Advertisement

Elements of Cryptology

  • M. Davio
  • J.-M. Goethals
Part of the International Centre for Mechanical Sciences book series (CISM, volume 279)

Abstract

This section is based on Shannon’s original paper1 which presents an information-theoretic approach to cryptology. Previous accounts of Shannon’s theory may be found in the books by Konheim2 and Beker and Piper3 Figure gives a schematic diagram of a cipher system (or secrecy system, as it was called by Shannon) At the transmitting end there are two “information” sources: a message source and a key source. Before any message is sent, the two parties, the encipherer and the recipient, agree on their key K, which is selected from the available set: the key space. Once the key is agreed, the encipherer selects a message M from the message space, enciphers it with the particular transformation T K determined by the key, and sends the cryptogram C = T K (M) over a public channel (where it can be intercepted) to the intended recipient. At the receiving end the cryptogram and the key are combined by the decipherer to recover the message M = T K −1 (C). The set of all possible cryptograms is called the cryptogram space, Naturally, the transformations T k mapping messages into cryptograms should be invertible.

Keywords

Knapsack Problem Block Cipher Message Space User Authentication Scheme Perfect Secrecy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. E. Shannon, “Communication theory of secrecy systems,” BSTJ 28 pp. 656–715 (1949).MathSciNetzbMATHGoogle Scholar
  2. 2.
    A. G. Konheim, Cryptography: A Primer, J Wiley, New York (1981).zbMATHGoogle Scholar
  3. 3.
    H. Beker and F. Piper, Cipher systems, Northwood Books, London (1982).zbMATHGoogle Scholar
  4. 1.
    E. Grossman, “Group theoretic remarks on cryptogtaphic systems based on two types of addition,” IBM TJ Wattson Res. Center RC 4742 (1974).Google Scholar
  5. 2.
    D. Coppersmith and E. Grossman, “Generators for certain alternating groups with applications to cryptography,” SIAM journal on, applied mathematics 29 pp. 824–627 (1975).MathSciNetCrossRefGoogle Scholar
  6. 1.
    A. G. Konheim, Cryptography: A Primer, J Wiley, New York (1981).zbMATHGoogle Scholar
  7. 2.
    J. B. Kam and G. I. Davida, “Structured design of substitution-permutation encryption networks,” IEEE Transactions on computers C-28 pp. 747–753 (1979).Google Scholar
  8. 3.
    C. Ronse, “Substitution networks,” Philips Research Laboratory. Brussels R-444 (1980).Google Scholar
  9. 4.
    V. E. Benes, Mathematical theory of switching networks and telephone traffic, Academic press, New York (1965).Google Scholar
  10. 5.
    D. Slepian, “Two theorems on a particular switching network,” Unpublished manuscript, (1952).Google Scholar
  11. 6.
    A. Waksman, “A permutation network,” JI ACM 15 pp. 159–163 (1968).MathSciNetCrossRefzbMATHGoogle Scholar
  12. 7.
    S. W. Golomb, Shift register sequences, Holden Day, San Francisco (1967).zbMATHGoogle Scholar
  13. 8.
    C. E. Shannon, “Communication theory of secrecy systems,” BSTJ 28 pp. 656–715 (1949).MathSciNetzbMATHGoogle Scholar
  14. 9.
    H. Feistel, “Cryptography and computer privacy,” Scientific American, pp. 1523 (1973).Google Scholar
  15. 10.
    R Morris, N. J. A. Sloane, and A. D. Wyner, “Assessment of the NBS proposed Data Encryption Standard,” Cr ptologia 1 pp. 301–306 (1977).Google Scholar
  16. 11.
    A. M. Whitehead, “Memoir on the algebra of symbolic logic,” Amer. Jlof Math 23 pp. 139–165 (1901).MathSciNetCrossRefzbMATHGoogle Scholar
  17. 12.
    L. Lowenheim, “Gebietdeterminanten,” Math. Ann 79 pp. 222–236 (1919).MathSciNetGoogle Scholar
  18. 13.
    S. Rudeanu, Boolean functions and equations, North Holland, Amsterdam (1974).zbMATHGoogle Scholar
  19. 14.
    D. A. Huffman, “Canonical forms for information lossless finite state logical machines,” IRE Transactions on circuit theory CT-6 pp. 41–59 (1959). Special supplementGoogle Scholar
  20. 15.
    A. M. Duguid, “Structural properties of switching networks,” Broom, University Progress report, (1959).Google Scholar
