Fractional Calculus

Some Basic Problems in Continuum and Statistical Mechanics
  • F. Mainardi
Part of the International Centre for Mechanical Sciences book series (CISM, volume 378)


We review some applications of fractional calculus developed by the author (partly in collaboration with others) to treat some basic problems in continuum and statistical mechanics. The problems in continuum mechanics concern mathematical modelling of viscoelastic bodies (§1), and unsteady motion of a particle in a viscous fluid, i.e. the Basset problem (§2). In the former analysis fractional calculus leads us to introduce intermediate models of viscoelasticity which generalize the classical spring-dashpot models. The latter analysis leads us to introduce a hydrodynamic model suitable to revisit in §3 the classical theory of the Brownian motion, which is a relevant topic in statistical mechanics. By the tools of fractional calculus we explain the long tails in the velocity correlation and in the displacement variance. In §4 we consider the fractional diffusion-wave equation, which is obtained from the classical diffusion equation by replacing the first-order time derivative by a fractional derivative of order α with 0 < α < 2. Our analysis leads us to express the fundamental solutions (the Green functions) in terms of two interrelated auxiliary functions in the similarity variable, which turn out to be of Wright type (see Appendix), and to distinguish slow-diffusion processes (0 < α < 1) from intermediate processes (1 < α < 2).

1991 Mathematics Subject Classification

26A33 33E20 44A20 45J05 45K05 60E07 60J60 60J65 73F05. 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gross, B.: Mathematical Structure of the Theories of Viscoelasticity, Hermann, Paris, 1953.MATHGoogle Scholar
  2. 2.
    Bland, D.R.: The Theory of Linear Viscoelasticity, Pergamon, Oxford 1960.MATHGoogle Scholar
  3. 3.
    Caputo, M. and F. Mainardi: Linear models of dissipation in anelastic solids, Riv. Nuovo Cimento (Ser. II ), 1 (1971), 161–198.Google Scholar
  4. 4.
    Christensen, R.M.: Theory of Viscoelasticity, Academic Press, New York 1982.Google Scholar
  5. 5.
    Pipkin, A.C.: Lectures on Viscoelastic Theory, Springer Verlag, New York 1986.Google Scholar
  6. 6.
    Berg, C. and G. Forst: Potential Theory on Locally Compact Abelian Groups,Springer Verlag, Berlin 1975, §9., pp. 61–72.Google Scholar
  7. 7.
    Zener, C.M.: Elasticity and Anelasticity of Metals, Chicago University Press, Chicago 1948.Google Scholar
  8. 8.
    Gorenflo, R. and F. Mainardi: Fractional calculus: integral and differential equations of fractional order, in Fractals and Fractional Calculus in Continuum Mechanics (Ed. A. Carpintefi and F. Mainardi), Springer Verlag, Wien 1997, this book.Google Scholar
  9. 9.
    Scott-Blair, G.W.: Survey of General and Applied Rheology, Pitman, London 1949.Google Scholar
  10. 10.
    Caputo, M. and F. Mainardi: A new dissipation model based on memory mechanism, Pure and Appl. Geophys., 91 (1971), 134–147.Google Scholar
  11. 11.
    Gemant, A.: On fractional differentials, Phil. Mag. [Ser. 7], 25 (1938), 540–549.Google Scholar
  12. 12.
    Gemant, A.: Frictional Phenomena, Chemical Publ. Co, Brooklyn N.Y. 1950.Google Scholar
  13. 13.
    Scott-Blair, G.W. and J.E. Caffy: An application of the theory of quasi-properties to the treatment of anomalous stress-strain relations, Phil. Mag. [Ser. 7], 40 (1949), 80–94.Google Scholar
  14. 14.
    Rabotnov, Yu.N.: Equilibrium of an elastic medium with after effect, Prikl. Matem. i Mekh., 12 (1948), 81–91. [in Russian]Google Scholar
  15. 15.
    Rabotnov, Yu.N.: Elements of Hereditary Solid Mechanics, MIR, Moscow 1980.MATHGoogle Scholar
  16. 16.
    Meshkov, S.I. and Yu.A. Rossikhin: Sound wave propagation in a viscoelastic medium whose hereditary properties are determined by weakly singular kernels, in Waves in Inelastic Media (Ed. Yu.N. Rabotnov ), Kishinev 1970, 162–172. [in Russian]Google Scholar
  17. 17.
