Wavelet Radiosity on Arbitrary Planar Surfaces

  • Nicolas Holzschuch
  • François Cuny
  • Laurent Alonso
  • LORIA
Conference paper
Part of the Eurographics book series (EUROGRAPH)

Abstract

Wavelet radiosity is, by its nature, restricted to parallelograms or triangles. This paper presents an innovative technique enabling wavelet radiosity computations on planar surfaces of arbitrary shape, including concave contours or contours with holes. This technique replaces the need for triangulating such complicated shapes, greatly reducing the complexity of the wavelet radiosity algorithm and the computation time. It also gives a better approximation of the radiosity function, resulting in better visual results. Our technique works by separating the radiosity function from the surface geometry, extending the radiosity function defined on the original shape onto a simpler domain — a parallelogram — better behaved for hierarchical refinement and wavelet computations.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. R. Baum, S. Mann, K. P. Smith, and J. M. Winget. Making Radiosity Usable: Automatic Preprocessing and Meshing Techniques for the Generation of Accurate Radiosity Solutions. Computer Graphics (ACM SIGGRAPH ’91 Proceedings), 25(4):51–60, July 1991.CrossRefGoogle Scholar
  2. 2.
    P. Bekaert and Y. Willems. Error Control for Radiosity. In Rendering Techniques ’96 (Proceedings of the Seventh Eurographics Workshop on Rendering), pages 153–164, New York, NY, 1996. Springer-Verlag/Wien.Google Scholar
  3. 3.
    P. Bekaert and Y. D. Willems. Hirad: A Hierarchical Higher Order Radiosity Implementation. In Proceedings of the Twelfth Spring Conference on Computer Graphics (SCCG ’96), Bratislava, Slovakia, June 1996. Comenius University Press.Google Scholar
  4. 4.
    J.-D. Boissonnat and M. Yvinec. Algorithmic Geometry. Cambridge University Press, 1998.MATHCrossRefGoogle Scholar
  5. 5.
    K. Bouatouch and S. N. Pattanaik. Discontinuity Meshing and Hierarchical Multiwavelet Radiosity. In W. A. Davis and P. Prusinkiewicz, editors, Proceedings of Graphics Interface ’95, pages 109–115, San Francisco, CA, May 1995. Morgan Kaufmann.Google Scholar
  6. 6.
    X. Cavin, L. Alonso, and J.-C. Paul. Parallel Wavelet Radiosity. In Second Eurographics Workshop on Parallel Graphics and Visualisation, pages 61–75, Rennes, France, Sept. 1998.Google Scholar
  7. 7.
    F. Cuny, L. Alonso, and N. Holzschuch. A novel approach makes higher order wavelets really efficient for radiosity. Computer Graphics Forum (Eurographics 2000 Proceedings), 19(3), Sept. 2000. To appear. Available from http://www.lona.fr/~holzschu/Publications/paper20.pdf/~holzschu/Publications/paper20.pdf.Google Scholar
  8. 8.
    O. Devillers, M. Teillaud, and M. Yvinec. Dynamic location in an arrangement of line segments in the plane. Algorithms Review, 2(3):89–103, 1992.Google Scholar
  9. 9.
    H. Edelsbrunner. Algorithms in Combinatorial Geometry, volume 10 of EATCS Monographs on Theoretical Computer Science. Springer-Verlag, Nov. 1987.MATHCrossRefGoogle Scholar
  10. 10.
    S. Gibson and R. J. Hubbold. Efficient hierarchical refinement and clustering for radiosity in complex environments. Computer Graphics Forum, 15(5):297–310, Dec. 1996.CrossRefGoogle Scholar
  11. 11.
    C.M. Goral, K. E. Torrance, D. P. Greenberg, and B. Battaile. Modelling the Interaction of Light Between Diffuse Surfaces. Computer Graphics (ACM SIGGRAPH ’84 Proceedings), 18(3):212–222, July 1984.Google Scholar
  12. 12.
    S. J. Gortler, P. Schroder, M. F. Cohen, and P. Hanrahan. Wavelet Radiosity. In Computer Graphics Proceedings, Annual Conference Series, 1993 (ACM SIGGRAPH ’93 Proceedings), pages 221–230, 1993.Google Scholar
  13. 13.
    P. Hanrahan, D. Salzman, and L. Aupperle. A Rapid Hierarchical Radiosity Algorithm. Computer Graphics (ACM SIGGRAPH ’91 Proceedings), 25(4): 197–206, July 1991.CrossRefGoogle Scholar
  14. 14.
    J. M. Hasenfratz, C. Damez, F. Sillion, and G. Drettakis. A practical analysis of clustering strategies for hierarchical radiosity. Computer Graphics Forum (Eurographics ’99 Proceedings), 18(3):C-221-C-232, Sept. 1999.CrossRefGoogle Scholar
  15. 15.
    C. Schwarz, J. Teich, A. Vainshtein, E. Welzl, and B. L. Evans. Minimal enclosing parallelogram with application. In Proc. 11th Annu. ACM Sympos. Comput. Geom., pages C34–C35, 1995.Google Scholar
  16. 16.
    F. Sillion. A Unified Hierarchical Algorithm for Global Illumination with Scattering Volumes and Object Clusters. IEEE Transactions on Visualization and Computer Graphics. 1(3), Sept. 1995.Google Scholar
  17. 17.
    B. Smits, J. Arvo, and D. Greenberg. A Clustering Algorithm for Radiosity in Complex Environments. In Computer Graphics Proceedings, Annual Conference Series, 1994 (ACM SIGGRAPH ’94 Proceedings), pages 435–442, 1994.Google Scholar
  18. 18.
    M. Stamminger, H. Schirmacher, P. Slusallek, and H.-P. Seidel. Getting rid of links in hierarchical radiosity. Computer Graphics Journal (Proc. Eurographics ’98), 17(3):C165–C174, Sept. 1998.CrossRefGoogle Scholar
  19. 19.
    A. Willmott and P. Heckbert. An empirical comparison of progressive and wavelet radiosity. In J. Dorsey and P. Slusallek, editors, Rendering Techniques ’97 (Proceedings of the Eighth Eurographics Workshop on Rendering), pages 175–186, New York, NY, 1997. Springer Wien. ISBN 3–211–83001–4.Google Scholar
  20. 20.
    A. Willmott, P. Heckbert, and M. Garland. Face cluster radiosity. In Rendering Techniques ’99, pages 293–304, New York, NY, 1999. Springer Wien.CrossRefGoogle Scholar
  21. 21.
    C. Winkler. Expérimentation d’algorithmes de calcul de radiosité à base d’ondelettes. Thèse d’université, Institut National Polytechnique de Lorraine, 1998.Google Scholar

Copyright information

© Springer-Verlag Wien 2000

Authors and Affiliations

  • Nicolas Holzschuch
    • 1
    • 3
  • François Cuny
    • 1
    • 4
  • Laurent Alonso
    • 1
    • 3
  • LORIA
    • 2
    • 5
  1. 1.ISA research teamUSA
  2. 2.Campus ScientifiqueVandœuvre-les-Nancy CEDEXFrance
  3. 3.INRIA LorraineFrance
  4. 4.Institut National Polytechnique de LorraineFrance
  5. 5.UMR n° 7503 LORIA, a joint research laboratory between CNRS, Institut National Polytechnique de Lorraine, INRIAUniversité Henri Poincaré and Université Nancy 2France

Personalised recommendations