  21. 16.
    V. J. Neiman, “Structure et commande optimales des reseaux de connexion sans bloquage,” Annales des telecommunications 24 pp. 232–238 (1969).Google Scholar
  22. 17.
    N. T. Tsao-Wu, “On Neiman’s algorithm for the control of rearrangeable switching networks,” IEEE transactions on communications COM-22 pp. 737–742 (1974).Google Scholar
  23. 18.
    I. J. Good, “The relationship between two Fast Fourier Transforms,” IEEE Transactions on computers C-20 pp. 310–317 (1971).Google Scholar
  24. Davio, M. and Quisquater, J. J., Methodology in information security. Mutual authentication procedures. Application to access control., Proc. 1982 Zurich International Seminar on Digital Communication, 1982, pp. 87–92.Google Scholar
  25. Diffie, W. and Hellman, M. E., New directions in cryptography, IEEE Trans. Inform. Theory, IT-22, 6, Nov. 1976, pp. 644–654.MathSciNetCrossRefGoogle Scholar
  26. Diffie, W. and Hellman, M. E., Privacy and authentication. An introduction to cryptography, Proc. IEEE, 87, 3, 1979, pp. 397–427.CrossRefGoogle Scholar
  27. Evans, A., Kantorovitz, W. and Weiss, E., A user authentication scheme not requiring secrecy in the computer, Comm. ACM, 17, 1974, pp. 437–442.CrossRefGoogle Scholar
  28. Ingemarson, I., Tang, D. T. and Wong, C. K., A conference key distribution system, IBM Research Report RC 8256 (#35599), 1980.Google Scholar
  29. Ingemarson, I. and Wong, C. K., A user authentication scheme based on a trapdoor one-way function, IBM Research Report, 1980.Google Scholar
  30. Mc Eliece, R. J., A public key cryptosystem based on algebraic theory, Deep space network progress rept 42–44, Pasadena, Jet propulsion lab., 1978, pp. 114–116.Google Scholar
  31. Merkle, R. C., Protocols for public key cryptosystems, Proc. 1980 conference on security and privacy, IEEE, NY, 1980, pp. 122–134.Google Scholar
  32. Merkle, R. C. and Hellman, M. E., Hiding information and signatures in trapdoor knapsacks, IEEE Trans. Inform. Theory, 1T-24, 1978, pp. 525–530.Google Scholar
  33. Rivest, R. L., Shamir, A. and Adleman, L., A method of obtaining digital signatures and public-key cryptosystems, Comm. ACM, 21, Feb. 1978, pp. 120–126.MathSciNetCrossRefzbMATHGoogle Scholar
  34. Shamir, A., On the power of commutativity in cryptography, in “Automata, languages and programming’; ICALP 80, Lectures Notes in Computer Science n° 85, Springer-Verlag, Berlin, 1980, pp. 582–595.Google Scholar
  35. Simmons, G. J., A system for point of sale or access user authentication and identification, IEEE workshop on communication security, Santa Barbara, CA., 1981.Google Scholar
  36. 1.
    R. C. Merkle and M. E. Hellman, “Hiding information and signatures in trapdoor knapsacks,” IEEE transactions on information theory 24 pp. 525–530 (1978).CrossRefGoogle Scholar
  37. 2.
    E. Horowitz and S. Salmi, “Computing partitions with applications to the knapsack,” It of the ACM 21 pp. 277–292 (1974).zbMATHGoogle Scholar
  38. 3.
    A. Shamir and R. E. Zippel, “On the security of the Merkle-Hellman cryptographic scheme,” IEEE transactions on information theory 26 pp. 339–340 (1980).CrossRefzbMATHGoogle Scholar
  39. 4.
    Y. Desrnedt, J. Vandewalle, and R. Govaerts, “Critical analysis of the Knapsack Public Key Algorithm,” IEEE Transactions on information theory,(1982). to appearGoogle Scholar
  40. 5.
    A. Shamir, Apolynomial time algorithm for breaking Merkle-Hellman cryptosystems, The Neiman Insititute, Rehovot, Israel (1982). Research announcement; preliminary draftGoogle Scholar
  41. 1.
    R. L. Rivest, “Remarks on a proposed cryptanalytic attack on the MIT public-key cryptosystem,” Oryptologia, pp. 62–65 (1978).Google Scholar
  42. 2.
    M. A. Morrison and J. Brillhart, “A method for factoring and the factorization of F7,” Math. Comp. 29 pp. 183–205 (1975).MathSciNetzbMATHGoogle Scholar
  43. 3.
    J. H. Pollard, “A Monte-Carlo Method for Factorization,” BIT 15 pp. 331–334 (1975).MathSciNetCrossRefzbMATHGoogle Scholar
  44. 4.
