Engineered Nanoparticles and the Immune System: Interaction and Consequences

  • Paola Italiani
  • Diana Boraschi


During the last two decades, engineered nanomaterial/nanoparticles have emerged in different fields of our daily life. In fact they are used for a variety of applications, such as colour pigments, solar cells, and waste water treatment. Furthermore, nanoparticles are found in consumer products that may be in contact with the human organism, e.g., food packaging, shampoos, sunscreens, toothpastes, and cigarettes. Thus, it is of great importance to evaluate how nanoparticles interact both with human beings and with the environment, considering that nanoparticles are assimilated as waste in the environment and introduced in the food chain.

In assessing nanoparticle safety, their possible effects on immune responses are a major issue, since the immune system is deputed to defending and maintaining the integrity of the body, and its failure is the cause of damage and disease.

This brief review will focus on the effects of nanoparticles on immunity, with a special focus on human health, but also include immunity of environmental species (such as marine and earth invertebrates) as a key tool in predicting environmental nanosafety.


Innate Immune System NLRP3 Inflammasome Foreign Agent Mononuclear Phagocyte System NLRP3 Inflammasome Activation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by the EU FP7 grant HUMUNITY (PITN-GA-2012-316383) and by the grant 2011–2114 of Fondazione Cariplo, Milano, Italy.


  1. Agashe HB, Dutta T, Garg M et al (2006) Investigations on the toxicological profile of functionalized fifth-generation poly (propylene-imine) dendrimer. J Pharm Pharmacol 58:1491–1498PubMedCrossRefGoogle Scholar
  2. Aggarwal P, Hall JB, McLeland CB et al (2009) Nanoparticle interaction with plasma proteins as it relates to particle biodistribution, biocompatibility and therapeutic efficacy. Adv Drug Deliv Rev 61:428–437PubMedCentralPubMedCrossRefGoogle Scholar
  3. Andreev SM, Babakhin AA, Petrukhina AO et al (2000) Immunogenic and allergenic properties of fullerene conjugates with amino acids and proteins. Dokl Biochem 370:4–7PubMedGoogle Scholar
  4. Barmo C, Ciacci C, Canonico B et al (2013) In vivo effects of n-TiO2 on digestive gland and immune function of the marine bivalve Mytilus galloprovincialis. Aquat Toxicol 9:132–133Google Scholar
  5. Bartneck M, Keul HA, Zwadlo-Klarwasser G et al (2010) Phagocytosis independent extracellular nanoparticle clearance by human immune cells. Nano Lett 10:59–63PubMedCrossRefGoogle Scholar
  6. Boraschi D, Costantino L, Italiani P (2012) Interaction of nanoparticles with immunocompetent cells: nanosafety considerations. Nanomedicine (Lond) 7:121–131CrossRefGoogle Scholar
  7. Braden BC, Goldbaum FA, Chen BX et al (2000) X-ray crystal structure of an anti-Buckminsterfullerene antibody fab fragment: biomolecular recognition of C(60). Proc Natl Acad Sci U S A 97:12193–12197PubMedCentralPubMedCrossRefGoogle Scholar
  8. Canesi L, Ciacci C, Fabbri R et al (2012) Bivalve molluscs as a unique target group for nanoparticle toxicity. Mar Environ Res 76:16–21PubMedCrossRefGoogle Scholar
  9. Caron W, Rawal S, Song G et al (2012) Bidirectional interaction between nanoparticles and cells of the mononuclear phagocyte system. In: Yarmush ML, Shi D (eds) Frontiers in nanobiomedical research. World Scientific Publishing, SingaporeGoogle Scholar