    Lokshin, A.A. and Yu.V. Suvorova: Mathematical Theory of Wave Propagation in Media with Memory, Moscow University Press, Moscow 1982. [in Russian]MATHGoogle Scholar
  18. 18.
    Caputo, M.: Linear models of dissipation whose Q is almost frequency independent, Annali di Geofisica, 19 (1966), 383–393.Google Scholar
  19. 19.
    Caputo, M.: Linear models of dissipation whose Q is almost frequency independent, Part IL, Geophys. J. R. Astr. Soc., 13 (1967), 529–539.Google Scholar
  20. 20.
    Caputo, M.: Elasticità e Dissipazione, Zanichelli, Bologna 1969.Google Scholar
  21. 21.
    Caputo, M.: Vibrations of an infinite viscoelastic layer with a dissipative memory, J. Acoust. Soc. Am., 56 (1974), 897–904.MATHGoogle Scholar
  22. 22.
    Caputo, M.: A model for the fatigue in elastic materials with frequency independent Q, J. Acoust. Soc. Am., 66 (1979), 176–179.Google Scholar
  23. 23.
    Caputo, M: Generalized rheology and geophysical consequences, Tectonophysics, 116 (1985), 163–172.Google Scholar
  24. 24.
    Caputo, M.: Modern rheology and electric indution: multivalued index of refraction, splitting of eigenvalues and fatigues, Annali di Geofisica, 39 (1996), 941–966.Google Scholar
  25. 25.
    Mainardi, F. and E. Bonetti: The application of real-order derivatives in linear viscoelasticity, Rheol. Acta, 26 Suppl. (1988), 64–67.Google Scholar
  26. 26.
    Mainardi, F.: Fractional relaxation in anelastic solids, J. Alloys and Compounds, 211/212 (1994), 534–538.Google Scholar
  27. 27.
    Smith, W. and H. de Vries: Rheological models contaaining fractional derivatives, Rheol. Acta, 9 (1970), 525–534.Google Scholar
  28. 28.
    Scarpi, G.B.: Sui modelli reologici intermedi per liquidi viscoelastici, Atti Accademia Scienze Torino, Classe Sci. fis. mat. nat., 107 (1973), 239–243.MATHGoogle Scholar
  29. 29.
    Stiassnie, M.: On the application of fractional calculus for the formulation of viscoelastic models, Appl. Math. Modelling, 3 (1979), 300–302.MATHGoogle Scholar
  30. 30.
    Bagley, R.L. and P.J. Torvik: A generalized derivative model for an elastomer damper, Shock Vib. Bull., 49 (1979), 135–143.Google Scholar
  31. 31.
    Bagley, R.L. and P.J. Torvik: A theoretical basis for the application of fractional calculus, J. Rheology, 27 (1983), 201–210.MATHGoogle Scholar
  32. 32.
    Torvik, P.J. and R.L. Bagley: On the appearance of the fractional derivatives in the behavior of real materials, J. Appl. Mech., 51 (1984), 294–298.MATHGoogle Scholar
  33. 33.
    Bagley R.L. and P.J. Torvik: On the fractional calculus model of viscoelastic behavior, J. Rheology, 30 (1986), 133–155.MATHGoogle Scholar
  34. 34.
    Rogers, L.: Operator and fractional derivatives for viscoelastic constitutive equations, J. Rheology, 27 (1983), 351–372.MATHGoogle Scholar
  35. 35.
    Koeller, R.C.: Applications of fractional calculus to the theory of viscoelasticity, J. Appl. Mech., 51 (1984), 299–307.MATHMathSciNetGoogle Scholar
  36. 36.
    Koeller, R.C.: Polynomial operators, Stieltjes convolution and fractional calculus in hereditary mechanics, Acta Mech., 58 (1986), 251–264.MATHMathSciNetGoogle Scholar
  37. 37.
    Koh, C.G. and J.M. Kelly: Application of fractional derivatives to seismic analysis of base-isolated models, Earthquake Engineering and Structural Dynamics, 19 (1990), 229–241.Google Scholar
  38. 38.
    Friedrich, C.: Mechanical stress relaxation in polymers: fractional integral model versus fractional differential model, J. Non-Newtonian Fluid Mech., 46 (1993), 307–314.MATHGoogle Scholar
  39. 39.
    Nonnenmacher, T.F. and W.G. Glöckle: A fractional model for mechanical stress relaxation, Phil. Mag. Lett., 64 (1991), 89–93.Google Scholar
  40. 40.