    H. C. Williams and B. Schmid, “Some remarks concerning the MIT public-key cryptosystem,” BIT 19 pp. 525–538 (1979).MathSciNetCrossRefzbMATHGoogle Scholar
  45. 5.
    G. J. Simmons and M. J. Norris, “Preliminary comments on the MIT public-key cryptosystem,” Oryptologia 1 (4) pp. 406–414 (1977).Google Scholar
  46. 6.
    T. Herlestam, “Critical remarks on some public-key cryptosystems,” BIT 18 pp. 493–496 (1978).MathSciNetCrossRefzbMATHGoogle Scholar
  47. 7.
    R. L. Rivest, by T. Herlestam“” “Critical remarks on ”Critical Remarks on some public-key cryptosystems“ by T. Herlestam,” BIT 19 pp. 274–275 (1979).MathSciNetCrossRefzbMATHGoogle Scholar
  48. 8.
    G. R. Blakley and I. Borosh, “Rivest-Shamir-Adleman public-key cryptosystems do not always conceal messages,” Computers and Mathematics with Applications 5 pp. 169–178] (1979).MathSciNetCrossRefzbMATHGoogle Scholar
  49. H. Beker and F Piper, Cipher systems, Northwood Books, London (1982).zbMATHGoogle Scholar
  50. V. E. Benes, Mathematical theory of switching networks and telephone traffic, Academic press, New York (1965).zbMATHGoogle Scholar
  51. B. Blakley and G. R. Blakley, “Security of number theoretic public-key cryptosystems against random attack, II,” Cryptologia 1 pp. 29–41 (1979).MathSciNetCrossRefGoogle Scholar
  52. G. R. Blakley and I. Borosh, “Rivest-Shamir-Adleman public-key cryptosystems do not always conceal messages,” Computers and Mathematics with Applications 5 pp. 169–178] (1979).Google Scholar
  53. D. Coppersmith and E. Grossman, “Generators for certain alternating groups with applications to cryptography,” SIAM journal on applied mathematics 29 pp. 624–627 (1975).MathSciNetCrossRefzbMATHGoogle Scholar
  54. M. Davio and J.-J. Quisquater, “Methodology in Information Security. Mutual Authentication Procedures. Application to access control.,” Proceedings 1982 Zurich International Seminar on Digital Communications, pp. 8792 (1982).Google Scholar
  55. Y. Desmedt, J. Vandewalle, and R Govaerts, “Critical analysis of the Knapsack Public Key Algorithm,” IEEE Transactions on information theory,(1982). to appearGoogle Scholar
  56. W. Diffie and M. E. Hellman, “New directions in cryptography,” IEEE Transactions on information theory IT-22 pp. 644–654 (1976).Google Scholar
  57. W. Diffie and M. E. Hellman, “Privacy and Authentication. An Introduction to Cryptography.,” IEEE Proceedings 87 (3) pp. 397–427 (1979).CrossRefGoogle Scholar
  58. A. M. Duguid, “Structural properties of switching networks,” Brown University Progress report, (1959). Google Scholar
  59. A, Evans, W Kantorowitz, and E. Weiss, “A user Authentication Scheme not Requiring Secrecy in the Computer,” Communications of the ACM 17 pp. 437–442 (1974).CrossRefGoogle Scholar
  60. H. Feistel, “Cryptographic coding for data bank privacy,” IBM Research Report RC2827 (1970).Google Scholar
  61. S. W. Golomb, Shift register sequences, Holden Day, San Francisco (1967).Google Scholar
  62. I. J. Good, “The relationship between two Fast Fourier Transforms,” IEEE Transactions on computers C-20 pp. 310–317 (1971).Google Scholar
  63. E. Grossman, “Group theoretic remarks on cryptogtaphic systems based on two types of addition,” IBM TJ Wattson Res. Center RC 4742 (1974).Google Scholar
  64. T. Herlestam, “Critical remarks on some public-key cryptosystems,” BIT 18 pp. 493–496 (1978).MathSciNetCrossRefzbMATHGoogle Scholar
  65. E. Horowitz and S. Salmi, “Computing partitions with applications to the knapsack,” Il of the ACM 21 pp. 277–292 (1974).zbMATHGoogle Scholar
  66. D. A. Huffman, “Canonical forms for information lossless finite state logical machines,” IRE Transactions on circuit theory CT-6 pp. 41–59 (1959). Special supplementGoogle Scholar
  67. I. Ingemarson, “A user authentication scheme based on a trapdoor one-way function,” IBM Res. Rpt (1980).Google Scholar
  68. I. lngemarsson and C. K. Wong, “A conference Key Distribution System,” IBM Research Report RC 8236 (#35599) (1980).Google Scholar
  69. J. B. Kam and G. I. Davida, “Structured design of substitution-permutation encryption networks,” IEEE Transactions on computers 28. 747–753 (1979).MathSciNetCrossRefzbMATHGoogle Scholar