  10. Casals E, Pfaller T, Duschl A et al (2010) Time evolution of the nanoparticle protein corona. ACS Nano 4:3623–3632PubMedCrossRefGoogle Scholar
  11. Cassel SL, Eisenbarth SC, Iyer SS et al (2008) The Nalp3 inflammasome is essential for the development of silicosis. Proc Natl Acad Sci U S A 105:9035–9040PubMedCentralPubMedCrossRefGoogle Scholar
  12. Champion JA, Mitragotri S (2006) Role of target geometry in phagocytosis. Proc Natl Acad Sci U S A 103:4930–4934PubMedCentralPubMedCrossRefGoogle Scholar
  13. Champion JA, Katare YK, Mitragotri S (2007) Particle shape: a new design parameter for micro- and nanoscale drug delivery carriers. J Control Release 121:3–9PubMedCentralPubMedCrossRefGoogle Scholar
  14. Chanan-Khan A, Szebeni J, Savay S et al (2003) Complement activation following first exposure to pegylated liposomal doxorubicin (Doxil): possible role in hypersensitivity reactions. Ann Oncol 14:1430–1437PubMedCrossRefGoogle Scholar
  15. Chang ZL (2009) Recent development of the mononuclear phagocyte system: in memory of Metchnikoff and Ehrlich on the 100th anniversary of the 1908 Nobel Prize in Physiology or Medicine. Biol Cell 101:709–721PubMedCrossRefGoogle Scholar
  16. Chen BX, Wilson SR, Das M et al (1998) Antigenicity of fullerenes: antibodies specific for fullerenes and their characteristics. Proc Natl Acad Sci U S A 95:10809–10813PubMedCentralPubMedCrossRefGoogle Scholar
  17. Chen Z, Meng H, Xing G et al (2008) Age-related differences in pulmonary and cardiovascular responses to SiO2 nanoparticle inhalation: nanotoxicity has susceptible population. Environ Sci Technol 42:8985–8992PubMedCrossRefGoogle Scholar
  18. Chong CS, Cao M, Wong WW et al (2005) Enhancement of T helper type 1 immune responses against hepatitis B virus core antigen by PLGA nanoparticle vaccine delivery. J Control Release 102:85–99PubMedCrossRefGoogle Scholar
  19. Ciacci C, Canonico B, Bilanicova D et al (2012) Immunomodulation by different types of N-oxides in the hemocytes of the marine bivalve Mytilus galloprovincialis. PLoS One 7:e36937PubMedCentralPubMedCrossRefGoogle Scholar
  20. Cooper EL (2010) Evolution of immune systems from self/not self to danger to artificial immune systems (AIS). Phys Life Rev 7:55–78PubMedCrossRefGoogle Scholar
  21. Csaba N, Sanchez A, Alonso MJ (2006) PLGA:poloxamer and PLGA:poloxamine blend nanostructures as carriers for nasal gene delivery. J Control Release 113:164–172PubMedCrossRefGoogle Scholar
  22. Cui Z, Mumper RJ (2002) Coating of cationized protein on engineered nanoparticles results in enhanced immune responses. Int J Pharm 238:229–239PubMedCrossRefGoogle Scholar
  23. Cui Z, Patel J, Tuzova M et al (2004) Strong T cell type-1 immune responses to HIV-1 Tat (1–72) protein-coated nanoparticles. Vaccine 22:2631–2640PubMedCrossRefGoogle Scholar
  24. Cui Z, Han SJ, Vangasseri DP et al (2005) Immunostimulation mechanism of LPD nanoparticle as a vaccine carrier. Mol Pharm 2:22–28PubMedCrossRefGoogle Scholar
  25. Cukalevski R, Lundqvist M, Oslakovic C et al (2011) Structural changes in apolipoproteins bound to nanoparticles. Langmuir 27:14360–14369PubMedCrossRefGoogle Scholar
  26. Cuna M, Alonso-Sandel M, Remunan-Lopez C et al (2006) Development of phosphorylated glucomannan-coated chitosan nanoparticles as nanocarriers for protein delivery. J Nanosci Nanotechnol 6:2887–2895PubMedCrossRefGoogle Scholar
  27. Demento SL, Eisenbarth SC, Foellmer HG et al (2009) Inflammasome-activating nanoparticles as modular systems for optimizing vaccine efficacy. Vaccine 27:3013–3021PubMedCentralPubMedCrossRefGoogle Scholar
