“Crustacea”: Decapoda – Astacida

  • Steffen HarzschEmail author
  • Jakob Krieger
  • Zen Faulkes


Thomas Henry Huxley, now often remembered as “Darwin’s bulldog”, wrote an entire book dedicated to crayfish, with no less a goal than showing how the study of crayfish could teach the reader all of zoology: “how the careful study of one of the commonest and most insignificant of animals, leads us, step by step, from every-day knowledge to the widest generalizations and the most difficult problems”. In retrospect, Huxley laid out the argument for model organisms several decades before another Thomas, namely, Thomas Hunt Morgan, started using fruit flies as model organisms, which became a wellspring of biological information in the twentieth century. While biology in the nineteenth century emphasised work on diverse species in the field, biology in the twentieth century was driven by a few model organisms in the lab, whether they were rats or fruit flies or Arabidopsis thaliana.


Ventral Nerve Cord Decapod Crustacean Proliferation Zone American Lobster Marble Crayfish 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



SH gratefully acknowledges five of his former students for their dedicated and gifted work on crayfish neurogenesis, in chronological order: Kathia Fabritius-Vilpoux, Verena Rieger, Silvia Sintoni, Elisabeth Zieger, and Caroline Viertel. SH also wishes to thank Renate Sandeman for a short but effective cooperation on crayfish development. We are indebted to Gerhard Scholtz for commenting on the draft of this chapter.


  1. Abmayr SM, Keller CA (1997) Drosophila myogenesis and insights into the role of nautilus. Curr Top Dev Biol 38:35–80Google Scholar
  2. Abzhanov A, Kaufman TC (1999a) Homeotic genes and the arthropod head: expression patterns of the labial, proboscipedia, and Deformed genes in crustaceans and insects. Proc Natl Acad Sci U S A 96:10224–10229. doi: 10.1073/pnas.96.18.10224 PubMedCentralPubMedGoogle Scholar
  3. Abzhanov A, Kaufman TC (1999b) Novel regulation of the homeotic gene Scr associated with a crustacean leg-to-maxilliped appendage transformation. Development 126:1121–1128PubMedGoogle Scholar
  4. Abzhanov A, Kaufman TC (2000a) Homologs of Drosophila appendage genes in the patterning of arthropod limbs. Dev Biol 227:673–689. doi: 10.1006/dbio.2000.9904 PubMedGoogle Scholar
  5. Abzhanov A, Kaufman TC (2000b) Embryonic expression patterns of the Hox genes of the crayfish Procambarus clarkii (Crustacea, Decapoda). Evol Dev 2:271–283. doi: 10.1046/j.1525-142x.2000.00066.x PubMedGoogle Scholar
  6. Abzhanov A, Kaufman TC (2004) Hox genes and tagmatization of the higher Crustacea (Malacostraca). In: Scholtz G (ed) Evolutionary developmental biology of Crustacea. AA Balkema Publishers, Lisse, pp 43–74Google Scholar
  7. Alwes F, Scholtz G (2006) Stages and other aspects of the embryology of the parthenogenetic Marmorkrebs (Decapoda, Reptantia, Astacida). Dev Genes Evol 216:169–184. doi: 10.1007/s00427-005-0041-8 PubMedGoogle Scholar
  8. Anderson DT (1982) Embryology. In: Abele LG, Bliss DE (eds) The biology of Crustacea, vol 2, Embryology, Morphology and Genetics. Academic, New York, pp 1–41Google Scholar
  9. Anger K (2001) The biology of decapod crustacean larvae. AA Balkema Publishers, The NetherlandsGoogle Scholar
  10. Anger K (2003) Salinity as a key parameter in the larval biology of decapod crustaceans. Invertebr Reprod Dev 43:29–45. doi: 10.1080/07924259.2003.9652520 Google Scholar
  11. Arcaro KF, Lnenicka GA (1995) Intrinsic differences in axonal growth from crayfish fast and slow motoneurons. Dev Biol 168:272–283. doi: 10.1006/dbio.1995.1079 PubMedGoogle Scholar
  12. Autrum H, Bennet MF, Diehn B, Hamdorf K, Heisenberg M, Järviletho M, Kunze P, Menzel R, Miller WH, Snyder AW, Stavenga DG, Yoshida M (1979) Comparative physiology and evolution of vision in invertebrates: a invertebrate photoreceptors. Springer, BerlinGoogle Scholar
  13. Ayub N, Benton JL, Zhang Y, Beltz BS (2011) Environmental enrichment influences neuronal stem cells in the adult crayfish brain. Dev Neurobio 71:351–361. doi: 10.1002/dneu.20864 Google Scholar
  14. Bate M (1993) The mesoderm and its derivates. In: Bate M, Martinez-Arias A (eds) The development of Drosophila melanogaster. Cold Spring Harbor Press, Cold Spring Harbor, pp 1013–1090Google Scholar
  15. Baylies MK, Bate M, Ruiz Gomez M (1998) Myogenesis: a view from Drosophila. Cell 93:921–927PubMedGoogle Scholar
  16. Beltz BS (1999) Distribution and functional anatomy of amine-containing neurons in decapod crustaceans. Microsc Res Tech 44:105–120. doi: 10.1002/(SICI)1097-0029(19990115/01)44:2/3<105::AID-JEMT5>3.0.CO;2-K PubMedGoogle Scholar
  17. Beltz BS, Kravitz EA (1983) Mapping of serotonin-like immunoreactivity in the lobster nervous system. J Neurosci 3:585–602PubMedGoogle Scholar
  18. Beltz BS, Sandeman DC (2003) Regulation of life-long neurogenesis in the decapod crustacean brain. Arthropod Struct Dev 32:39–60. doi: 10.1016/S1467-8039(03)00038-0 PubMedGoogle Scholar
  19. Beltz BS, Pontes M, Helluy SM, Kravitz EA (1990) Patterns of appearance of serotonin and proctolin immunoreactivities in the developing nervous system of the American lobster. J Neurobiol 21:521–542. doi: 10.1002/neu.480210402 PubMedGoogle Scholar
  20. Beltz BS, Helluy SM, Ruchhoeft ML, Gammill LS (1992) Aspects of the embryology and neural development of the American lobster. J Exp Zool 261:288–297. doi: 10.1002/jez.1402610308 PubMedGoogle Scholar
  21. Beltz BS, Benton JL, Sullivan JM (2001) Transient uptake of serotonin by newborn olfactory projection neurons. Proc Natl Acad Sci U S A 98:12730–12735. doi: 10.1073/pnas.231471298 PubMedCentralPubMedGoogle Scholar
  22. Beltz BS, Tlusty MF, Benton JL, Sandeman DC (2007) Omega-3 fatty acids upregulate adult neurogenesis. Neurosci Lett 415:154–158. doi: 10.1016/j.neulet.2007.01.010 PubMedCentralPubMedGoogle Scholar
  23. Beltz BS, Zhang Y, Benton JL, Sandeman DC (2011) Adult neurogenesis in the decapod crustacean brain: a hematopoietic connection? Eur J Neurosci 34:870–883. doi: 10.1111/j.1460-9568.2011.07802.x PubMedCentralPubMedGoogle Scholar
  24. Benton JL, Beltz BS (2001) Effects of serotonin depletion on local interneurons in the developing olfactory pathway of lobsters. J Neurobiol 46:193–205. doi: 10.1002/1097-4695(20010215)46:3<193::AID-NEU1002>3.0.CO;2-8 PubMedGoogle Scholar
  25. Benton JL, Beltz BS (2002) Patterns of neurogenesis in the midbrain of embryonic lobsters differ from proliferation in the insect and the crustacean ventral nerve cord. J Neurobiol 53:57–67. doi: 10.1002/neu.10110 PubMedGoogle Scholar
  26. Benton JL, Huber R, Ruchhoeft ML, Helluy SM, Beltz BS (1997) Serotonin depletion by 5,7-dihydroxytryptamine alters deutocerebral development in the lobster, Homarus americanus. J Neurobiol 33:357–373. doi: 10.1002/(SICI)1097-4695(199710)33:4<357::AID-NEU2>3.0.CO;2-9 PubMedGoogle Scholar
  27. Benton JL, Chaves da Silva PG, Sandeman DC, Beltz BS (2013) First-generation neuronal precursors in the crayfish brain are not self-renewing. Int J Dev Neurosci 31:657–666. doi: 10.1016/j.ijdevneu.2012.11.010 PubMedGoogle Scholar
  28. Bohman P, Edsman L, Martin P, Scholtz G (2013) The first Marmorkrebs (Decapoda: Astacida: Cambaridae) in Scandinavia. BioInvasions Records 2:227–232Google Scholar
  29. Bovbjerg RV (1953) Dominance order in the crayfish Orconectes virilis (Hagen). Physiol Zool 26:173–178Google Scholar
  30. Bovbjerg RV (1956) Some factors affecting aggressive behavior in crayfish. Physiol Zool 29:127–136Google Scholar
  31. Breithaupt T, Thiel M (eds) (2011) Chemical communication in Crustaceans. Springer, New YorkGoogle Scholar
  32. Brenneis G, Stollewerk A, Scholtz G (2013) Embryonic neurogenesis in Pseudopallene sp. (Arthropoda, Pycnogonida) includes two subsequent phases with similarities to different arthropod groups. EvoDevo 4:32PubMedCentralPubMedGoogle Scholar
  33. Browne WE, Schmid BGM, Wimmer EA, Martindale MQ (2006) Expression of otd orthologs in the amphipod crustacean, Parhyale hawaiensis. Dev Genes Evol 216:581–595. doi: 10.1007/s00427-006-0074-7 PubMedGoogle Scholar