  70. A. G. Konheim, Cryptography: A Primer, J Wiley, New York (1981).Google Scholar
  71. L. Lowenheim, “Gebietdeterminanten,” Math. Ann 79 pp. 222–236 (1919).MathSciNetGoogle Scholar
  72. R. McEliece, “A public key cryptosystem based on algabraic theory,” Deep space network Progr. Rpt JPL., Pasadena (1978).Google Scholar
  73. R. C. Merkle and M. E. Hellman, “Hiding information and signatures in trapdoor knapsacks,” IEEE transactions on information theory 24 pp. 525–530 (1978).CrossRefGoogle Scholar
  74. R. C. Merkle, “Protocols for Public-Key Cryptosystems,” Proc. 1980 Conference on Security and Privacy. IEEE. N. Y., pp. 122–134 (1980).Google Scholar
  75. R. Morris, N. J. A. Sloane, and A. D. Wyner, “Assessment of the NBS proposed Data Encryption Standard,” Cryptologia 1 pp. 301–306 (1977).CrossRefGoogle Scholar
  76. M. A. Morrison and J. Brillhart, “A method for factoring and the factorization of F7, Math. Comp. 29 pp. 183–205 (1975).MathSciNetzbMATHGoogle Scholar
  77. V. J. Neiman, “Structure et commande optimales des roseaux de connexion sans bloquage,” Annales des telecommunications 24 pp. 232–238 (1969).Google Scholar
  78. J. H. Pollard, “A Monte-Carlo Method for Factorization,” BIT 15 pp. 331–334 (1975).MathSciNetCrossRefzbMATHGoogle Scholar
  79. R. L. Rivest, A. Shamir, and L. Adleman, “A Method for Obtaining Digital Signatures and Public-Key Cryptosystems,” Communications of the ACM 21 (2) pp. 120–126 (1978).MathSciNetCrossRefzbMATHGoogle Scholar
  80. R. L. Rivest, “Remarks on a proposed cryptanalytic attack on the MIT public-key cryptosystem,” Cryptologia, pp. 62–65 (1978).Google Scholar
  81. R. L. Rivest, “Critical remarks on ”Critical Remarks on some public-key cryptosystems“,” BIT 19 pp. 274–275 (1979).MathSciNetCrossRefzbMATHGoogle Scholar
  82. C. Ronse, “Substitution networks,” Philips Research Laboratory. Brussels R444 (1980). Google Scholar
  83. S. Rudeanu, Boolean functions and equations, North Holland, Amsterdam (1974).zbMATHGoogle Scholar
  84. A. Shamir, “On the Power of Commutativity in Cryptography,” pp. 582–595 in Automata, Languages and Programming. ICALP_80 Lecture Notes, Springer, Berlin (1980).Google Scholar
  85. A. Shamir and R. E. Zippel, “On the security of the Merkle-Hellman cryptographic scheme,” IEEE transactions on information theory IT-28 pp. 339–340 (1980).Google Scholar
  86. A Shamir, A polynomial time algorithm for breaking Merkle-Hellman cryptosystems, The Neiman Insititute, Rehovot, Israel (1982). Research announcement; preliminary draftGoogle Scholar
  87. C. E. Shannon, “Communication theory of secrecy systems,” BSTJ 28 pp. 656–715 (1949).Google Scholar
  88. G. J. Simmons and M. J. Norris, “Preliminary comments on the MIT public-key cryptosystem,” Cryptologia 1 (4) pp. 406–414 (1977).CrossRefGoogle Scholar
  89. G J Simmons, “A System for Point-of-Sale or Access User Authentication and Identification,” IEEE Workshop on Communication Security, (1981). Google Scholar
  90. D. Slepian, “Two theorems on a particular switching network,” Unpublished manuscript, (1952).Google Scholar
  91. R. Solovay and V. Strassen, “A fast Monte-Carlo test for primality,” SIAM Jl. of computing 6 pp. 84–85 (1977).MathSciNetCrossRefzbMATHGoogle Scholar
  92. N. T. Tsao-Wu, “On Neiman’s algorithm for the control of rearrangeable switching networks,” IEEE transactions on communications COM-22 pp. 737–742 (1974).Google Scholar
  93. A. Waksman, “A permutation network,”,I1 ACM 15 pp. 159–163 (1968).MathSciNetzbMATHGoogle Scholar
  94. A. M. Whitehead, “Memoir on the algebra of symbolic logic,” Amer. Jt of Math 23 pp. 139–165 (1901).MathSciNetCrossRefzbMATHGoogle Scholar
  95. H. C. Williams and B. Schmid, “Some remarks concerning the MIT public-key cryptosystem,” BIT 19 pp. 525–538 (1979).MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Wien 1983

Authors and Affiliations

  • M. Davio
    • 1
  • J.-M. Goethals
    • 1
  1. 1.Philips Research LaboratoryBrusselsBelgium

Personalised recommendations