    Glöckle, W.G. and T.F. Nonnenmacher: Fractional relaxation and the time-temperature superposition principle, Reol. Acta, 33 (1994) 337–343.Google Scholar
  41. 41.
    Makris, N. and M.C. Constantinou: Models of viscoelasticity with complex-order derivatives, J. Eng. Mech., 119 (1993), 1453–1464.Google Scholar
  42. 42.
    Heymans, N. and J.-C. Bauwens: Fractal rheological models and fractional differential equations for viscoelastic behavior, Rheologica Acta, 33 (1994), 219–219.Google Scholar
  43. 43.
    Schiessel, H., Metzler, R., Blumen, A. and T.F. Nonnenmacher: Generalized viscoelastic models: their fractional equations with solutions, J. Physics A: Math. Gen., 28 (1995), 6567–6584.MATHGoogle Scholar
  44. 44.
    Gaul, L., Klein, P. and S. Kempfle: Damping description involving fractional operators, Mechanical Systems and Signal Processing, 5 (1989), 81–88.Google Scholar
  45. 45.
    Beyer, H. and S. Kempfle: Definition of physically consistent damping laws with fractional derivatives, ZAMM, 75 (1995), 623–635.MATHMathSciNetGoogle Scholar
  46. 46.
    Fenander, A.: Modal synthesis when modelling damping by use of fractional derivatives, AIAA Journal, 34 (1996), 1051–1058.MATHGoogle Scholar
  47. 47.
    Pritz, T.: Analysis of four-parameter fractional derivative model of real solid materials, J. Sounds Vibr., 195 (1996), 103–115.MATHGoogle Scholar
  48. 48.
    Rossikhin, Yu.A. and M.V.. Shitikova: Applications of fractional calculus to dy- namic problem; of linear and non linear hereditary mechanics of solids, Appl. Mech. Rev., 50 (1997), 16–67.Google Scholar
  49. 49.
    Rossikhin, Yu.A., Shitikova, M.V. and M.A. Kolesnikov: Impact of two independent fractional parameters upon the damping properties of hereditarily elastic single-mass systems, J. Vibr. Control (1997), submitted.Google Scholar
  50. 50.
    Lion, A.: On the thermodynamics of fractional damping elements within the framework of rheological models, Continnum Mechanics & Thermodynamcis (1997), in press.Google Scholar
  51. 51.
    Boussinsesq, J.: Sur la résistance qu’oppose un liquid indéfini en repos, san pesanteur, au mouvement varié d’une sphère solide qu’il mouille sur toute sa surface, quand les vitesses restent bien continues et assez faibles pour que leurs carrés et produits soient négligeables, C.R. Acad. Paris, 100 (1885), 935–937.Google Scholar
  52. 52.
    Basset, A. B.: A Treatise on Hydrodynamics,Vol.2, Deighton Bell, Cambridge 1888, Chap. 22.Google Scholar
  53. 53.
    Stokes, G.G.: On the effect of the internal friction of fluids on the motion of pendulums, Cambridge Phil. Trans., 9, [8] (1851), reprinted in Mathematical and Physical Papers, Vol. III, pp. 1–141, Cambridge Univ. Press, 1922.Google Scholar
  54. 54.
    Picciati, G.: Sul moto di una sfera in un liquido viscoso, Rend. R. Acc. Naz. Lincei (ser. 5), 16 (1907), 943–951. [1-st sem.]Google Scholar
  55. 55.
    Boggio, T.: Integrazione dell’equazione funzionale the regge la caduta di.una sfera in un liquido viscoso, Rend. R. Acc. Naz. Lincei (ser. 5), 16 (1907), 613–620, 730–737. [2-nd sem.]MATHGoogle Scholar
  56. 56.
    Basset, A.B.: On the descent of a sphere in a viscous liquid“, Quart. J. Math, 41, 369–381 (1910).MATHGoogle Scholar
  57. 57.
    Hughes, R.R. and E.R. Gilliand: The mechanics of drops, Chem. Engng. Progress, 48 (1952), 497–504.Google Scholar
  58. 58.
    Odar, F. and W.S. Hamilton: Forces on a sphere accelerating in a viscous fluid, J. Fluid Mech., 18 (1964), 302–314.MATHGoogle Scholar
  59. 59.