  34. Burrage TG, Sherman RG (1979) Formation of sarcomeres in the embryonic heart of the lobster. Cell Tissue Res 198:477–486. doi: 10.1007/BF00234192 PubMedGoogle Scholar
  35. Campos-Ortéga JA, Hartenstein V (1997) The embryonic development of Drosophila melanogaster. Springer, BerlinGoogle Scholar
  36. Charmantier G (1998) Ontogeny of osmoregulation in crustaceans: a review. Invertebr Reprod Dev 33:177–190. doi: 10.1080/07924259.1998.9652630 Google Scholar
  37. Charmantier G, Charmantier-Daures M (1998) Endocrine and neuroendocrine regulations in embryos and larvae of crustaceans. Invertebr Reprod Dev 33:273–287. doi: 10.1080/07924259.1998.9652638 Google Scholar
  38. Charmantier G, Charmantier-Daures M, Towle D (2009) In: Evans (ed) Osmotic and ionic regulation in aquatic arthropods. Taylor and Francis, London, pp 165–208Google Scholar
  39. Chaves da Silva PG, Benton JL, Beltz BS, Allodi S (2012) Adult neurogenesis: ultrastructure of a neurogenic niche and neurovascular relationships. PLoS ONE 7:e39267. doi: 10.1371/journal.pone.0039267 PubMedCentralGoogle Scholar
  40. Chaves da Silva PG, Benton JL, Sandeman DC, Beltz BS (2013) Adult neurogenesis in the crayfish brain: the hematopoietic anterior proliferation center has direct access to the brain and stem cell niche. Stem Cells Dev 22:1027–1041. doi: 10.1089/scd.2012.0583 PubMedGoogle Scholar
  41. Chucholl C, Morawetz K, Groß H (2012) The clones are coming – strong increase in Marmorkrebs [Procambarus fallax (Hagen, 1870) f. virginalis] records from Europe. Aquatic Invasions 7:511–519Google Scholar
  42. Cieluch U, Anger K, Aujoulat F, Buchholz F, Charmantier-Daures M, Charmantie G (2004) Ontogeny of osmoregulatory structures and functions in the green crab Carcinus maenas (Crustacea, Decapoda). J Exp Biol 207:325–336. doi: 10.1242/jeb.00759 PubMedGoogle Scholar
  43. Cieluch U, Charmantier G, Grousset E, Charmantier-Daures M, Anger K (2005) Osmoregulation, immunolocalization of Na + /K + -ATPase, and ultrastructure of branchial epithelia in the developing brown shrimp, Crangon crangon (Decapoda, Caridea). Physiol Biochem Zool 78:1017–1025. doi: 10.1086/432856 PubMedGoogle Scholar
  44. Cieluch U, Anger K, Charmantier-Daures M, Charmantier G (2007) Osmoregulation and immunolocalization of Na+/K+-ATPase during the ontogeny of the mitten crab Eriocheir sinensis (Decapoda, Grapsoidea). Mar Ecol Prog Ser 329:169–178. doi: 10.3354/meps329169 Google Scholar
  45. Claiborne BJ, Selverston AI (1984) Histamine as a neurotransmitter in the stomatogastric nervous system of the spiny lobster. J Neurosci 4:708–721PubMedGoogle Scholar
  46. Cole JJ, Lang F (1980) Spontaneous and evoked postsynaptic potentials in an embryonic neuromuscular system of the lobster, Homarus americanus. J Neurobiol 11:459–470. doi: 10.1002/neu.480110505 PubMedGoogle Scholar
  47. Costello WJ, Hill R, Lang F (1981) Innervation patterns of fast and slow motor neurones during development of a lobster neuromuscular system. J Exp Biol 91:271–284Google Scholar
  48. Cournil I, Casasnovas B, Helluy SM, Beltz BS (1995) Dopamine in the lobster Homarus gammarus: II. Dopamine-immunoreactive neurons and development of the nervous system. J Comp Neurol 362:1–16. doi: 10.1002/cne.903620102 PubMedGoogle Scholar
  49. Davis WJ, Davis KB (1973) Ontogeny of a simple locomotor system: role of the periphery in the development of central nervous circuitry. Am Zool 13:409–425. doi: 10.1093/icb/13.2.409 Google Scholar
  50. Derby CD, Weissburg MJ (2014) The chemical senses and chemosensory ecology of crustaceans. In: The Natural history of crustacea Vol. 3 - Nervous systems & Control of behavior (eds. C. Derby, M. Thiel). Oxford University Press, New York: pp. 263–292Google Scholar
  51. Derby CD, Fortier JK, Harrison PJH, Cate HS (2003) The peripheral and central antennular pathway of the Caribbean stomatopod crustacean Neogonodactylus oerstedii. Arthropod Struct Dev 32:175–188. doi: 10.1016/S1467-8039(03)00048-3 PubMedGoogle Scholar
  52. Dohle W (1972) Über die Bildung und Differenzierung des postnauplialen Keimstreifs von Leptochelia spec. (Crustacea, Tanaidacea). Zool Jb Anat 89:503–566Google Scholar
  53. Dohle W (1998) Myriapod-insect relationships as opposed to an insect-crustacean sister group relationship. In: Fortey RA, Thomas RH (eds) Arthropod relationships. Springer, Netherlands, pp 305–315Google Scholar
  54. Dohle W (2001) Are the insects terrestrial crustaceans? A discussion of some new facts and arguments and the proposal of the proper name “Tetraconata” for the monophyletic unit Crustacea + Hexapoda. Annales de la Société entomologique de France. Société Entomologique de, France, pp 85–103Google Scholar
  55. Dohle W, Scholtz G (1988) Clonal analysis of the crustacean segment: the discordance between genealogical and segmental borders. Development 104:147–160Google Scholar
  56. Dohle W, Scholtz G (1997) How far does cell lineage influence cell fate specification in crustacean embryos? Semin Cell Dev Biol 8:379–390. doi: 10.1006/scdb.1997.0162 PubMedGoogle Scholar
  57. Dohle W, Gerberding M, Hejnol A, Scholtz G (2004) Cell lineage, segment differentiation, and gene expression in crustaceans. In: Scholtz G (ed) Evolutionary developmental biology of Crustacea. AA Balkema Publishers, Lisse, pp 95–134Google Scholar
  58. Dorn NJ (2013) Consumptive effects of crayfish limit snail populations. Freshwater Sci 32:1298–1308Google Scholar
  59. Dorn N, Trexler JC (2007) Crayfish assemblage shifts in a large drought-prone wetland: the roles of hydrology and competition. Freshwater Biol 52:2399–2411Google Scholar
  60. Dorn N, Volin JC (2009) Resistance of crayfish (Procambarus spp.) populations to wetland drying depends on species and substrate. J North Am Benthol Soc 28:766–777Google Scholar
  61. Drummond JM, Macmillan DL (1998a) The abdominal motor system of the crayfish. Cherax destructor. I. Morphology and physiology of the superficial extensor motor neurons. J Comparative Physiol A 183:583–601Google Scholar
  62. Drummond JM, Macmillan DL (1998b) The abdominal motor system of the crayfish. Cherax destructor. II. Morphology and physiology of the deep extensor motor neurons. J Comparative Physiol A 183:603–619Google Scholar
  63. Duffy JE, Thiel M (2007) Evolutionary ecology of social and sexual systems: Crustaceans as model organisms. Oxford University Press, OxfordGoogle Scholar
  64. Duman-Scheel M, Patel NH (1999) Analysis of molecular marker expression reveals neuronal homology in distantly related arthropods. Development 126:2327–2334PubMedGoogle Scholar
  65. Dumont JPC, Wine JJ (1987) The telson flexor neuromuscular system of the crayfish: I. Homology with the fast flexor system. J Exp Biol 127:249–277Google Scholar
  66. Eguchi E, Tominaga Y (1999) Atlas of arthropod sensory receptors: dynamic morphology in relation to function. Springer, TokyoGoogle Scholar
  67. Eguchi E, Arikawa K, Ishibashi S, Suzuki T, Meyer-Rochow V (1989) Growth-related biometrical and biochemical studies of the compound eye of the crab, Hemigrapsus sanguineus: physiology. Zool Sci 6:241–250Google Scholar
  68. Eisen JS (1991) Developmental neurobiology of the zebrafish. J Neurosci 11:311–317PubMedGoogle Scholar
  69. El Haj AJ (1999) Regulation of muscle growth and sarcomeric protein gene expression over the intermolt cycle. Am Zool 39:570–579. doi: 10.1093/icb/39.3.570 Google Scholar
  70. Elofsson R (1969) The development of the compound eyes of Penaeus duorarum (Crustacea: Decapoda) with remarks on the nervous system. Z Zellforsch 97:323–350. doi: 10.1007/BF00968840 PubMedGoogle Scholar
  71. Exner S (1891) Die Physiologie der facettirten Augen von Krebsen und Insecten : eine Studie. Deuticke, LeipzigGoogle Scholar
  72. Exner S (1989) The physiology of the compound eyes of insects and Crustaceans: a study. Springer, BerlinGoogle Scholar
  73. Fabritius-Vilpoux K, Bisch-Knaden S, Harzsch S (2008) Engrailed-like immunoreactivity in the embryonic ventral nerve cord of the Marbled Crayfish (Marmorkrebs). Invert Neurosci 8:177–197. doi: 10.1007/s10158-008-0081-7 PubMedGoogle Scholar
  74. Faulkes Z (2010) The spread of the parthenogenetic marbled crayfish, Marmorkrebs (Procambarus sp.), in the North American pet trade. Aquatic Invasions 5:447–450Google Scholar