  28. Demoy M, Andreux JP, Weingarten C et al (1999) In vitro evaluation of nanoparticles spleen capture. Life Sci 64:1329–1337PubMedCrossRefGoogle Scholar
  29. Deng ZJ, Liang M, Toth I et al (2012) Plasma protein binding of positively and negatively charged polymer-coated gold nanoparticles elicits different biological responses. Nanotoxicology 7:314–322PubMedCrossRefGoogle Scholar
  30. Dobrovolskaia MA, McNeil SE (2007) Immunological properties of engineered nanomaterials. Nat Nanotechnol 2:469–478PubMedCrossRefGoogle Scholar
  31. Dobrovolskaia MA, McNeil SE (2013) Understanding the correlation between in vitro and in vivo immunotoxicity tests for nanomedicines. J Control Release 172:456–466PubMedCrossRefGoogle Scholar
  32. Dobrovolskaia MA, Aggarwal P, Hall JB et al (2008) Preclinical studies to understand nanoparticle interaction with the immune system and its potential effects on nanoparticle biodistribution. Mol Pharm 5:487–495PubMedCentralPubMedCrossRefGoogle Scholar
  33. Dobrovolskaia MA, Germolec DR, Weaver J (2009) Evaluation of nanoparticle immunotoxicity. Nat Nanotechnol 4:411–414PubMedCrossRefGoogle Scholar
  34. Dobrovolskaia MA, Neun BW, Clogston JD et al (2013) Choice of method for endotoxin detection depends on nanoformulation. Nanomedicine (Lond) 9(12):1847–56. [Epub ahead of print]Google Scholar
  35. Dostert C, Pétrilli V, Van Bruggen R et al (2008) Innate immune activation through Nalp3 inflammasome sensing of asbestos and silica. Science 320:674–677PubMedCentralPubMedCrossRefGoogle Scholar
  36. Eisenbarth SC, Colegio OR, O’Connor W et al (2008) Crucial role for the Nalp3 inflammasome in the immunostimulatory properties of aluminium adjuvants. Nature 453:1122–1126PubMedCrossRefGoogle Scholar
  37. El Solh AA, Ramadan H (2006) Overview of respiratory failure in older adults. J Intensive Care Med 21:345–351PubMedCrossRefGoogle Scholar
  38. El-Temsah YS, Joner EJ (2012) Ecotoxicological effects on earthworms of fresh and aged nanosized zero-valent iron (nZVI) in soil. Chemosphere 89:76–82PubMedCrossRefGoogle Scholar
  39. Esmaeili F, Ghahremani MH, Esmaeili B et al (2008) PLGA nanoparticles of different surface properties: preparation and evaluation of their body distribution. Int J Pharm 349:249–255PubMedCrossRefGoogle Scholar
  40. Fang C, Shi B, Pei YY et al (2006) In vivo tumor targeting of tumor necrosis factor alpha-loaded stealth nanoparticles: effect of MePEG molecular weight and particle size. Eur J Pharm Sci 27:27–36PubMedCrossRefGoogle Scholar
  41. Ferrari M (2008) Nanogeometry: beyond drug delivery. Nat Nanotechnol 3:131–132PubMedCrossRefGoogle Scholar
  42. Fleischer CC, Payne CK (2012) Nanoparticle surface charge mediates the cellular receptors used by protein-nanoparticle complexes. J Phys Chem B 116:8901–8907PubMedCentralPubMedCrossRefGoogle Scholar
  43. Foged C, Brodin B, Frokjaer S et al (2005) Particle size and surface charge affect particle uptake by human dendritic cells in an in vitro model. Int J Pharm 298:315–322PubMedCrossRefGoogle Scholar
  44. Gaucher G, Asahina K, Wang J et al (2009) Effect of poly(N-vinyl-pyrrolidone)-block-poly(D, L-lactide) as coating agent on the opsonization, phagocytosis, and pharmacokinetics of biodegradable nanoparticles. Biomacromolecules 10:408–416PubMedCrossRefGoogle Scholar
  45. Goppert TM, Muller RH (2005) Protein adsorption patterns on poloxamer- and poloxamine-stabilized solid lipid nanoparticles (SLN). Eur J Pharm Biopharm 60:361–372PubMedCrossRefGoogle Scholar