    Odar, F.: Verification of the proposed equation for calculation of forces on a sphere accelerating in a viscous fluid, J. Fluid Mech., 25 (1966), 591–592.Google Scholar
  60. 60.
    Maxey, M.R. and J.J. Riley: Equation of motion for a small rigid sphere in a nonuniform flow, Phys. Fluids, 26 (1983), 883–889.MATHGoogle Scholar
  61. 61.
    McKee, S. and A. Stokes: Product integration methods for the nonlinear Basset equation, SIAM J. Numer. Anal., 20 (1983), 143–160.MATHMathSciNetGoogle Scholar
  62. 62.
    Reeks, M.V. and S. McKee: The dispersive effects of Basset history forces on particle motion in a turbulent flow, Phys. Fluids, 27 (1984), 1573–1582.MATHGoogle Scholar
  63. 63.
    Lovalenti, P.M. and J.F. Brady: The hydrodynamic force on a rigid particle undergoing arbitrary time-dependent motion at small Reynolds number, J. Fluid Mech., 256 (1993), 561–605.MATHMathSciNetGoogle Scholar
  64. 64.
    Mei, R.: History forces on a sphere due to a step change in the free-stream velocity, Int. J. Multiphase Flow, 19 (1993), 509–525.MATHGoogle Scholar
  65. 65.
    Lawrence, C.J. and R. Mei: Long-time behaviour of the drag on a body in impulsive motion, J. Fluid. Mech., 283 (1995), 307–327.MATHMathSciNetGoogle Scholar
  66. 66.
    Lovalenti, P.M. and J.F. Brady: The temporal behaviour of the hydrodynamic force on a body in response to an abrupt change in velocity at small but finite Reynolds number, J. Fluid Mech., 293 (1995), 35–46.MATHGoogle Scholar
  67. 67.
    Mainardi, F., Pironi, P. and F. Tampieri: On a generalization of the Basset problem via fractional calculus, in Proceedings CANCAM 95 (Eds. Tabarrok, B and S. Dost), Vol. II (1995), 836–837. [15-th Canadian Congress of Applied Mechanics, Victoria, British Columbia, Canada, 28 May - 2 June 19951.Google Scholar
  68. 68.
    Mainardi, F., Pironi, P. and F. Tampieri: A numerical approach to the generalized Basset problem for a sphere accelerating in a viscous fluid, in Proceedings CFD 95 (Eds. Thibault, P. A. and D.M. Bergeron), Vol. II (1995) 105–112. [3-rd Annual Conference of the Computational Fluid Dynamics Society of Canada, Banff, Alberta, Canada, 25–27 June 19951.Google Scholar
  69. Tatom, F.B.: The Basset term as a semiderivative, Appl. Sci. Res.,45 (1988) 283–285.Google Scholar
  70. 70.
    Wax, N. (Ed.): Selected Papers on Noise and Stochastic Processes, Dover, New-York 1954.MATHGoogle Scholar
  71. 71.
    Fox, R.F. and G.E. Uhlenbeck: Contributions to non-equilibrium thermodynamics. I. Theory of hydrodynamical fluctuations, Phys. Fluids, 13 (1970), 1893–1902MATHMathSciNetGoogle Scholar
  72. 72.
    Fox, R.F.: Gaussian Stochastic Processes in Physics, Physics Reports, 48 (1978), 179–283.Google Scholar
  73. 73.
    Kubo, R., Toda, M., and N. Hashitsume: Statistical Physics II, Nonequilibrium Statistical Mechanics, Springer Verlag, Berlin 1991.Google Scholar
  74. 74.
    Alder, B.J. and T.E. Wainwright: Decay of velocity autocorrelation function, Phys. Rev. A, 1 (1970), 18–21.Google Scholar
  75. 75.
    Ernst, M.H., Hauge, E.H. and J.M.J. Leenwen: Asymptotic time behavior of correlation functions, Phys. Rev. Lett., 25 (1970), 1254–1256Google Scholar
  76. 76.
    Dorfman, J.R. and E.G. Cohen: Velocity correlation functions in two and three dimensions, Phys. Rev. Lett., 25 (1970), 1257–1260Google Scholar
  77. 77.
    Zwanzig, R. and M. Bixon: Hydrodynamic theory of the velocity correlation function, Phys. Rev. A, 2 (1970), 2005–2012.Google Scholar
  78. 78.