  75. Faulkes Z (2013) How much is that crayfish in the window? Online monitoring of Marmorkrebs, Procambarus fallax f. virginalis (Hagen, 1870) in the North American pet trade. Freshwater Crayfish 19:39–44Google Scholar
  76. Faulkes Z, Feria TP, Muñoz J (2012) Do Marmorkrebs, Procambarus fallax f. virginalis, threaten freshwater Japanese ecosystems? Aquatic Biosystems 8:13PubMedCentralPubMedGoogle Scholar
  77. Feria TP, Faulkes Z (2011) Forecasting the distribution of Marmorkrebs, a parthenogenetic crayfish with high invasive potential, in Madagascar, Europe, and North America. Aquatic Invasions 6:55–67Google Scholar
  78. Figler MH, Cheverton HM, Blank GS (1999) Shelter competition in juvenile red swamp crayfish (Procambarus clarkii): the influences of sex differences, relative size, and prior residence. Aquaculture 178:63–75Google Scholar
  79. Fischer AH, Scholtz G (2010) Axogenesis in the stomatopod crustacean Gonodactylaceus falcatus (Malacostraca). Invertebr Biol 129:59–76. doi: 10.1111/j.1744-7410.2010.00192.x Google Scholar
  80. Friedrich M, Wood EJ, Wu M (2011) Developmental evolution of the insect retina: insights from standardized numbering of homologous photoreceptors. J Exp Zool 316B:484–499. doi: 10.1002/jez.b.21424 Google Scholar
  81. Garzino V, Reichert H (1994) Early embryonic expression of a 60-kD glycoprotein in the developing nervous system of the lobster. J Comp Neurol 346:572–582. doi: 10.1002/cne.903460409 PubMedGoogle Scholar
  82. Gerberding M, Scholtz G (1999) Cell lineage of the midline cells in the amphipod crustacean Orchestia cavimana (Crustacea, Malacostraca) during formation and separation of the germ band. Dev Gene Evol 209:91–102. doi: 10.1007/s004270050231 Google Scholar
  83. Gerberding M, Scholtz G (2001) Neurons and glia in the midline of the higher crustacean Orchestia cavimana are generated via an invariant cell lineage that comprises a median neuroblast and glial progenitors. Dev Biol 235:397–409. doi: 10.1006/dbio.2001.0302 PubMedGoogle Scholar
  84. Gerberding M, Patel NH, Stern CD (2004) Gastrulation in crustaceans: germ layers and cell lineages, Gastrulation: from Cells to Embryo. Cold Spring Harbor Press, New York, pp 79–89Google Scholar
  85. Goergen EM, Bagay LA, Rehm K, Benton JL, Beltz BS (2002) Circadian control of neurogenesis. J Neurobiol 53:90–95. doi: 10.1002/neu.10095 PubMedGoogle Scholar
  86. Govind CK (1982) Development of nerve, muscle, and synapse. In: Atwood HL, Sandeman DC (eds) Neurobiology: structure and function. Academic, New York, pp 185–202Google Scholar
  87. Govind CK (1995) Muscles and their innervation. In: Factor JR (ed) Biology of the Lobster: Homarus americanus. Academic, San Diego, pp 291–310Google Scholar
  88. Govind CK, Derosa RA (1983) Fine structure of comparable synapses in a mature and larval lobster muscle. Tissue Cell 15:97–106. doi: 10.1016/0040-8166(83)90036-8 PubMedGoogle Scholar
  89. Govind CK, Pearce J (1981) Remodeling of multiterminal innervation by nerve terminal sprouting in an identifiable lobster motoneuron. Science 212:1522–1524. doi: 10.1126/science.7233240 PubMedGoogle Scholar
  90. Govind CK, Pearce J (1982) Proliferation and relocation of developing lobster neuromuscular synapses. Dev Biol 90:67–78. doi: 10.1016/0012-1606(82)90212-3 PubMedGoogle Scholar
  91. Govind CK, Pearce J (1989) Growth of inhibitory innervation in a lobster muscle. J Morphol 199:197–205. doi: 10.1002/jmor.1051990206 PubMedGoogle Scholar
  92. Govind CK, Walrond JP (1989) Structural plasticity at crustacean neuromuscular synapses. J Neurobiol 20:409–421. doi: 10.1002/neu.480200511 PubMedGoogle Scholar
  93. Govind CK, Meiss DE, Pearce J (1982) Differentiation of identifiable lobster neuromuscular synapses during development. J Neurocytol 11:235–247. doi: 10.1007/BF01258245 PubMedGoogle Scholar
  94. Govind CK, Stephens PJ, Eisen JS (1985) Polyneuronal innervation of an adult and embryonic lobster muscle. J Embryol Exp Morphol 87:13–26PubMedGoogle Scholar
  95. Graham ME, Herberholz J (2008) Stability of dominance relationships in crayfish depends on social context. Animal Behav 77:195–199Google Scholar
  96. Hafner GS, Tokarski TR (1998) Morphogenesis and pattern formation in the retina of the crayfish Procambarus clarkii. Cell Tissue Res 293:535–550. doi: 10.1007/s004410051146 PubMedGoogle Scholar
  97. Hafner GS, Tokarski TR (2001) Retinal development in the lobster Homarus americanus. Cell Tissue Res 305:147–158. doi: 10.1007/s004410100413 PubMedGoogle Scholar
  98. Hafner GS, Tokarski TR, Hammond-Soltis G (1982) Development of the crayfish retina: a light and electron microscopic study. J Morphol 173:101–118. doi: 10.1002/jmor.1051730109 PubMedGoogle Scholar
  99. Hafner GS, Tokarski TR, Kipp J (1991) Changes in the microvillus cytoskeleton during rhabdom formation in the retina of the crayfish Procambarus clarkii. J Neurocytol 20:585–596. doi: 10.1007/BF01215266 PubMedGoogle Scholar
  100. Hafner GS, Martin RL, Tokarski TR (2003) Photopigment gene expression and rhabdom formation in the crayfish (Procambarus clarkii). Cell Tissue Res 311:99–105. doi: 10.1007/s00441-002-0658-0 PubMedGoogle Scholar
  101. Hallberg E, Hansson BS (1999) Arthropod sensilla: morphology and phylogenetic considerations. Microsc Res Tech 47:428–439. doi: 10.1002/(SICI)1097-0029(19991215)47:6<428::AID-JEMT6>3.0.CO;2-P PubMedGoogle Scholar
  102. Hallberg E, Skog M (2011) Chemosensory sensilla in crustaceans. In: Breithaupt T, Thiel M (eds) Chemical communication in Crustaceans. Springer, New York, pp 103–121Google Scholar
  103. Hallberg E, Johansson KUI, Elofsson R (1992) The aesthetasc concept: structural variations of putative olfactory receptor cell complexes in crustacea. Microsc Res Tech 22:325–335. doi: 10.1002/jemt.1070220403 PubMedGoogle Scholar
  104. Hannibal RL, Price AL, Patel NH (2012) The functional relationship between ectodermal and mesodermal segmentation in the crustacean, Parhyale hawaiensis. Dev Biol 361:427–438. doi: 10.1016/j.ydbio.2011.09.033 PubMedGoogle Scholar
  105. Hansen A, Schmidt M (2001) Neurogenesis in the central olfactory pathway of the adult shore crab Carcinus maenas is controlled by sensory afferents. J Comp Neurol 441:223–233. doi: 10.1002/cne.1408 PubMedGoogle Scholar
  106. Hansen A, Schmidt M (2004) Influence of season and environment on adult neurogenesis in the central olfactory pathway of the shore crab, Carcinus maenas. Brain Res 1025:85–97. doi: 10.1016/j.brainres.2004.08.001 PubMedGoogle Scholar
  107. Harper SL, Reiber CL (2004) Physiological development of the embryonic and larval crayfish heart. Biol Bull 206:78–86PubMedGoogle Scholar
  108. Harrison PJH, Cate HS, Steullet P, Derby CD (2001a) Structural plasticity in the olfactory system of adult spiny lobsters: postembryonic development permits life-long growth, turnover, and regeneration. Mar Freshwat Res 52:1357–1365Google Scholar
  109. Harrison PJH, Cate HS, Swanson ES, Derby CD (2001b) Postembryonic proliferation in the spiny lobster antennular epithelium: rate of genesis of olfactory receptor neurons is dependent on molt stage. J Neurobiol 47:51–66. doi: 10.1002/neu.1015 PubMedGoogle Scholar
  110. Hartmann B, Reichert H (1998) The genetics of embryonic brain development in Drosophila. Mol Cell Neurosci 12:194–205. doi: 10.1006/mcne.1998.0716 PubMedGoogle Scholar
  111. Harzsch S (2001) Neurogenesis in the crustacean ventral nerve cord: homology of neuronal stem cells in Malacostraca and Branchiopoda? Evol Dev 3:154–169. doi: 10.1046/j.1525-142x.2001.003003154.x PubMedGoogle Scholar
  112. Harzsch S (2002) From stem cell to structure: neurogenesis in the CNS of decapod crustaceans. In: Wiese K (ed) The Crustacean nervous system. Springer, Berlin, pp 417–432Google Scholar
  113. Harzsch S (2003a) Ontogeny of the ventral nerve cord in malacostracan crustaceans: a common plan for neuronal development in Crustacea, Hexapoda and other Arthropoda? Arthropod Struct Dev 32:17–37. doi: 10.1016/S1467-8039(03)00008-2 PubMedGoogle Scholar
  114. Harzsch S (2003b) Evolution of identified arthropod neurons: the serotonergic system in relation to engrailed-expressing cells in the embryonic ventral nerve cord of the American lobster Homarus americanus Milne Edwards, 1873 (Malacostraca, Pleocyemata, Homarida). Dev Biol 258:44–56. doi: 10.1016/S0012-1606(03)00113-1