  46. Hall JB, Dobrovolskaia MA, Patri AK et al (2007) Characterization of nanoparticles for therapeutics. Nanomedicine 2:789–803PubMedCrossRefGoogle Scholar
  47. Hamad I, Hunter AC, Rutt KJ et al (2008) Complement activation by PEGylated single-walled carbon nanotubes is independent of C1q and alternative pathway turnover. Mol Immunol 45:3797–3803PubMedCentralPubMedCrossRefGoogle Scholar
  48. Hamilton RF Jr, Buford M, Xiang C et al (2012) NLRP3 inflammasome activation in murine alveolar macrophages and related lung pathology is associated with MWCNT nickel contamination. Inhal Toxicol 24:995–1008PubMedCentralPubMedCrossRefGoogle Scholar
  49. Hirahara K, Poholek A, Vahedi G et al (2013) Mechanisms underlying helper T cell plasticity: implications for immune-mediated disease. J Allergy Clin Immunol 131:1276–1287PubMedCentralPubMedCrossRefGoogle Scholar
  50. Hornung V, Bauernfeind F, Halle A et al (2008) Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization. Nat Immunol 9:847–856PubMedCentralPubMedCrossRefGoogle Scholar
  51. Ishida T, Wang X, Shimizu T et al (2007) PEGylated liposomes elicit an anti-PEG IgM response in a T cell-independent manner. J Control Release 122:349–355PubMedCrossRefGoogle Scholar
  52. Judge A, McClintock K, Phelps JR et al (2006) Hypersensitivity and loss of disease site targeting caused by antibody responses to PEGylated liposomes. Mol Ther 13:328–337PubMedCrossRefGoogle Scholar
  53. Kagan VE, Konduru NV, Feng W et al (2010) Carbon nanotubes degraded by neutrophil myeloperoxidase induce less pulmonary inflammation. Nat Nanotechnol 5:354–359PubMedCrossRefGoogle Scholar
  54. Kettiger H, Schipanski A, Wick P et al (2013) Engineered nanomaterial uptake and tissue distribution: from cell to organism. Int J Nanomedicine 8:3255–3269PubMedCentralPubMedGoogle Scholar
  55. Kim TH, Nah JW, Cho MH et al (2006) Receptor-mediated gene delivery into antigen presenting cells using mannosylated chitosan/DNA nanoparticles. J Nanosci Nanotechnol 6:2796–2803PubMedCrossRefGoogle Scholar
  56. Koide H, Asai T, Hatanaka K et al (2010) T cell-independent B cell response is responsible for ABC phenomenon induced by repeated injection of PEGylated liposomes. Int J Pharm 392:218–223PubMedCrossRefGoogle Scholar
  57. Kotchey GP, Hasan SA, Kaparlov AA et al (2012) A natural vanishing act: the enzyme-catalyzed degradation of carbon nanomaterials. Acc Chem Res 45:1770–1781PubMedCentralPubMedCrossRefGoogle Scholar
  58. Kreuter J (1995) Nanoparticles as adjuvants for vaccines. Pharm Biotechnol 6:463–472PubMedCrossRefGoogle Scholar
  59. Kvell K, Cooper EL, Engelmann P et al (2007) Blurring borders: innate immunity with adaptive features. Clin Dev Immunol 2007:83671PubMedCentralPubMedCrossRefGoogle Scholar
  60. Latz E, Xiao TS, Stutz A (2013) Activation and regulation of the inflammasomes. Nat Rev Immunol 13:397–411PubMedCrossRefGoogle Scholar
  61. Lee SC, Parthasarathy R, Botwin K et al (2004) Biochemical and immunological properties of cytokines conjugated to dendritic polymers. Biomed Microdevices 6:191–202PubMedCrossRefGoogle Scholar
  62. Li LZ, Zhou DM, Peijnenburg WJ et al (2011) Toxicity of zinc oxide nanoparticles in the earthworm, Eisenia fetida and subcellular fractionation of Zn. Environ Int 37:1098–1104PubMedCrossRefGoogle Scholar
  63. Li R, Wang X, Ji Z et al (2013) Surface charge and cellular processing of covalently functionalized multiwall carbon nanotubes determine pulmonary toxicity. ACS Nano 7:2352–2368PubMedCentralPubMedCrossRefGoogle Scholar