    Kawasaki, K.: Long time behavior of the velocity autocorrelation function Phys. Lett., 32A (1971), 379–380.Google Scholar
  79. 79.
    Widom, A.: Velocity fluctuations of a hard-core Brownian particle, Phys. Rev. A, 3 (1971), 1394–1396.Google Scholar
  80. 80.
    Case, K.M.: Velocity fluctuations of a body in a fluid, Phys. Fluids, 14 (1971), 2091–2095.MATHGoogle Scholar
  81. 81.
    Mazo, R.M.: Theory of Brownian motion IV; a hydrodynamic model for the friction factor, J. Chem. Phys., 54 (1971), 3712–3713.Google Scholar
  82. 82.
    Nelkin, M.: Inertial effects in motion driven by hydrodynamic fluctuations, Phys. Fluids, 15 (1972), 1685–1690.MATHGoogle Scholar
  83. 83.
    Chow, Y.S. and J.J. Hermans: Effect of inertia on the Brownian motion of rigid particles in a viscous fluid, J. Chem. Phys., 56 (1972), 3150–3154.Google Scholar
  84. 84.
    Hynes, J.T.: On hydrodynamic models for Brownian motion, J. Chem. Phys., 57 (1972), 5612–5613.Google Scholar
  85. 85.
    Pomeau, Y.: Low-frequency behavior of transport coefficients in fluids, Phys. Rev. A, 5 (1972), 2569–2587.Google Scholar
  86. 86.
    Keizer, J.: Comment on effect of inertia on Brownian motion, J. Chem. Phys., 58 (1973), 824–825.Google Scholar
  87. 87.
    Davis, H.T. and G. Subramian: Velocity fluctuation of a Brownian particle: Widom’s model J. Chem. Phys., 58 (1973), 5167–5168.Google Scholar
  88. 88.
    Hauge, E.H. and A. Martin-Löf: Fluctuating hydrodynamics and Brownian motion, J. Stat. Phys., 7 (1973), 259–281.MATHGoogle Scholar
  89. 89.
    Dufty, J.W.: Gaussian model for fluctuation of a Brownian particle, Phys. Fluids, 17 (1974), 328–333.MathSciNetGoogle Scholar
  90. 90.
    Szu H.H., Szu, S.C. and J.J. Hermans: Fluctuation-dissipation theorems on the basis of hydrodynamic propagators, Phys. Fluids, 17 (1974), 903–907.MATHMathSciNetGoogle Scholar
  91. 91.
    Bedeaux, D. and P. Mazur: Brownian motion and fluctuating hydrodynamics, Physica, 76 (1974) 247–258.MathSciNetGoogle Scholar
  92. 92.
    Hinch, E.J.: Applications of the Langevin equation to fluid suspension, J. Fluid. Mech., 72 (1975), 499–511.MATHMathSciNetGoogle Scholar
  93. 93.
    Y. Pomeau and P. Résibois: Time dependent correllation functions and mode-mode coupling theories, Physics Reports, 19 (1975), 63–139.Google Scholar
  94. 94.
    Warner, M.: The long-time fluctuations of a Brownian sphere, J. Phys. A: Math. Gen., 12 (1979), 1511–1519.Google Scholar
  95. 95.
    Paul, G.L. and P.N. Pusey: Observation of a long-time tail in Brownian motion, J. Phys. A: Math. Gen., 14 (1981), 3301–3327.Google Scholar
  96. 96.
    Reichl, L.E.: Translation Brownian motion in a fluid with internal degrees of freedom, Phys. Rev., 24 (1981), 1609–1616.MathSciNetGoogle Scholar
  97. 97.
    Clercx, H.J.H. and P.P.J.M. Schram: Brownian particles in shear flow and harmonic potentials: a study of long-time tails, Phys. Rev. A, 46 (1992), 1942–1950.MathSciNetGoogle Scholar
  98. 98.
    Muralidhar, R., Ramkrishna. D., Nakanishi, H., and D.J. Jacobs: Anomalous diffusion: a dynamic perspective, Physica A, 167 (1990), 539–559.Google Scholar
  99. 99.
    Bouchaud, J.-P. and A. Georges: Anomalous diffusion in disordered media: statistical mechanisms, models and physical applications, Physics Reports, 195 (1990), 127–293.MathSciNetGoogle Scholar
  100. 100.
    Wang, K.C.: Long-time correlation effects and biased anomalous diffusion, Phys. Rev. A, 45 (1992), 833–837.Google Scholar
  101. 101.