  115. Harzsch S, Dawirs RR (1993) On the morphology of the central nervous system in larval stages of Carcinus maenas L. (Decapoda, Brachyura). Helgoländer Meeresun 47:61–79. doi: 10.1007/BF02366185 Google Scholar
  116. Harzsch S, Dawirs RR (1994) Neurogenesis in larval stages of the spider crab Hyas araneus (Decapoda, Brachyura): proliferation of neuroblasts in the ventral nerve cord. Roux’s Arch Dev Biol 204:93–100. doi: 10.1007/BF00361103 Google Scholar
  117. Harzsch S, Dawirs RR (1995) A developmental study of serotonin-immunoreactive neurons in the larval central nervous system of the spider crab Hyas araneus (Decapoda, Brachyura). Invert Neurosci 1:53–65. doi: 10.1007/BF02331832 PubMedGoogle Scholar
  118. Harzsch S, Dawirs RR (1996a) Maturation of the compound eyes and eyestalk ganglia during larval development of the brachyuran crustaceans Hyas araneus L (Decapoda, Majidae) and Carcinus maenas L (Decapoda, Portunidae). Zool-Anal Compl Syst 99:189–204Google Scholar
  119. Harzsch S, Dawirs RR (1996b) Neurogenesis in the developing crab brain: postembryonic generation of neurons persists beyond metamorphosis. J Neurobiol 29:384–398. doi: 10.1002/(SICI)1097-4695(199603)29:3<384::AID-NEU9>3.0.CO;2-5 PubMedGoogle Scholar
  120. Harzsch S, Dawirs RR (1996c) Development of neurons exhibiting FMRFamide-related immunoreactivity in the central nervous system of larvae of the spider crab Hyas araneus L. (Decapoda: Majidae). J Crustacean Biol 16:10. doi: 10.2307/1548925 Google Scholar
  121. Harzsch S, Hafner GS (2006) Evolution of eye development in arthropods: phylogenetic aspects. Arthropod Struct Dev 35:319–340. doi: 10.1016/j.asd.2006.08.009 PubMedGoogle Scholar
  122. Harzsch S, Kreissl S (2010) Myogenesis in the thoracic limbs of the American lobster. Arthropod Struct Dev 39:423–435. doi: 10.1016/j.asd.2010.06.001 PubMedGoogle Scholar
  123. Harzsch S, Walossek D (2001) Neurogenesis in the developing visual system of the branchiopod crustacean Triops longicaudatus (LeConte, 1846): corresponding patterns of compound-eye formation in Crustacea and Insecta? Dev Genes Evol 211:37–43. doi: 10.1007/s004270000113 PubMedGoogle Scholar
  124. Harzsch S, Anger K, Dawirs RR (1997) Immunocytochemical detection of acetylated alpha-tubulin and Drosophila synapsin in the embryonic crustacean nervous system. Int J Dev Biol 41:477–484PubMedGoogle Scholar
  125. Harzsch S, Miller J, Benton JL, Dawirs RR, Beltz BS (1998) Neurogenesis in the thoracic neuromeres of two crustaceans with different types of metamorphic development. J Exp Biol 201:2465–2479PubMedGoogle Scholar
  126. Harzsch S, Benton J, Dawirs RR, Beltz BS (1999a) A new look at embryonic development of the visual system in decapod crustaceans: neuropil formation, neurogenesis, and apoptotic cell death. J Neurobiol 39:294–306. doi: 10.1002/(SICI)1097-4695(199905)39:2<294::AID-NEU13>3.0.CO;2-Q PubMedGoogle Scholar
  127. Harzsch S, Miller J, Benton JL, Beltz BS (1999b) From embryo to adult: persistent neurogenesis and apoptotic cell death shape the lobster deutocerebrum. J Neurosci 19:3472–3485PubMedGoogle Scholar
  128. Harzsch S, Müller CHG, Wolf H (2005) From variable to constant cell numbers: cellular characteristics of the arthropod nervous system argue against a sister-group relationship of Chelicerata and “Myriapoda” but favour the Mandibulata concept. Dev Genes Evol 215:53–68. doi: 10.1007/s00427-004-0451-z PubMedGoogle Scholar
  129. Harzsch S, Dircksen H, Beltz BS (2009) Development of pigment-dispersing hormone-immunoreactive neurons in the American lobster: homology to the insect circadian pacemaker system? Cell Tissue Res 335:417–429. doi: 10.1007/s00441-008-0728-z PubMedCentralPubMedGoogle Scholar
  130. Harzsch S, Sandeman DC, Chaigneau J (2012) Morphology and development of the central nervous system. In: Forest J, von Vaupel Klein JC (eds) Treatise on zoology-anatomy, taxonomy, biology, The Crustacea. Brill, Leiden, pp 9–236Google Scholar
  131. Hashemzadeh-Gargari H, Freschi JE (1992) Histamine activates chloride conductance in motor neurons of the lobster cardiac ganglion. J Neurophysiol 68:9–15PubMedGoogle Scholar
  132. Helluy S, Sandeman RE, Beltz BS, Sandeman DC (1993) Comparative brain ontogeny of the crayfish and clawed lobster: implications of direct and larval development. J Comp Neurol 335:343–354. doi: 10.1002/cne.903350305
  133. Helluy S, Ruchhoeft ML, Beltz BS (1995) Development of the olfactory and accessory lobes in the american lobster: an allometric analysis and its implications for the deutocerebral structure of decapods. J Comp Neurol 357:433–445. doi: 10.1002/cne.903570308 PubMedGoogle Scholar
  134. Helluy SM, Benton JL, Langworthy KA, Ruchhoeft ML, Beltz BS (1996) Glomerular organization in developing olfactory and accessory lobes of American lobsters: stabilization of numbers and increase in size after metamorphosis. J Neurobiol 29:459–472. doi: 10.1002/(SICI)1097-4695(199604)29:4<459::AID-NEU4>3.0.CO;2-7 PubMedGoogle Scholar
  135. Hendrix AN, Loftus WF (2000) Distribution and relative abundance of the crayfishes Procambarus alleni (Faxon) and P. fallax (Hagen) in southern Florida. Wetlands 20:194–199Google Scholar
  136. Hertzler PL (2002) Development of the mesendoderm in the dendrobranchiate shrimp Sicyonia ingentis. Arthropod Struct Dev 31:33–49. doi: 10.1016/S1467-8039(02)00018-X PubMedGoogle Scholar
  137. Hertzler PL (2005) Cleavage and gastrulation in the shrimp Penaeus (Litopenaeus) vannamei (Malacostraca, Decapoda, Dendrobranchiata). Arthropod Struct Dev 34:455–469. doi: 10.1016/j.asd.2005.01.009 Google Scholar
  138. Hertzler PL, Freas WR (2009) Pleural muscle development in the shrimp Penaeus (Litopenaeus) vannamei (Crustacea: Malacostraca: Decapoda: Dendrobranchiata). Arthropod Struct Dev 38:235–246. doi: 10.1016/j.asd.2008.12.003 PubMedGoogle Scholar
  139. Hobbs HH Jr (1942) The crayfishes of Florida, vol 3, University of Florida publication: biological series. University of Florida, Gainesville, pp 1–179Google Scholar
  140. Holdich DM (2002) Biology of freshwater crayfish, 1st edn. Blackwell Science, OxfordGoogle Scholar
  141. Horridge GA (1975) The compound eye and vision of insects. Clarendon Press, OxfordGoogle Scholar
  142. Huber R, Delago A (1998) Serotonin alters decisions to withdraw in fighting crayfish, Astacus astacus: the motivational concept revisited. J Comp Physiol A 182:573–583Google Scholar
  143. Hunnekuhl VS, Wolff C (2012) Reconstruction of cell lineage and spatiotemporal pattern formation of the mesoderm in the amphipod crustacean Orchestia cavimana. Dev Dyn 241:697–717. doi: 10.1002/dvdy.23758 PubMedGoogle Scholar
  144. Jarvis E, Bruce HS, Patel NH (2012) Evolving specialization of the arthropod nervous system. Proc Natl Acad Sci U S A 109:10634–10639. doi: 10.1073/pnas.1201876109 PubMedCentralPubMedGoogle Scholar
  145. Jirikowski G, Kreissl S, Richter S, Wolff C (2010) Muscle development in the marbled crayfish—insights from an emerging model organism (Crustacea, Malacostraca, Decapoda). Dev Genes Evol 220:89–105. doi: 10.1007/s00427-010-0331-7 PubMedGoogle Scholar
  146. Jirikowski G, Richter S, Wolff C (2013) Myogenesis of malacostraca – the “egg-nauplius” concept revisited. Front Zool 10:76. doi: 10.1186/1742-9994-10-76 PubMedCentralPubMedGoogle Scholar
  147. Jones JPG, Rasamy JR, Harvey A, Toon A, Oidtmann B, Randrianarison MH, Raminosoa N, Ravoahangimalala OR (2009) The perfect invader: a parthenogenic crayfish poses a new threat to Madagascar’s freshwater biodiversity. Biol Invasions 11:1475–1482Google Scholar
  148. Kawai T, Takahata M (eds) (2010) Biology of crayfish. Hokkaido University Press, SapporoGoogle Scholar
  149. Kawai T, Scholtz G, Morioka S, Ramanamandimby F, Lukhaup C, Hanamura Y (2009) Parthenogenetic alien crayfish (Decapoda: cambaridae) spreading in Madagascar. Journal of Crustacean Biology 29:562–567Google Scholar
  150. Kenning M, Müller C, Wirkner CS, Harzsch S (2013) The Malacostraca (Crustacea) from a neurophylogenetic perspective: new insights from brain architecture in Nebalia herbstii Leach, 1814 (Leptostraca, Phyllocarida). Zool Anz 252:319–336. doi: 10.1016/j.jcz.2012.09.003 Google Scholar
