Advertisement

Implicit Surfaces Revisited — I-Patches

  • T. Várady
  • P. Benkö
  • G. Kós
  • A. Rockwood
Conference paper
Part of the Computing book series (COMPUTING, volume 14)

Abstract

Techniques to combine implicit surfaces have been widely used in the context of blending surfaces, but not for making n-sided patches. This is mainly due to the lack of proper control for the interior of complex shapes and control of separate branches. The main attraction of implicit formulations is, however, that they represent a general paradigm based on distance functions. This property motivates our scheme, wherein classical implicit techniques are mixed with new features. Several examples are given to prove the feasibility of I-patches for shape design.

AMS Subject Classifications

68U07 65D17 

Key Words

Computer aided design implicit surfaces n-sided patches 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Bajaj, C., Ihm, I.: C1 Smoothing of polyhedra with implicit algebraic splines. Comput. Graphics 11, 61–91 (1992).zbMATHCrossRefGoogle Scholar
  2. [2]
    Charrot, P., Gregory, J. A.: A pentagonal surface patch for computer aided design. Comput. Aided Geom. Des. 1, 87–94 (1984).zbMATHGoogle Scholar
  3. [3]
    Hartmann, E.: Blending implicit surfaces with functional splines. Comput. Aided Des. 22, 500506 (1990).Google Scholar
  4. [4]
    Hartmann, E.: On the convexity of functional splines. Comput. Aided Geom. Des. 10, 127–142 (1993).MathSciNetzbMATHGoogle Scholar
  5. [5]
    Hoffmann, C. M., Hoperoft, J.: Quadratic blending surfaces. Comput. Aided Des. 18, 301–306 (1986).CrossRefGoogle Scholar
  6. [6]
    Hoffmann, C. M., Hoperoft, J.: The potential method for blending surfaces and corners. In: Geometric modelling, algorithms and new trends (Farin, G., ed.), pp. 347–365. Philadelphia: SIAM, 1987.Google Scholar
  7. [7]
    Holmström, L.: Piecewise quadratic blending of implicitly defined surfaces. Comput. Aided Geom. Des. 4, 171–189 (1987).zbMATHCrossRefGoogle Scholar
  8. [8]
    Hoschek, J., Lasser, D.: Fundamentals of computer aided geometric design. Wellesley: A. K. Peters, 1993.zbMATHGoogle Scholar
  9. [9]
    Bloomenthal, J. (ed.): Introduction to implicit surfaces. San Francisco: Morgan Kaufman, 1997.zbMATHGoogle Scholar
  10. [10]
    Li, J., Hoschek, J., Hartmann, E.: G’ functional splines for interpolation and approximation of curves, surfaces and solids. Comput. Aided Geom. Des. 7, 209–220 (1990).MathSciNetzbMATHCrossRefGoogle Scholar
  11. [11]
    Liming, R. A.: Practical analytical geometry with applications to aircraft. New York: Macmillan, 1944.Google Scholar
  12. [12]
    Loop, C., DeRose, T. D.: Generalised B-spline surfaces of arbitrary topological type. SIGGRAPH’90, 347–356 (1990).Google Scholar
  13. [13]
    Malraison, P.: A bibliography for n-sided surfaces. In: The mathematics of surfaces VIII (Cripps, R., ed.), pp. 419–430. Information Geometers, 1998.Google Scholar
  14. [14]
    Middleditch, A. E., Sears, K. H.: Blend surfaces for set theoretic volume modelling systems. SIGGRAPH’85. Comput. Graphics 19, 161–170 (1985).CrossRefGoogle Scholar
  15. [15]
    Rockwood, A. P., Owen, J.: Blending surfaces in solid modelling. In: Geometric modelling, algorithms and new trends (Farin, G., ed.), pp. 367–384. Philadelphia: SIAM, 1987.Google Scholar
  16. [16]
    Rockwood, A. P.: The displacement method for implicit blending surfaces in solid models. ACM Trans. Graphics 8, 279–297 (1989).zbMATHCrossRefGoogle Scholar
  17. [17]
    Sederberg, T.: Piecewise algebraic surface patches. Comput. Aided Geom. Des. 2, 53–59 (1985).MathSciNetzbMATHCrossRefGoogle Scholar
  18. [18]
    Taubin, G.: Estimation of planar curves, surfaces and nonplanar space curves defined by implicit equations with applications to edge and range image segmentation. IEEE PAMI 13, 1115–1138 (1991).CrossRefGoogle Scholar
  19. [19]
    Vaishnav, H., Rockwood, A. P.: Blending parametric objects by implicit techniques. In: 2nd Symposium on Solid Modeling and Applications (Rossignac, J., Turner, J., Allen, G., eds.), pp. 165–168. ACM SIGGRAPH (1993).Google Scholar
  20. [20]
    Várady, T.: Overlap patches: a new scheme for interpolating curve networks with n-sided regions. Comput. Aided Geom. Des. 1, 7–27 (1991).CrossRefGoogle Scholar
  21. [21]
    Várady, T., Rockwood, A.: A geometric construction for setback vertex blending. Comput. Aided Des. 29, 413–425 (1997).CrossRefGoogle Scholar
  22. [22]
    Vida, J., Martin, R. R., Várady, T.: A survey of blending methods that use parametric patches. Comput. Aided Des. 26, 341–365 (1994).zbMATHCrossRefGoogle Scholar
  23. [23]
    Warren, J.: Blending algebraic surfaces. ACM Trans. Graphics 8, 263–278 (1989).zbMATHCrossRefGoogle Scholar
  24. [24]
    Woodwark, J. R.: Blends in geometric modelling. In: The mathematics of surfaces II (Martin, R. R., ed.), pp. 255–297. Oxford University Press: OUP, 1987.Google Scholar
  25. [25]
    Zhang, D.: CSG Solid modelling and automatic NC machining of blend surfaces. PhD Dissertation, University of Bath, 1986.Google Scholar

Copyright information

© Springer-Verlag Wien 2001

Authors and Affiliations

  • T. Várady
    • 1
  • P. Benkö
    • 1
  • G. Kós
    • 1
  • A. Rockwood
    • 2
  1. 1.Computer and Automation Research InstituteHungarian Academy of SciencesBudapestHungary
  2. 2.Mitsubishi Electric Research LabsCambridgeUSA

Personalised recommendations