    Giona, M. and H.E. Roman: Fractional diffusion equation for transport phenomena in random media, Physica A, 185 (1992), 82–97.Google Scholar
  102. 102.
    Metzler, R., Glöckle, W.G. and T.F. Nonnenmacher: Fractional model equation for anomalous diffusion, Physica A, 211 (1994), 13–24.Google Scholar
  103. 103.
    Kubo, R.: The fluctuation-dissipation theorem, Rep. on Progress in Physics, 29 (1966), 255–284.Google Scholar
  104. 104.
    Felderhof, B.U.: On the derivation of the fluctuation-dissipation theorem, J. Phys. A: Math. Gen., 11 (1978), 921–927 (1978).MathSciNetGoogle Scholar
  105. 105.
    Mainardi, F. and P. Pironi: The fractional Langevin equation: the Brownian motion revisited, Extracta Mathematicae, 11 (1996), 140–154.MathSciNetGoogle Scholar
  106. 106.
    Mainardi, F. and F. Tampieri: Brownian motion revisited, in Proceedings Int. Congress on Fluid Mechanics and Propulsion, Cairo 1996 (Ed. A. Moubarak), Vol. II, 684–693, ASME and Cairo University 1996. [Int. Congress on Fluid Mechanics and Propulsion, Cairo, Egypt, 29–31 December 1996 ]Google Scholar
  107. 107.
    Gel’fand, I.M. and G.E. Shilov: Generalized Functions, Vol. 1, Academic Press, New York 1964.Google Scholar
  108. 108.
    Zemanian, A.H.: Distribution Theory and Transform Analysis, McGraw-Hill, New York 1965.MATHGoogle Scholar
  109. 109.
    Doetsch, G.: Introduction to the Theory and Application of the Laplace Transformation, Springer Verlag, Berlin 1974.MATHGoogle Scholar
  110. 110.
    Nigmatullin, R.R.: The realization of the generalized transfer equation in a medium with fractal geometry, Phys. Stat. Sol. B,133 (1986), 425–430. [English transi. from Russian]Google Scholar
  111. 111.
    Mainardi, F.: Fractional diffusive waves in viscoelastic solids in IUTAM Symposium - Nonlinear Waves in Solids (Ed. J. L. Wegner and F. R. Norwood), ASME/AMR, Fairfield NJ 1995, 93–97. [Abstract in Appl: Mech. Rev.,46 (1993), 549]Google Scholar
  112. 112.
    Mainardi, F.: On the initial value problem for the fractional diffusion-wave equation, in Waves and Stability in Continuous Media (Ed. S. Rionero and T. Ruggeri ), World Scientific, Singapore 1994, 246–251.Google Scholar
  113. 113.
    Mainardi, F.: The time fractional diffusion-wave equation, Radiofisika,38 (1995), 20–36. [English Translation: Radiophysics & Quantum Electronics]Google Scholar
  114. 114.
    Mainardi, F. and M. Tomirotti: On a special function arising in the time fractional diffusion-wave equation, in Transform Methods and Special Functions, Sofia 1994 (Ed. P. Rusev, I. Dimovski and V. Kiryakova ), Science Culture Technology, Singapore 1995, 171–183.Google Scholar
  115. 115.
    Mainardi, F.: Fractional relaxation-oscillation and fractional diffusion-wave phenomena, Chaos, Solitons ê4 Fractals, 7 (1996), 1461–1477.MATHMathSciNetGoogle Scholar
  116. 116.
    Mainardi, F.: The fundamental solutions for the fractional diffusion-wave equation, Applied Mathematics Letters, 9, No 6 (1996), 23–28.MATHMathSciNetGoogle Scholar
  117. 117.
    Wyss, W.: Fractional diffusion equation, J. Math. Phys., 27 (1986), 2782–2785.MATHMathSciNetGoogle Scholar
  118. 118.
    Schneider, W.R. and W. Wyss: Fractional diffusion and wave equations, J. Math. Phys., 30 (1989), 134–144.MATHMathSciNetGoogle Scholar
  119. 119.
    Schneider, W.R: Fractional diffusion, in: Dynamics and Stochastic Processes, Theory and Applications (Eds. R. Lima, L. Streit and D. Vilela Mendes),.Lecture Notes in Physics # 355, Springer Verlag, Heidelberg 1990, 276–286.Google Scholar
  120. 120.