  151. Kiernan DA, Hertzler PL (2006) Muscle development in dendrobranchiate shrimp, with comparison with Artemia. Evol Dev 8:537–549. doi: 10.1111/j.1525-142X.2006.00126.x PubMedGoogle Scholar
  152. Kirk MD, Govind CK (1983) Innervation and motor patterns of the abdominal superficial flexor muscles in larval lobsters. J Neurobiol 14:399–405. doi: 10.1002/neu.480140508 PubMedGoogle Scholar
  153. Kirk MD, Govind CK (1992) Early innervation of abdominal swimmeret muscles in developing lobsters. J Exp Zool 261:298–309. doi: 10.1002/jez.1402610309 PubMedGoogle Scholar
  154. Klagges BRE, Heimbeck G, Godenschwege TA, Hofbauer A, Pflugfelder GO, Reifegerste R, Reisch D, Schaupp M, Buchner S, Buchner E (1996) Invertebrate synapsins: a single gene codes for several isoforms in Drosophila. J Neurosci 16:3154–3165PubMedGoogle Scholar
  155. Knorp NE, Dorn NJ (2014) Dissimilar numerical responses of macroinvertebrates to disturbance from drying and predatory sunfish. Freshwater Biology 59:1378–1388Google Scholar
  156. Kreissl S, Uber A, Harzsch S (2008) Muscle precursor cells in the developing limbs of two isopods (Crustacea, Peracarida): an immunohistochemical study using a novel monoclonal antibody against myosin heavy chain. Dev Genes Evol 218:253–265. doi: 10.1007/s00427-008-0216-1 PubMedCentralPubMedGoogle Scholar
  157. Land MF, Nilsson D-E (2012) Animal eyes, 2nd edn. Oxford University Press, OxfordGoogle Scholar
  158. Lang F (1977) Synaptic and septate neuromuscular junctions in embryonic lobster muscle. Nature 268:458–460. doi: 10.1038/268458a0 PubMedGoogle Scholar
  159. Laverack MS (1988) Larval locomotion, sensors, growth and their implication for the nervous system. Symp Zool Soc 59:103–122Google Scholar
  160. Leone FA, Bezerra TMS, Garçon DP, Lucena MN, Pinto MR, Fontes CFL, McNamara JC (2014) Modulation by K+ plus NH4+ of microsomal (Na+, K+)-ATPase activity in selected ontogenetic stages of the diadromous river shrimp Macrobrachium amazonicum (Decapoda, Palaemonidae). PLoS ONE 9:e89625. doi: 10.1371/journal.pone.0089625 PubMedCentralPubMedGoogle Scholar
  161. Lignot J, Charmantier G (2001) Immunolocalization of NA+, K+-ATPase in the branchial cavity during the early development of the European lobster Homarus gammarus (Crustacea, Decapoda). J Histochem Cytochem 49:1013–1023. doi: 10.1177/002215540104900809 PubMedGoogle Scholar
  162. Lignot J, Susanto GN, Charmantier-Daures M, Charmantier G (2005) Immunolocalization of Na+, K+-ATPase in the branchial cavity during the early development of the crayfish Astacus leptodactylus (Crustacea, Decapoda). Cell Tissue Res 319:331–339. doi: 10.1007/s00441-004-1015-2 PubMedGoogle Scholar
  163. Liubicich DM, Serano JM, Pavlopoulos A, Kontarakis Z, Protas ME, Kwan E, Chatterjee S, Tran KD, Averof M, Patel NH (2009) Knockdown of Parhyale Ultrabithorax recapitulates evolutionary changes in crustacean appendage morphology. Proc Natl Acad Sci U S A 106:13892–13896. doi: 10.1073/pnas.0903105106 PubMedCentralPubMedGoogle Scholar
  164. Lnenicka GA, Hong SJ, Combatti M, LePage S (1991) Activity-dependent development of synaptic varicosities at crayfish motor terminals. J Neurosci 11:1040–1048PubMedGoogle Scholar
  165. Loesel R, Wolf H, Kenning M, Harzsch S, Sombke A (2013) Architectural principles and evolution of the arthropod central nervous system. In: Minelli A, Boxshall G, Fusco G (eds) Arthropod biology and evolution. Springer Berlin Heidelberg, Berlin, pp 299–342Google Scholar
  166. Lundberg U (2004) Behavioural elements of the noble crayfish, Astacus astacus (Linnaeus, 1758). Crustaceana 77:137–162Google Scholar
  167. Macmillan DL (1997) Development of the motor system in the limbs of larval lobsters (Homarus americanus). Biol Bull 193:257–258PubMedGoogle Scholar
  168. Martin P, Kohlmann K, Scholtz G (2007) The parthenogenetic Marmorkrebs (marbled crayfish) produces genetically uniform offspring. Naturwissenschaften 94:843–846PubMedGoogle Scholar
  169. Martin P, Shen H, Füllner G, Scholtz G (2010) The first record of the parthenogenetic Marmorkrebs (Decapoda, Astacida, Cambaridae) in the wild in Saxony (Germany) raises the question of its actual threat to European freshwater ecosystems. Aquatic Invasions 5:397–403Google Scholar
  170. Mellon D (1999) Muscle restructuring in crustaceans: myofiber death, transfiguration and rebirth. Am Zool 39:527–540. doi: 10.1093/icb/39.3.527 Google Scholar
  171. Mellon D (2007) Combining dissimilar senses: central processing of hydrodynamic and chemosensory inputs in aquatic crustaceans. Biol Bull 213:1–11PubMedGoogle Scholar
  172. Mellon D, Alones V (1993) Cellular organization and growth-related plasticity of the crayfish olfactory midbrain. Microsc Res Tech 24:231–259. doi: 10.1002/jemt.1070240304 PubMedGoogle Scholar
  173. Melzer RR, Diersch R, Nicastro D, Smola U (1997) Compound eye evolution: highly conserved retinula and cone cell patterns indicate a common origin of the insect and crustacean ommatidium. Naturwissenschaften 84:542–544. doi: 10.1007/s001140050442 Google Scholar
  174. Melzer RR, Michalke C, Smola U (2000) Walking on insect paths? Early ommatidial development in the compound eye of the ancestral crustacean, Triops cancriformis. Naturwissenschaften 87:308–311. doi: 10.1007/s001140050727 PubMedGoogle Scholar
  175. Meyer-Rochow VB (1975) Larval and adult eye of the Western rock lobster (Panulirus longipes). Cell Tissue Res 162:439–457. doi: 10.1007/BF00209345 PubMedGoogle Scholar
  176. Meyer-Rochow VB, Towers D, Ziedins I (1989) Growth patterns in the eye of Petrolisthes elongatus (Crustacea; Decapoda; Anomura). Exp Biol 48:329–340Google Scholar
  177. Mulloney B, Hall WM (1991) Neurons with histamine-like immunoreactivity in the segmental and stomatogastric nervous systems of the crayfish Pacifastacus leniusculus and the lobster Homarus americanus. Cell Tissue Res 266:197–207. doi: 10.1007/BF00678725 PubMedGoogle Scholar
  178. Murphy BF, Larimer JL (1991) The effect of various neurotransmitters and some of their agonists and antagonists on the crayfish abdominal positioning system. Comp Biochem Physiol C 100:687–698. doi: 10.1016/0742-8413(91)90062-X PubMedGoogle Scholar
  179. Mykles DL (1999) Proteolytic processes underlying molt-induced claw muscle atrophy in decapod crustaceans. Am Zool 39:541–551. doi: 10.1093/icb/39.3.541 Google Scholar
  180. Nässel DR (1976) The retina and retinal projection on the lamina ganglionaris of the crayfish Pacifastacus leniusculus (Dana). J Comp Neurol 167:341–359. doi: 10.1002/cne.901670305 Google Scholar
  181. Nässel DR (1977) Types and arrangements of neurons in the crayfish optic lamina. Cell Tissue Res 179:45–75. doi: 10.1007/BF00278462 PubMedGoogle Scholar
  182. Nilsson D-E, Osorio D (1998) Homology and parallelism in arthropod sensory processing. In: Thomas RH, Fortey RA (eds) Arthropod relationships. Springer, Netherlands, pp 333–347Google Scholar
  183. Noonin C, Lin X, Jiravanichpaisal P, Söderhäll K, Söderhäll I (2012) Invertebrate hematopoiesis: an anterior proliferation center as a link between the hematopoietic tissue and the brain. Stem Cells Dev 21:3173–3186. doi: 10.1089/scd.2012.0077 PubMedGoogle Scholar
  184. Osorio D (2007) Spam and the evolution of the fly’s eye. Bioessays 29:111–115. doi: 10.1002/bies.20533 PubMedGoogle Scholar
  185. Page DT (2004) A mode of arthropod brain evolution suggested by Drosophila commissure development. Evol Dev 6:25–31. doi: 10.1111/j.1525-142X.2004.04003.x PubMedGoogle Scholar
  186. Patel NH, Kornberg TB, Goodman CS (1989) Expression of engrailed during segmentation in grasshopper and crayfish. Development 107:201–212PubMedGoogle Scholar
  187. Paululat A, Breuer S, Renkawitz-Pohl R (1999a) Determination and development of the larval muscle pattern in Drosophila melanogaster. Cell Tissue Res 296:151–160. doi: 10.1007/s004410051276 PubMedGoogle Scholar
  188. Paululat A, Holz A, Renkawitz-Pohl R (1999b) Essential genes for myoblast fusion in Drosophila embryogenesis. Mech Dev 83:17–26. doi: 10.1016/S0925-4773(99)00029-5 PubMedGoogle Scholar
