Preserving the Mental Map using Foresighted Layout

Conference paper
Part of the Eurographics book series (EUROGRAPH)


First we introduce the concept of graph animations as a sequence of evolving graphs and a generic algorithm which computes a Foresighted Layout for dynamically drawing these graphs while preserving the mental map. The algorithm is generic in the sense that it takes a static graph drawing algorithm as a parameter. In other words, trees can be animated with a static tree layouter, graphs with a static Sugiyama-style layouter or a spring embedder, etc. Second we discuss applications of Foresighted Layout in algorithm animation and visualization of navigation behaviour.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. Di Battista, P. Eades, R. Tamassia, and I. G. Tollis. Algorithms for Drawing Graphs: an Annotated Bibliography. Computational Geometry: Theory and Applications, 4:235–282, 1994.MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    S. Diehl, C. Görg, and A. Kerren. Foresighted Graphlayout. Technical Report A/02/2000, FR 6.2—Informatik, University of Saarland, December 2000.
  3. 3.
    S. Diehl and A. Kerren. Increasing Explorativity by Generation. In Proceedings of World Conference on Educational Multimedia, Hypermedia and Telecommunications, EDMEDIA-2000. AACE, 2000.Google Scholar
  4. 4.
    S. Diehl and A. Kerren. Levels of Exploration. In Proceedings of the 32nd Technical Symposium on Computer Science Education, SIGCSE 2001. ACM, 2001.Google Scholar
  5. 5.
    GANIMAL. Project Homepage.
  6. 6.
    M. R. Garey and D. S. Johnson. Computers and Intractability. A Guide to the Theory of NP-Completeness. Freeman and Company, 1979.Google Scholar
  7. 7.
    I. Herman, G. Melancon, and M. S. Marshall. Graph Visualization and Navigation in Information Visualization: A Survey. IEEE Transactions on Visualization and Computer Graphics, 6(1):24–43, 2000.CrossRefGoogle Scholar
  8. 8.
    K. Misue, P. Eades, W. Lai, and K. Sugiyama. Layout Adjustment and the Mental Map. Journal of Visual Languages and Computing, 6(2):183–210, 1995.CrossRefGoogle Scholar
  9. 9.
    G. Sander. Visualization Techniques for Compiler Construction. Dissertation (in german), University of Saarland, Saarbrücken (Germany), 1996.Google Scholar
  10. 10.
    G. Sander, M. Alt, C. Ferdinand, and R. Wilhelm. CLaX—a Visualized Compiler. In F. J. Brandenburg, editor, Graph Drawing (Proc. GD’ 95), volume 1027 of Lecture Notes Computer Science. Springer-Verlag, 1996.Google Scholar
  11. 11.
    K. Sugiyama, S. Tagawa, and M. Toda. Methods for Visual Understanding of Hierarchical Systems. IEEE Transactions on Systems, Man and Cybernetics, SMC 11(2):109–125, 1981.MathSciNetCrossRefGoogle Scholar
  12. 12.
    Reinhard Wilhelm and Dieter Maurer. Compiler Design: Theory, Construction, Generation. Addison-Wesley, 2nd printing edition, 1996.Google Scholar

Copyright information

© Springer-Verlag Wien 2001

Authors and Affiliations

  1. 1.University of SaarlandSaarbrückenGermany

Personalised recommendations