  64. Lieder R, Petersen PH, Sigurjónsson OE (2013) Endotoxins—the invisible companion in biomaterials research. Tissue Eng Part B Rev 19:391–402PubMedCrossRefGoogle Scholar
  65. Ling WL, Biro A, Bally I et al (2011) Proteins of the innate immune system crystallize on carbon nanotubes but are not activated. ACS Nano 5:730–737PubMedCrossRefGoogle Scholar
  66. Lunov O, Syrovets T, Loos C et al (2011) Differential uptake of functionalized polystyrene nanoparticles by human macrophages and a monocytic cell line. ACS Nano 5:1657–1669PubMedCrossRefGoogle Scholar
  67. Lutsiak ME, Kwon GS, Samuel J (2006) Biodegradable nanoparticle delivery of a Th2-biased peptide for induction of Th1 immune responses. J Pharm Pharmacol 58:739–747PubMedCrossRefGoogle Scholar
  68. Mahon E, Salvati A, Baldelli Bombelli F et al (2012) Designing the nanoparticle-biomolecule interface for “targeting and therapeutic delivery”. J Control Release 161:164–174PubMedCrossRefGoogle Scholar
  69. Manolova V, Flace A, Bauer M et al (2008) Nanoparticles target distinct dendritic cell populations according to their size. Eur J Immunol 38:1404–1413PubMedCrossRefGoogle Scholar
  70. Marsh EK, May RC (2012) Caenorhabditis elegans, a model organism for investigating immunity. Appl Environ Microbiol 78:2075–2081PubMedCentralPubMedCrossRefGoogle Scholar
  71. Martinon F, Pétrilli V, Mayor A et al (2006) Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature 440:237–241PubMedCrossRefGoogle Scholar
  72. Masalova OV, Shepelev AV, Atanadze SN et al (1999) Immunostimulating effect of water-soluble fullerene derivatives—perspective adjuvants for a new generation of vaccine. Dokl Akad Nauk 369:411–413PubMedGoogle Scholar
  73. Meng H, Yang S, Li Z et al (2011) Aspect ratio determines the quantity of mesoporous silica nanoparticle uptake by a small GTPase-dependent macropinocytosis mechanism. ACS Nano 5:4434–4447PubMedCentralPubMedCrossRefGoogle Scholar
  74. Mitchell LA, Gao J, Wal RV et al (2007) Pulmonary and systemic immune response to inhaled multiwalled carbon nanotubes. Toxicol Sci 100:203–214PubMedCrossRefGoogle Scholar
  75. Mitchell LA, Lauer FT, Burchiel SW et al (2009) Mechanisms for how inhaled multiwalled carbon nanotubes suppress systemic immune function in mice. Nat Nanotechnol 4:451–456PubMedCentralPubMedCrossRefGoogle Scholar
  76. Moghimi SM, Andersen AJ, Ahmadvand D et al (2011) Material properties in complement activation. Adv Drug Deliv Rev 63:1000–1007PubMedCrossRefGoogle Scholar
  77. Mohamed BM, Verma NK, Davies AM et al (2012) Citrullination of proteins: a common post-translational modification pathway induced by different nanoparticles in vitro and in vivo. Nanomedicine (Lond) 7:1181–1195CrossRefGoogle Scholar
  78. Monopoli MP, Pitek AS, Lynch I et al (2013) Formation and characterization of the nanoparticle-protein corona. Methods Mol Biol 1025:137–155PubMedCrossRefGoogle Scholar
  79. Mottram PL, Leong D, Crimeen-Irwin B et al (2007) Type 1 and 2 immunity following vaccination is influenced by nanoparticle size: formulation of a model vaccine for respiratory syncytial virus. Mol Pharm 4:73–84PubMedCrossRefGoogle Scholar
  80. Moyano DF, Goldsmith M, Solfiell DJ et al (2012) Nanoparticle hydrophobicity dictates immune response. J Am Chem Soc 134:3965–3967PubMedCentralPubMedCrossRefGoogle Scholar