    Fujita, Y.: Integrodifferential equation which interpolates the heat equation and the wave equation, Osaka J. Math., 27 (1990), 309–321, 797–804.Google Scholar
  121. 121.
    Kochubei, A.N.: A Cauchy problem for evolution equations of fractional order, J. Diff. Eqns,25 (1989), 967–974. [English transi. from Russian]Google Scholar
  122. 122.
    Kochubei, A.N.: Fractional order diffusion, J. Diff. Eqns,26 (1990), 485–492. [English transi. from Russian]Google Scholar
  123. 123.
    El-Sayed, A.M.A.: Fractional-order diffusion-wave equation, Int. J. Theor. Phys., 35, (1996), 311–322MATHMathSciNetGoogle Scholar
  124. 124.
    Engler, H.: Similarity solutions for a class of hyperbolic integrodifferential equations, Differential Integral Eqns,(1997), to appear.Google Scholar
  125. 125.
    Erdélyi, A., Magnus, W., Oberhettinger and F.G. Tricomi: Higher Transcendental Functions,Bateman Project, Vol. 3, McGraw-Hill, New York 1955, Ch. 18.Google Scholar
  126. 126.
    Wright, E.M.: On the coefficients of power series having exponential singularities, J. London Math. Soc. 8 (1933), 71–79.Google Scholar
  127. 127.
    Wright, E.M.: The generalized Bessel function of order greater than one, Quart. J. Math. (Oxford ser.) 11 (1940), 36–48.Google Scholar
  128. 128.
    Stankovié, B.: On the function of E.M. Wright, Publ. Institut Math. Beograd (Nouv. Serie) 10, No 24 (1970), 113–124.Google Scholar
  129. 129.
    Gajie, Lj. and B. Stankovié, Some properties of Wright’s function, Publ. Institut Math. Beograd (Nouv. serie) 20, No 34 (1976), 91–98.Google Scholar
  130. 130.
    Kiryakova, V.: Generalized Fractional Calculus and Applications, Pitman Research Notes in Mathematics # 301, Longman, Harlow 1994.Google Scholar
  131. 131.
    Tricomi, F.G.: Fonctions Hypergéometriques Confluentes, Mém. Sci. Math. # 140, Gauthier-Villars, Paris 1960.Google Scholar
  132. 132.
    Gatteschi, L.: Funzioni Speciali, UTET, Torino 1973, p. 196–197.Google Scholar
  133. 133.
    Bender, C.M. and S.A. Orszag: Advanced Mathematical Methods for Scientists and Engineers,McGraw-Hill, Singapore 1987, Ch 3.Google Scholar
  134. 134.
    Mainardi, F. and M. Tomirotti: The asymptotic representation of the generalized hyper-Airy function in the complex plane, PRE-PRINT, Dept. of Physics, University of Bologna, 1996.Google Scholar
  135. 135.
    Pollard, H.: The representation of exp (—xa) as a Laplace integral, Bull. Amer. Math. Soc., 52 (1946), 908–910.MATHMathSciNetGoogle Scholar
  136. 136.
    Humbert, P.: Nouvelles correspondances symboliques, Bull. Sci. Mathém. (Paris, II ser.), 69 (1945), 121–129.MATHMathSciNetGoogle Scholar
  137. 137.
    Mikusinski, J.: On the function whose Laplace transform is exp (—s’A), Studia Math., 18 (1959), 191–198.MATHMathSciNetGoogle Scholar
  138. 138.
    Buchen, P.W. and F. Mainardi, Asymptotic expansions for transient viscoelastic waves, J. de Mécanique, 14 (1975), 597–608.MATHGoogle Scholar
  139. 139.
    Mainardi, F.: Seismic pulse propagation with constant Q and stable probability distributions, Ann. Geofisica, (1997), in press.Google Scholar
  140. 140.
    Mainardi, F. and P. Paradisi: The stable probability distributions generated by the fractional diffusion-wave equation, Int. J. Theor. Appl. Finance, (1997), submitted.Google Scholar
  141. 141.
    Mainardi, F. and R. Gorenflo: Fractional calculus and stable probability distributions, Arch. Mech., (1997), submitted.Google Scholar

Copyright information

© Springer-Verlag Wien 1997

Authors and Affiliations

  • F. Mainardi
    • 1
  1. 1.University of BolognaBolognaItaly

Personalised recommendations