  189. Paulus HF (2000) Phylogeny of the Myriapoda – Crustacea – Insecta: a new attempt using photoreceptor structure. J Zool Syst Evol Res 38:189–208. doi: 10.1046/j.1439-0469.2000.383152.x Google Scholar
  190. Pavlopoulos A, Kontarakis Z, Liubicich DM, Serano JM, Akam M, Patel NH, Averof M (2009) Probing the evolution of appendage specialization by Hox gene misexpression in an emerging model crustacean. Proc Natl Acad Sci U S A 106:13897–13902. doi: 10.1073/pnas.0902804106 PubMedCentralPubMedGoogle Scholar
  191. Pearce J, Govind CK, Meiss DE (1985) Growth-related features of lobster neuromuscular terminals. Dev Brain Res 21:215–228. doi: 10.1016/0165-3806(85)90210-X Google Scholar
  192. Pick L, Heffer A (2012) Hox gene evolution: multiple mechanisms contributing to evolutionary novelties. Ann N Y Acad Sci 1256:15–32. doi: 10.1111/j.1749-6632.2011.06385.x PubMedGoogle Scholar
  193. Price AL, Patel NH (2008) Investigating divergent mechanisms of mesoderm development in arthropods: the expression of Ph-twist and Ph-mef2 in Parhyale hawaiensis. J Exp Zool 310B:24–40. doi: 10.1002/jez.b.21135 Google Scholar
  194. Price AL, Modrell MS, Hannibal RL, Patel NH (2010) Mesoderm and ectoderm lineages in the crustacean Parhyale hawaiensis display intra-germ layer compensation. Dev Biol 341:256–266. doi: 10.1016/j.ydbio.2009.12.006 PubMedGoogle Scholar
  195. Pulver SR, Marder E (2002) Neuromodulatory complement of the pericardial organs in the embryonic lobster, Homarus americanus. J Comp Neurol 451:79–90. doi: 10.1002/cne.10331 PubMedGoogle Scholar
  196. Rathke H (1829) Ueber die Bildung und Entwicklung des Flusskrebses. Verlag Leopold Voss, LeipzigGoogle Scholar
  197. Reichenbach H (1888) Zur Embryonalentwicklung des Flußkrebses. Abh Senckenb Naturforsch Ges 14:1–137Google Scholar
  198. Richter S (2002) The tetraconata concept: hexapod-crustacean relationships and the phylogeny of Crustacea. Org Divers Evol 2:217–237. doi: 10.1078/1439-6092-00048 Google Scholar
  199. Richter S, Stein M, Frase T, Szucsich NU (2013) The arthropod head. In: Boxshall G, Fusco G, Minelli A (eds) Arthropod biology and evolution. Springer, Berlin, pp 223–240Google Scholar
  200. Rieger V, Harzsch S (2008) Embryonic development of the histaminergic system in the ventral nerve cord of the Marbled Crayfish (Marmorkrebs). Tissue Cell 40:113–126. doi: 10.1016/j.tice.2007.10.004 PubMedGoogle Scholar
  201. Rotllant G, Kleijn DD, Charmantier-Daures M, Charmantier G, Herp FV (1993) Localization of crustacean hyperglycemic hormone (CHH) and gonad-inhibiting hormone (GIH) in the eyestalk of Homarus gammarus larvae by immunocytochemistry and in situ hybridization. Cell Tissue Res 271:507–512. doi: 10.1007/BF02913734 Google Scholar
  202. Rotllant G, Charmantier-Daures M, Trilles JP, Charmantier G (1994) Ontogeny of the sinus gland and of the organ of Bellonci in larvae and postlarvae of the European lobster Homarus gammarus. Invertebr Reprod Dev 26:13–22. doi: 10.1080/07924259.1994.9672396 Google Scholar
  203. Rotllant G, Charmantier-Daures M, De Kleijn D, Charmantier G, Van Herp F (1995) Ontogeny of neuroendocrine centers in the eyestalk of Homarus gammarus embryos: an anatomical and hormonal approach. Invertebr Reprod Dev 27:233–245. doi: 10.1080/07924259.1995.9672453 Google Scholar
  204. Roy S, VijayRaghavan K (1999) Muscle pattern diversification in Drosophila: the story of imaginal myogenesis. Bioessays 21:486–498. doi: 10.1002/(SICI)1521-1878(199906)21:6<486::AID-BIES5>3.0.CO;2-M PubMedGoogle Scholar
  205. Ruehl CB, Trexler JC (2013) A suite of prey traits determine predator and nutrient enrichment effects in a tri-trophic food chain. Ecosphere 4:art75Google Scholar
  206. Sandeman RE, Sandeman DC (1990) Development and identified neural systems in the crayfish brain. In: Wiese K, Krenz W-D, Tautz J, Reichert H, Mulloney B (eds) Frontiers in Crustacean neurobiology. Birkhäuser, Basel, pp 498–508Google Scholar
  207. Sandeman RE, Sandeman DC (1991) Stages in the development of the embryo of the fresh-water crayfish Cherax destructor. Roux’s Arch Dev Biol 200:27–37. doi: 10.1007/BF02457638 Google Scholar
  208. Sandeman RE, Sandeman DC (1996) Pre- and postembryonic development, growth and turnover of olfactory receptor neurones in crayfish antennules. J Exp Biol 199:2409–2418PubMedGoogle Scholar
  209. Sandeman RE, Sandeman DC (2000) “Impoverished” and “enriched” living conditions influence the proliferation and survival of neurons in crayfish brain. J Neurobiol 45:215–226. doi: 10.1002/1097-4695(200012)45:4<215::AID-NEU3>3.0.CO;2-X PubMedGoogle Scholar
  210. Sandeman R, Sandeman D (2003) Development, growth, and plasticity in the crayfish olfactory system. Microsc Res Tech 60:266–277PubMedGoogle Scholar
  211. Sandeman RE, Sandeman DC (2013) Development, growth, and plasticity in the crayfish olfactory system. Microsc Res Tech 60:266–277. doi: 10.1002/jemt.10266 Google Scholar
  212. Sandeman DC, Sandeman RE, Derby CD, Schmidt M (1992) Morphology of the brain of crayfish, crabs, and spiny lobsters: a common nomenclature for homologous structures. Biol Bull 183:304–326Google Scholar
  213. Sandeman DC, Benton JL, Beltz BS (2009) An identified serotonergic neuron regulates adult neurogenesis in the crustacean brain. Dev Neurobiol 69:530–545. doi: 10.1002/dneu.20722 PubMedCentralPubMedGoogle Scholar
  214. Sandeman DC, Bazin F, Beltz BS (2011) Adult neurogenesis: examples from the decapod crustaceans and comparisons with mammals. Arthropod Struct Dev 40:258–275. doi: 10.1016/j.asd.2011.03.001 PubMedCentralPubMedGoogle Scholar
  215. Sandeman DC, Kenning M, Harzsch S (2014) Adaptive trends in malacostracan brain form and function related to behavior. In: The Natural history of crustacea Vol. 3 - Nervous systems & Control of behavior (eds. C. Derby, M. Thiel). Oxford University Press, New York: pp. 11–48Google Scholar
  216. Sandeman DC, Benton JL, Beltz BS (2015) Persistent neurogenesis in the decapod crustaceans. In: Schmidt-Rhaesa A, Harzsch S, Purschke G (eds) Structure and evolution of invertebrate nervous systems. Oxford University Press, p NNGoogle Scholar
  217. Schachtner J, Schmidt M, Homberg U (2005) Organization and evolutionary trends of primary olfactory brain centers in Tetraconata (Crustacea+Hexapoda). Arthropod Struct Dev 34:257–299. doi: 10.1016/j.asd.2005.04.003 Google Scholar
  218. Schmidt M (1997) Continuous neurogenesis in the olfactory brain of adult shore crabs, Carcinus maenas. Brain Res 762:131–143. doi: 10.1016/S0006-8993(97)00376-4 PubMedGoogle Scholar
  219. Schmidt M (2001) Neuronal differentiation and long-term survival of newly generated cells in the olfactory midbrain of the adult spiny lobster, Panulirus argus. J Neurobiol 48:181–203. doi: 10.1002/neu.1050 PubMedGoogle Scholar
  220. Schmidt M (2007a) Identification of putative neuroblasts at the base of adult neurogenesis in the olfactory midbrain of the spiny lobster, Panulirus argus. J Comp Neurol 503:64–84. doi: 10.1002/cne.21366 PubMedGoogle Scholar
  221. Schmidt M (2007b) The olfactory pathway of decapod crustaceans – an invertebrate model for life-long neurogenesis. Chem Senses 32:365–384. doi: 10.1093/chemse/bjm008 PubMedGoogle Scholar
  222. Schmidt M (2014) Adult neurogenesis in crustaceans. In: The Natural history of crustacea Vol. 3 - Nervous systems & Control of behavior (eds. C. Derby, M. Thiel). Oxford University Press, New York: pp. 175–206Google Scholar
  223. Schmidt M, Harzsch S (1999) Comparative analysis of neurogenesis in the central olfactory pathway of adult decapod crustaceans by in vivo BrdU labeling. Biol Bull 196:127–136Google Scholar
  224. Schmidt M, Mellon D (2011) Neuronal processing of chemical information in crustaceans. In: Breithaupt T, Thiel M (eds) Chemical communication in Crustaceans. Springer, New York, pp 123–147Google Scholar
  225. Schneider H, Budhiraja P, Walter I, Beltz BS, Peckol E, Kravitz EA (1996) Developmental expression of the octopamine phenotype in lobsters, Homarus americanus. J Comp Neurol 371:3–14. doi: 10.1002/(SICI)1096-9861(19960715)371:1<3::AID-CNE1>3.0.CO;2-7 PubMedGoogle Scholar
  226. Scholtz G (1990) The formation, differentiation and segmentation of the post-naupliar germ band of the amphipod Gammarus pulex L. (Crustacea, Malacostraca, Peracarida). Proc R Soc B Biol Sci 239:163–211Google Scholar
