Mechanisms of tissue injury in multiple sclerosis: opportunities for neuroprotective therapy

  • S. Pouly
  • J. P. Antel
  • U. Ladiwala
  • J. Nalbantoglu
  • B. Becher
Conference paper


Development of neuroprotective therapies for multiple sclerosis is dependent on defining the precise mechanisms whereby immune effector cells and molecules are able to induce relatively selective injury of oligodendrocytes (OLs) and their myelin membranes. The selectivity of this injury could be conferred either by the properties of the effectors or the targets. The former would involve antigen specific recognition by either antibody or T cell receptor of the adaptive immune system. OLs are also susceptible to non antigen restricted injury mediated by components of the innate immune system including macrophages/microglia and NK cells. Target related selectivity could reflect the expression of death inducing surface receptors (such as Fas or TNFR-1) required for interaction with effector mediators and subsequent intracellular signaling pathways, including the caspase cascade. Development of therapeutic delivery systems, which would reach the site of disease activity within the CNS, will permit the administration of inhibitors either of the cell death pathway or of effector target inter action and opens new avenues to neuroprotection approach.


Multiple Sclerosis Neuroprotective Therapy Myelin Membrane Human Oligodendrocyte Central Nervous System Virus Infection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Antel J.P., Williams K, Blain M, McRea E, McLaurin J (1994) Oligodendrocyte lysis by CD4+ T cells independent of tumor necrosis factor. Ann Neurol 35: 341–348PubMedCrossRefGoogle Scholar
  2. Antel J.P., McCrea E, Ladiwala U, Qin Y.F., Becher B (1998) Non-MHC-restricted cell-mediated lysis of human oligodendrocytes in vitro: relation with CD56 expression. J Immunol 160: 1606–1611PubMedGoogle Scholar
  3. Becher B, D’Souza S, Troutt A.B., Antel J.P. (1998) Fas expression on human fetal astrocytes without susceptibility to Fas-mediated cytotoxicity. Neuroscience 84(2): 627–634PubMedCrossRefGoogle Scholar
  4. Cheng Y, Deshmukh M, D’Costa A, Demaro J.A., Gidday J.M., Shah A, Sun Y, Jacquin M.F., Johnson E.M., Holtzman D.M. (1998) Caspase inhibitor affords neuroprotection with delayed administration in a rat model of neonatal hypoxic-ischemic brain injury. J Clin Invest 101: 1992–1999PubMedCrossRefGoogle Scholar
  5. D’Souza S, Alinauskas K, McCrea E, Goodyer C, Antel J.P. (1995) Differential susceptibility of human CNS-derived cell populations to TNF-dependent and independent immune-mediated injury. J Neurosci 15: 7293–7300Google Scholar
  6. D’Souza S, Bonetti B, Balasingam V, Cashman N.R., Barker P.A., Troutt A.B., Raine C.S., Antel J.P. (1996a) Multiple sclerosis: Fas signaling in oligodendrocyte cell death. J Exp Med 184: 2361–2370CrossRefGoogle Scholar
  7. D’Souza S.D., Alinauskas K.A., Antel J.P. (1996b) Ciliary neurotrophic factor selectively protects human oligodendrocytes from tumor necrosis factor-mediated injury. J Neurosci Res 43: 289–298CrossRefGoogle Scholar
  8. De Stefano N, Matthews P.M., Fu L, Narayanan S, Stanley J, Francis G.S., Antel J.P., Arnold D.L. (1998) Axonal damage correlates with disability in patients with relapsing-remitting multiple sclerosis. Results of a longitudinal magnetic resonance spectroscopy study. Brain 121: 1469–1477PubMedCrossRefGoogle Scholar
  9. Dowling P, Shang G, Raval S, Menonna J, Cook S, Husar W (1996) Involvement of the CD95 (APO-1/Fas) receptor/ligand system in multiple sclerosis brain. J Exp Med 184:1513–1518PubMedCrossRefGoogle Scholar
  10. Jurewicz A, Biddison W.E., Antel J.P. (1998) MHC class I-restricted lysis of human oligodendrocytes by myelin basic protein peptide-specific CD8 T lymphocytes. J Immunol 160: 3056–3059PubMedGoogle Scholar