  81. Muller RH, Maassen S, Weyhers H et al (1996) Phagocytic uptake and cytotoxicity of solid lipid nanoparticles (SLN) sterically stabilized with poloxamine 908 and poloxamer 407. J Drug Target 4:161–170PubMedCrossRefGoogle Scholar
  82. Murphy KM (ed) (2011) Janeway’s immunobiology, 8th edn. Garland Science, New YorkGoogle Scholar
  83. Nakayamada S, Takahashi H, Kanno Y et al (2012) Helper T cell diversity and plasticity. Curr Opin Immunol 24:297–302PubMedCentralPubMedCrossRefGoogle Scholar
  84. Oostingh GJ, Casals E, Italiani P et al (2011) Problems and challenges in the development and validation of human cell-based assays to determine nanoparticle-induced immunomodulatory effects. Part Fibre Toxicol 8:8PubMedCentralPubMedCrossRefGoogle Scholar
  85. Paciotti GF, Myer L, Weinreich D et al (2004) Colloidal gold: a novel nanoparticle vector for tumor directed drug delivery. Drug Deliv 11:169–183PubMedCrossRefGoogle Scholar
  86. Palomäki J, Välimäki E, Sund J et al (2011) Long, needle-like carbon nanotubes and asbestos activate the NLRP3 inflammasome through a similar mechanism. ACS Nano 5:6861–6870PubMedCrossRefGoogle Scholar
  87. Papayannopoulos V, Zychlinsky A (2009) NETs: a new strategy for using old weapons. Trends Immunol 30:513–521PubMedCrossRefGoogle Scholar
  88. Peer D (2012) Immunotoxicity derived from manipulating leukocytes with lipid-based nanoparticles. Adv Drug Deliv Rev 64:1738–1748PubMedCrossRefGoogle Scholar
  89. Pulskamp K, Diabate S, Krug HF (2007) Carbon nanotubes show no sign of acute toxicity but induce intracellular reactive oxygen species in dependence on contaminants. Toxicol Lett 168:58–74PubMedCrossRefGoogle Scholar
  90. Rajananthanan P, Attard GS, Sheikh NA et al (1999) Evaluation of novel aggregate structures as adjuvants: composition, toxicity studies and humoral responses. Vaccine 17:715–730PubMedCrossRefGoogle Scholar
  91. Reddy ST, van der Vlies AJ, Simeoni E et al (2007) Exploiting lymphatic transport and complement activation in nanoparticle vaccines. Nat Biotechnol 25:1159–1164PubMedCrossRefGoogle Scholar
  92. Redhead HM, Davis SS, Illum L (2001) Drug delivery in poly(lactide-co-glycolide) nanoparticles surface modified with poloxamer 407 and poloxamine 908: in vitro characterisation and in vivo evaluation. J Control Release 70:353–363PubMedCrossRefGoogle Scholar
  93. Rettig L, Haen SP, Bittermann AG et al (2010) Particle size and activation threshold: a new dimension of danger signaling. Blood 115:4533–4541PubMedCrossRefGoogle Scholar
  94. Roberts JC, Bhalgat MK, Zera RT (1996) Preliminary biological evaluation of polyamidoamine (PAMAM) Starburst dendrimers. J Biomed Mater Res 30:53–65PubMedCrossRefGoogle Scholar
  95. Roser M, Fischer D, Kissel T (1998) Surface-modified biodegradable albumin nano and microspheres. II: effect of surface charges on in vitro phagocytosis and biodistribution in rats. Eur J Pharm Biopharm 46:255–263PubMedCrossRefGoogle Scholar
  96. Salvador-Morales C, Flahaut E, Sim E et al (2006) Complement activation and protein adsorption by carbon nanotubes. Mol Immunol 43:193–201PubMedCrossRefGoogle Scholar
  97. Seok J, Warren HS, Cuenca AG et al (2013) Genomic responses in mouse models poorly mimic human inflammatory diseases. Proc Natl Acad Sci USA 110:3507PubMedCentralPubMedCrossRefGoogle Scholar
  98. Sharma A, Muresanu DF, Patnail R et al (2013) Size- and age-dependent neurotoxicity of engineered metal nanoparticles in rats. Mol Neurobiol 48:386–396PubMedCrossRefGoogle Scholar