  227. Scholtz G (1992) Cell lineage studies in the crayfish Cherax destructor (Crustacea, Decapoda): germ band formation, segmentation, and early neurogenesis. Roux’s Arch Dev Biol 202:36–48. doi: 10.1007/BF00364595 Google Scholar
  228. Scholtz G (1993) Teloblasts in decapod embryos: an embryonic character reveals the monophyletic origin of freshwater crayfishes (Crustacea, Decapoda). Zool Anz 230:45–54Google Scholar
  229. Scholtz G (1995a) Expression of the engrailed gene reveals nine putative segment-anlagen in the embryonic pleon of the freshwater crayfish Cherax destructor (Crustacea, Malacostraca, Decapoda). Biol Bull 188:157–165Google Scholar
  230. Scholtz G (1995b) Head segmentation in Crustacea – an immunocytochemical study. Zool-Anal Compl Syst 98:104–114Google Scholar
  231. Scholtz G (1998) Cleavage, germ band formation and head segmentation: the ground pattern of the Euarthropoda. In: Fortey RA, Thomas RH (eds) Arthropod relationships. Springer, Netherlands, pp 317–332Google Scholar
  232. Scholtz G (2000) Evolution of the nauplius stage in malacostracan crustaceans. J Zool Syst Evol Res 38:175–187. doi: 10.1046/j.1439-0469.2000.383151.x Google Scholar
  233. Scholtz G (2014) Astacus fluviatilis Wachsmodellserie zur Entwicklung des Flusskrebses. Zoologische Schriften der HU Berlin pp. 41–52Google Scholar
  234. Scholtz G, Dohle W (1996) Cell lineage and cell fate in crustacean embryos-a comparative approach. Int J Dev Biol 40:211–220PubMedGoogle Scholar
  235. Scholtz G, Edgecombe GD (2005) Heads, Hox and the phylogenetic position of trilobites. In: Koenemann S, Jenner RA (eds) Crustacea and arthropod relationships. CRC Press, Boca Raton, pp 139–166Google Scholar
  236. Scholtz G, Edgecombe GD (2006) The evolution of arthropod heads: reconciling morphological, developmental and palaeontological evidence. Dev Genes Evol 216:395–415. doi: 10.1007/s00427-006-0085-4 PubMedGoogle Scholar
  237. Scholtz G, Gerberding M (2002) Cell lineage of crustacean neuroblasts. In: Wiese K (ed) The Crustacean nervous system. Springer, Heidelberg, pp 404–416Google Scholar
  238. Scholtz G, Kawai T (2002) Aspects of embryonic and postembryonic development of the Japanese freshwater crayfish Cambaroides japonicus (Crustacea, Decapoda) including a hypothesis on the evolution of maternal care in the Astacida. Acta Zool (Stockholm) 83:203–212. doi: 10.1046/j.1463-6395.2002.00113.x Google Scholar
  239. Scholtz G, Wolff C (2013) Arthropod embryology: cleavage and germ band development. In: Boxshall G, Minelli A, Fusco G (eds) Arthropod biology and evolution. Springer, Berlin/Heidelberg, pp 63–89Google Scholar
  240. Scholtz G, Patel NH, Dohle W (1994) Serially homologous engrailed stripes are generated via different cell lineages in the germ band of amphipod crustaceans (Malacostraca, Peracarida). Int J Dev Biol 38:471–478PubMedGoogle Scholar
  241. Scholtz G, Braband A, Tolley L, Reimann A, Mittmann B, Lukhaup C, Steuerwald F, Vogt G (2003) Parthenogenesis in an outsider crayfish. Nature 421:806–806PubMedGoogle Scholar
  242. Scholz NL, Chang ES, Graubard K, Truman JW (1998) The NO/cGMP pathway and the development of neural networks in postembryonic lobsters. J Neurobiol 34:208–226PubMedGoogle Scholar
  243. Schram FR, Koenemann S (2004) Developmental genetics and arthropod evolution: on body regions of Crustacea. In: Scholtz G (ed) Evolutionary developmental biology of Crustacea. AA Balkema Publishers, Lisse, pp 75–92Google Scholar
  244. Seitz R, Vilpoux K, Hopp U, Harzsch S, Maier G (2005) Ontogeny of the Marmorkrebs (marbled crayfish): a parthenogenetic crayfish with unknown origin and phylogenetic position. J Exp Zool 303A:393–405. doi: 10.1002/jez.a.143 Google Scholar
  245. Seneviratna D, Taylor HH (2006) Ontogeny of osmoregulation in embryos of intertidal crabs (Hemigrapsus sexdentatus and H. crenulatus, Grapsidae, Brachyura): putative involvement of the embryonic dorsal organ. J Exp Biol 209:1487–1501. doi: 10.1242/jeb.02167 PubMedGoogle Scholar
  246. Sintoni S, Fabritius-Vilpoux K, Harzsch S (2007) The Engrailed-expressing secondary head spots in the embryonic crayfish brain: examples for a group of homologous neurons in Crustacea and Hexapoda? Dev Genes Evol 217:791–799. doi: 10.1007/s00427-007-0189-5 PubMedGoogle Scholar
  247. Sintoni S, Benton JL, Beltz BS, Hansson BS, Harzsch S (2012) Neurogenesis in the central olfactory pathway of adult decapod crustaceans: development of the neurogenic niche in the brains of procambarid crayfish. Neural Dev 7:1–26. doi: 10.1186/1749-8104-7-1 PubMedCentralPubMedGoogle Scholar
  248. Song C-K, Johnstone LM, Schmidt M, Derby CD, Edwards DH (2007) Social domination increases neuronal survival in the brain of juvenile crayfish Procambarus clarkii. J Exp Biol 210:1311–1324. doi: 10.1242/jeb.02758 PubMedGoogle Scholar
  249. Spindler KD, Jaros PP, Weidemann W (2000) Arthropoda - Crustacea. In: Adiyodi KG, Adiyodi RG (eds) Reproductive biology of invertebrates. Wiley, Chichester, pp 243–269Google Scholar
  250. Stavenga DG, Hardie RC (1989) Facets of vision, 1st edn. Springer, BerlinGoogle Scholar
  251. Stephens PJ, Govind CK (1981) Peripheral innervation fields of single lobster motoneurons defined by synapse elimination during development. Brain Res 212:476–480. doi: 10.1016/0006-8993(81)90481-9 PubMedGoogle Scholar
  252. Steullet P, Cate HS, Derby CD (2000a) A spatiotemporal wave of turnover and functional maturation of olfactory receptor neurons in the spiny lobster Panulirus argus. J Neurosci 20:3282–3294PubMedGoogle Scholar
  253. Steullet P, Cate HS, Michel WC, Derby CD (2000b) Functional units of a compound nose: aesthetasc sensilla house similar populations of olfactory receptor neurons on the crustacean antennule. J Comp Neurol 418:270–280. doi: 10.1002/(SICI)1096-9861(20000313)418:3<270::AID-CNE3>3.0.CO;2-G PubMedGoogle Scholar
  254. Stollewerk A, Chipman AD (2006) Neurogenesis in myriapods and chelicerates and its importance for understanding arthropod relationships. Integr Comp Biol 46:195–206. doi: 10.1093/icb/icj020 PubMedGoogle Scholar
  255. Stollewerk A, Simpson P (2005) Evolution of early development of the nervous system: a comparison between arthropods. Bioessays 27:874–883. doi: 10.1002/bies.20276 PubMedGoogle Scholar
  256. Stollewerk A, Tautz D, Weller M (2003) Neurogenesis in the spider: new insights from comparative analysis of morphological processes and gene expression patterns. Arthropod Struct Dev 32:5–16. doi: 10.1016/S1467-8039(03)00041-0 PubMedGoogle Scholar
  257. Strausfeld NJ (2012) Arthropod brains: evolution, functional elegance, and historical significance. Belknap Press of Harvard University Press, CambridgeGoogle Scholar
  258. Strausfeld NJ, Nässel DR (1981) Neuroarchitecture of brain regions that subserve the compound eyes of Crustacea and insects. In: Autrum H (ed) Comparative physiology and evolution of vision in invertebrates: B: invertebrate visual centers and behavior I. Springer-Verlag, Berlin, pp 1–132Google Scholar
  259. Strausfeld NJ, Douglas J, Campbell H, Higgins C (2006) Parallel processing in the optic lobes of flies and the occurrence of motion computing circuits. In: Warrant E, Nilsson D-E (eds) Invertebrate vision. Cambridge University Press, Cambridge, pp 349–399Google Scholar
  260. Sullivan JM, Beltz BS (2005) Adult neurogenesis in the central olfactory pathway in the absence of receptor neuron turnover in Libinia emarginata. Eur J Neurosci 22:2397–2402. doi: 10.1111/j.1460-9568.2005.04449.x PubMedCentralPubMedGoogle Scholar
  261. Sullivan JM, Herberholz J (2013) Structure of the nervous system: general design and gross anatomy. In: Watling L, Thiel M (eds). Functional morphology and diversity. Oxford University Press, New York, USA, pp 451–484Google Scholar
  262. Sullivan JM, Macmillan DL (2001) Embryonic and postembryonic neurogenesis in the ventral nerve cord of the freshwater crayfish Cherax destructor. J Exp Zool 290:49–60. doi: 10.1002/jez.1035 PubMedGoogle Scholar
  263. Sullivan JM, Benton JL, Beltz BS (2000) Serotonin depletion in vivo inhibits the branching of olfactory projection neurons in the lobster deutocerebrum. J Neurosci 20:7716–7721PubMedGoogle Scholar