  11. Ladiwala U, Lachance C, Simoneau S.J.J., Barker P.A., Antel J.P. (1997) Adult human oligodendrocytes expressing p75 neurotrophin receptor do not undergo apoptosis in response to NGF. J Neurosci 18: 1297–1300Google Scholar
  12. Ladiwala U, Li H, Antel J.P., Nalbantoglu J (1999) p53 induction by tumor necrosis factor-alpha and involvement of p53 in cen death of human oligodendrocytes. J Neurochem 73: 605–611PubMedCrossRefGoogle Scholar
  13. Lafortune L, Nalbantoglu J, Antel J.P. (1996) Expression of tumor necrosis factor alpha (TNF alpha) and interleukin 6 (IL-6) mRNA in adult human astrocytes: comparison with adult microglia and fetal astrocytes. J Neuropathol Exp Neurol 55: 515–521PubMedCrossRefGoogle Scholar
  14. Lassmann H, Raine C.S., Antel J, Prineas J.W. (1998) Immunopathology of multiple sclerosis: report on an international meeting held at the Institute of Neurology of the University of Vienna. J Neuroimmunol 86: 213–217PubMedCrossRefGoogle Scholar
  15. Lucchinetti C.F., Brück W (1996) Distinct patterns of multiple sclerosis pathology indicates heterogeneity in pathogenesis. Brain Pathol 6: 259–274PubMedCrossRefGoogle Scholar
  16. Miller S.D., Vanderlugt C.L., Begolka W.S., Pao W, Yauch R.L., Neville KL, Katz-Levy Y, Carrizosa A, Kim B.S. (1997) Persistent infection with Theiler’s virus leads to CNS autoimmunity via epitope spreading. Nat Med 3: 1133–1136PubMedCrossRefGoogle Scholar
  17. Noble P.G., Antel J.P., Yong V.W. (1994) Astrocytes and catalase prevent the toxicity of catecholamines to oligodendrocytes. Brain Res 633: 83–90PubMedCrossRefGoogle Scholar
  18. Pouly S, Becher B, Blain M, Antel J.P. (2000) Interferon-gamma modulates human oligodendrocyte susceptibility to Fas-mediated apoptosis. J Neuropathol Exp Neurol 59: 280–286PubMedGoogle Scholar
  19. Probert L, Akassoglou K, Kassiotis G, Pasparakis M, Alexopoulou L, Kollias G (1997) TNF-alpha transgenic and knockout models of CNS inflammation and degeneration. J Neuroimmunol 72: 137–141PubMedCrossRefGoogle Scholar
  20. Raine C.S. (1997) The Norton Lecture: a review of the oligodendrocyte in the multiple sclerosis lesion. J Neuroimmunol 77: 135–152PubMedCrossRefGoogle Scholar
  21. Taupin V, Renno T, Bourbonniere L, Peterson A.C., Rodriguez M, Owens T (1997) Increased severity of experimental autoimmune encephalomyelitis, chronic macrophage/microglial reactivity, and demyelination in transgenic mice producing tumor necrosis factor-alpha in the central nervous system. Eur J Immunol 27: 905–913PubMedCrossRefGoogle Scholar
  22. Thornberry N.A., Lazebnik Y (1998) Caspases: enemies within. Science 281: 1312–1316PubMedCrossRefGoogle Scholar
  23. Tran E.H., Hardin-Pouzet H, Verge G, Owens T (1997) Astrocytes and microglia express inducible nitric oxide synthase in mice with experimental allergic encephalomyelitis. J Neuroimmunol 74: 121–129PubMedCrossRefGoogle Scholar
  24. Trapp B.D., Peterson J, Ransohoff R.M., Rudick R, Mork S, Bo L (1998) Axonal transecti on in the lesions of multiple sclerosis. N Engl J Med 338: 278–285PubMedCrossRefGoogle Scholar
  25. Vergelli M, Le H, van Noort J.M., Dhib-Jalbut S, McFarland H, Martin R (1996) A novel population of CD4+CD56+ myelin-reactive T cens lyses target cens expressing CD56/neural cen adhesion molecule. J Immunol 157: 679–688PubMedGoogle Scholar
  26. Yong V.W., Antel J.P. (1997) Culture of glial cens from human brain biopsies. In: Fedoroff S, Richardson A (eds) Protocols for neural cen culture. Humana Press, Totowa NJ, pp 157–173Google Scholar
  27. Zeine R, Pon R, Ladiwala U, Antel J.P., Filion L.G., Freedman M.S. (1998) Mechanism of gammadelta T cell-induced human oligodendrocyte cytotoxicity: relevance to multiple sclerosis. J Neuroimmunol 87: 49–61PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2000

Authors and Affiliations

  • S. Pouly
    • 1
  • J. P. Antel
    • 1
  • U. Ladiwala
    • 1
  • J. Nalbantoglu
    • 1
  • B. Becher
    • 1
  1. 1.Neuroimmunology UnitMontreal Neurological Institute, McGill UniversityMontrealCanada

Personalised recommendations