  99. Smulders S, Kaiser JP, Zuin S et al (2012) Contamination of nanoparticles by endotoxin: evaluation of different test methods. Part Fibre Toxicol 9:41PubMedCentralPubMedCrossRefGoogle Scholar
  100. Söderäll K (2010) Invertebrate immunity. Advances in experimental medicine and biology. Landes Bioscience and Springer Science + Business Media, LCC, New York, p 314Google Scholar
  101. Stern ST, McNeil SE (2008) Nanotechnology safety concerns revisited. Toxicol Sci 101:4–21PubMedCrossRefGoogle Scholar
  102. Szebeni J, Alving CR, Rosivall L et al (2007) Animal models of complement-mediated hypersensitivity reactions to liposomes and other lipid-based nanoparticles. J Liposome Res 17:107–117PubMedCrossRefGoogle Scholar
  103. Tan Y, Li S, Pitt BR et al (1999) The inhibitory role of CpG immunostimulatory motifs in cationic lipid vector-mediated transgene expression in vivo. Hum Gene Ther 10:2153–2161PubMedCrossRefGoogle Scholar
  104. Thiele L, Rothen-Rutishauser B, Jilek S et al (2001) Evaluation of particle uptake in human blood monocyte-derived cells in vitro. Does phagocytosis activity of dendritic cells measure up with macrophages? J Control Release 76:59–71PubMedCrossRefGoogle Scholar
  105. Tomii A, Masugi F (1991) Production of anti-platelet-activating factor antibodies by the use of colloidal gold as carrier. Jpn J Med Sci Biol 44:75–80PubMedCrossRefGoogle Scholar
  106. Unrine JM, Hunyadi SE, Tsyusko OV et al (2010) Evidence for bioavailability of Au nanoparticles from soil and biodistribution within earthworms (Eisenia fetida). Environ Sci Technol 44:830813CrossRefGoogle Scholar
  107. van Zijverden M, Granum B (2000) Adjuvant activity of particulate pollutants in different mouse models. Toxicology 152:69–77PubMedCrossRefGoogle Scholar
  108. Vetten MA, Yah CS, Singh T et al (2014) Challenges facing sterilization and depyrogenation of nanoparticles: effects on structural stability and biomedical applications. Nanomedicine 10(7):1391–1399PubMedCrossRefGoogle Scholar
  109. Wang X, Ishida T, Kiwada H (2007) Anti-PEG IgM elicited by injection of liposomes is involved in the enhanced blood clearance of a subsequent dose of PEGylated liposomes. J Control Release 119:236–244PubMedCrossRefGoogle Scholar
  110. Whitfield Aslund ML, McShane H, Simpson MJ et al (2012) Earthworm sublethal responses to titanium dioxide nanomaterial in soil detected by (1)H NMR metabolomics. Environ Sci Technol 46:1111–1118PubMedCrossRefGoogle Scholar
  111. Xiang SD, Scholzen A, Minigo G et al (2006) Pathogen recognition and development of particulate vaccines: does size matter? Methods 40:1–9PubMedCrossRefGoogle Scholar
  112. Xiang SD, Fuchsberger M, Karlson TDL et al (2012) Nanoparticles, immune modulation and vaccine delivery. In: Yarmush ML, Shi D (eds) Frontiers in nanobiomedical research. World Scientific Publishing, SingaporeGoogle Scholar
  113. Yazdi AS, Guarda G, Riteau N et al (2010) Nanoparticles activate the NLR pyrin domain containing 3 (Nlrp3) inflammasome and cause pulmonary inflammation through release of IL-1α and IL-1β. Proc Natl Acad Sci U S A 107:19449–19454PubMedCentralPubMedCrossRefGoogle Scholar
  114. Zahr AS, Davis CA, Pishko MV (2006) Macrophage uptake of core-shell nanoparticles surface modified with poly(ethylene glycol). Langmuir 22:8178–8185PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2016

Authors and Affiliations

  1. 1.Institute of Biomedical TechnologiesNational Research Council (CNR)SegrateItaly
  2. 2.Institute of Protein BiochemistryNational Research Council (CNR)NaplesItaly

Personalised recommendations