  264. Sullivan JM, Benton JL, Sandeman DC, Beltz BS (2007a) Adult neurogenesis: a common strategy across diverse species. J Comp Neurol 500:574–584. doi: 10.1002/cne.21187 PubMedCentralPubMedGoogle Scholar
  265. Sullivan JM, Sandeman DC, Benton JL, Beltz BS (2007b) Adult neurogenesis and cell cycle regulation in the crustacean olfactory pathway: from glial precursors to differentiated neurons. J Mol Hist 38:527–542. doi: 10.1007/s10735-007-9112-7 Google Scholar
  266. Susanto GN, Charmantier G (2000) Ontogeny of osmoregulation in the crayfish Astacus leptodactylus. Physiol Biochem Zool 73:169–176. doi: 10.1086/316736 PubMedGoogle Scholar
  267. Susanto GN, Charmantier G (2001) Crayfish freshwater adaptation starts in eggs: ontogeny of osmoregulation in embryos of Astacus leptodactylus. J Exp Zool 289:433–440. doi: 10.1002/jez.1024 PubMedGoogle Scholar
  268. Tierney AJ, Andrews K, Happer KR, White MKM (2013) Dear enemies and nasty neighbors in crayfish: effects of social status and sex on responses to familiar and unfamiliar conspecifics. Behav Process 99:47–51. doi: 10.1016/j.beproc.2013.06.001 Google Scholar
  269. Ungerer P, Scholtz G (2008) Filling the gap between identified neuroblasts and neurons in crustaceans adds new support for Tetraconata. Proc R Soc B 275:369–376. doi: 10.1098/rspb.2007.1391 PubMedCentralPubMedGoogle Scholar
  270. Ungerer P, Geppert M, Wolff C (2011) Axogenesis in the central and peripheral nervous system of the amphipod crustacean Orchestia cavimana. Integr Zool 6:28–44. doi: 10.1111/j.1749-4877.2010.00227.x PubMedGoogle Scholar
  271. Ungerer P, Eriksson BJ, Stollewerk A (2012) Unravelling the evolution of neural stem cells in arthropods: notch signalling in neural stem cell development in the crustacean Daphnia magna. Dev Biol 371:302–311. doi: 10.1016/j.ydbio.2012.08.025 PubMedGoogle Scholar
  272. Vilpoux K, Sandeman RE, Harzsch S (2006) Early embryonic development of the central nervous system in the Australian crayfish and the Marbled crayfish (Marmorkrebs). Dev Genes Evol 216:209–223. doi: 10.1007/s00427-005-0055-2 PubMedGoogle Scholar
  273. Vogt G (2008a) Investigation of hatching and early post-embryonic life of freshwater crayfish by in vitro culture, behavioral analysis, and light and electron microscopy. J Morphol 269:790–811. doi: 10.1002/jmor.10622 PubMedGoogle Scholar
  274. Vogt G (2008b) How to minimize formation and growth of tumours: potential benefits of decapod crustaceans for cancer research. Int J Cancer 123:2727–2734. doi: 10.1002/ijc.23947 PubMedGoogle Scholar
  275. Vogt G (2010) Suitability of the clonal marbled crayfish for biogerontological research: a review and perspective, with remarks on some further crustaceans. Biogerontology 11:643–669PubMedGoogle Scholar
  276. Vogt G (2012) Ageing and longevity in the Decapoda (Crustacea): a review. Zool Anz 251:1–25Google Scholar
  277. Vogt G, Tolley L (2004) Brood care in freshwater crayfish and relationship with the offspring’s sensory deficiencies. J Morphol 262:566–582PubMedGoogle Scholar
  278. Vogt G, Tolley L, Scholtz G (2004) Life stages and reproductive components of the Marmorkrebs (marbled crayfish), the first parthenogenetic decapod crustacean. J Morphol 261:286–311. doi: 10.1002/jmor.10250 PubMedGoogle Scholar
  279. Walossek D (1999) On the Cambrian diversity of Crustacea. In: Von Vaupel Klein JC, Schram FR (eds) Crustaceans and the biodiversity crisis. Brill Academic Pub, Leiden, pp 3–27Google Scholar
  280. Warrant E, Nilsson D-E (eds) (2006) Invertebrate vision, 1st edn. Cambridge University Press, CambridgeGoogle Scholar
  281. Webster SG, Dircksen H (1991) Putative molt-inhibiting hormone in larvae of the shore crab Carcinus maenas L.: an immunocytochemical approach. Biol Bull 180:65. doi: 10.2307/1542429 Google Scholar
  282. Wehner R (1972) Information processing in the visual systems of arthropods. Springer Berlin Heidelberg, BerlinGoogle Scholar
  283. West JM (1999) Ca2+-activated force production and calcium handling by the sarcoplasmic reticulum of crustacean muscles during molt-induced atrophy. Am Zool 39:552–569. doi: 10.1093/icb/39.3.552 Google Scholar
  284. Weygoldt P (1961) Beitrag zur Kenntnis der Ontogenie der Dekapoden: embryologische Untersuchungen an Palaemonetes varians (Leach). Zool Jahrb Abt Anat Ontog Tiere 79:223–270Google Scholar
  285. Weygoldt P (1994) Le développement embryonnaire. In: Grassé P-G (ed) Traité de Zoologie. Masson, Paris, pp 807–889Google Scholar
  286. Whitington PM (1995) Conservation versus change in early axogenesis in arthropod embryos: a comparison between myriapods, crustaceans, and insects. In: Breidbach O, Kutsch W (eds) The nervous systems of invertebrates: an evolutionary and comparative approach. Birkhäuser Verlag, Basel, pp 181–220Google Scholar
  287. Whitington PM (1996) Evolution of neural development in the arthropods. Semin Cell Dev Biol 7:605–614. doi: 10.1006/scdb.1996.0074 Google Scholar
  288. Whitington FR (2004) The development of the crustacean nervous system. In: Scholtz G (ed) Evolutionary developmental biology of Crustacea. AA Balkema Publishers, Lisse, pp 135–167Google Scholar
  289. Whitington PM, Bacon JP (1998) The organization and development of the arthropod ventral nerve cord: insights into arthropod relationships. In: Fortey RA, Thomas RH (eds) Arthropod relationships. Springer, Netherlands, pp 349–367Google Scholar
  290. Whitington PM, Mayer G (2011) The origins of the arthropod nervous system: insights from the Onychophora. Arthropod Struct Dev 40:193–209. doi: 10.1016/j.asd.2011.01.006 PubMedGoogle Scholar
  291. Whitington PM, Leach D, Sandeman RE (1993) Evolutionary change in neural development within the arthropods: axonogenesis in the embryos of two crustaceans. Development 118:449–461PubMedGoogle Scholar
  292. Wiese K (ed) (2001) The Crustacean nervous system, 2nd edn. Springer, BerlinGoogle Scholar
  293. Wiese K (ed) (2002) Crustacean experimental systems in neurobiology. Springer, BerlinGoogle Scholar
  294. Wildt M, Harzsch S (2002) A new look at an old visual system: structure and development of the compound eyes and optic ganglia of the brine shrimp Artemia saline Linnaeus, 1758 (Branchiopoda, Anostraca). J Neurobiol 52:117–132. doi: 10.1002/neu.10074 PubMedGoogle Scholar
  295. Wolff C, Scholtz G (2002) Cell lineage, axis formation, and the origin of germ layers in the amphipod crustacean Orchestia cavimana. Dev Biol 250:44–58PubMedGoogle Scholar
  296. Zehnder H (1934a) Über die Embryonalentwicklung des Flusskrebses. Teil 1: Die ersten Stadien der Embryonalentwicklung von Astacus fluviatilis (Rond.) L. und Astacus torrentium (Schrank) vom unbefruchteten Ei bis zur Gastrulation. Acta Zool 15:261–344. doi: 10.1111/j.1463-6395.1934.tb00659.x Google Scholar
  297. Zehnder H (1934b) Über die Embryonalentwicklung des Flusskrebses. Teil 2: Die Ausbildung der äußeren Körperform von Astacus fluviatilis (Rond.) L. und Astacus torrentium (Schrank) von der Gastrulation bis zum entwickelten Tier. Acta Zool 15:346–408. doi: 10.1111/j.1463-6395.1934.tb00659.x Google Scholar
  298. Zhang Y, Allodi S, Sandeman DC, Beltz BS (2009) Adult neurogenesis in the crayfish brain: proliferation, migration, and possible origin of precursor cells. Dev Neurobiol 69:415–436. doi: 10.1002/dneu.20717 PubMedCentralPubMedGoogle Scholar
  299. Zhang Y, Benton JL, Beltz BS (2011) 5-HT receptors mediate lineage-dependent effects of serotonin on adult neurogenesis in Procambarus clarkii. Neural Dev 6:1–22. doi: 10.1186/1749-8104-6-2 Google Scholar
  300. Zieger E, Bräunig P, Harzsch S (2013) A developmental study of serotonin-immunoreactive neurons in the embryonic brain of the Marbled Crayfish and the Migratory Locust: evidence for a homologous protocerebral group of neurons. Arthropod Struct Dev 42:507–520. doi: 10.1016/j.asd.2013.08.004 PubMedGoogle Scholar

Copyright information

© Springer-Verlag Wien 2015

Authors and Affiliations

  1. 1.Department of Cytology and Evolutionary BiologyErnst-Moritz-Arndt University GreifswaldGreifswaldGermany
  2. 2.Department of BiologyThe University of Texas-Pan AmericanEdinburgUSA

Personalised recommendations