-I., Li, W.-H., 1985: Evidence for higher rates of nucleotide substitution in rodents than in man. — Proc. Natl. Acad. Sci. USA 8: 1741–1745.Google Scholar

Copyright information

© Springer-Verlag Wien 1997

Authors and Affiliations

  • Linda K. Medlin
  • Wiebe H. C. F. Kooistra
  • Daniel Potter
  • Gary W. Saunders
  • Robert A. Andersen

There are no affiliations available

Personalised recommendations