Advertisement

Quadrature-Based Moment Methods for Polydisperse Multiphase Flows

  • Rodney O. Fox
Part of the CISM International Centre for Mechanical Sciences book series (CISM, volume 548)

Abstract

We provide a brief introduction to quadrature-based moment methods that can be used to model polydisperse multiphase flows. A more detailed description can be found in Marchisio and Fox (2013). Our focus here is to introduce the reader to the principal topics and to provide insight into the numerial algorithms. An example application of gas-particle flow is used to illustrate the methods.

Keywords

Mesoscale Model Gaussian Quadrature Conditional Moment Granular Temperature Population Balance Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. A. Buffo, M. Vanni, D. L. Marchisio, and R. O. Fox. Multivariate quadrature-based moment methods for turbulent polydisperse gas-liquid systems. International Journal of Multiphase Flow, 2012.Google Scholar
  2. S. de Chaisemartin, L. Fréret, D. Kah, F. Laurent, R. O. Fox, J. Reveillon, and M. Massot. Turbulent combustion of polydisperse evaporating sprays with droplet crossing: Eulerian modeling and validation in the infinite Knudsen limit. In Proceedings of the Summer Program 2008, Center for Turbulence Research, Stanford, pages 265–276, 2008.Google Scholar
  3. S. de Chaisemartin, L. Fréret, D. Kah, F. Laurent, R. O. Fox, J. Reveillon, and M. Massot. Eulerian models for turbulent spray combustion with polydispersity and droplet crossing. Comptes Rendus Mécanique, 337:438–448, 2009.CrossRefzbMATHGoogle Scholar
  4. C. Chalons, R. O. Fox and M. Massot. A multi-Gaussian quadrature method of moments for gas-particle flows in a LES framework. In Proceedings of the Summer Program 2010, Center for Turbulence Research, Stanford, pages 347–358, 2010.Google Scholar
  5. C. Chalons, R. O. Fox, F. Laurent, M. Massot, and A. Vié. A multi-Gaussian quadrature method of moments for simulating high-Stokes-number turbulent two-phase flows. In Annual Research Briefs 2011, Center for Turbulence Research, Stanford, pages 309–320, 2011.Google Scholar
  6. J. C. Cheng and R. O. Fox. Kinetic modeling of nanoprecipitation using CFD coupled with a population balance. Industrial & Engineering Chemistry Research, 49:10651–10662, 2010.CrossRefGoogle Scholar
  7. J. C. Cheng, R. D. Vigil, and R. O. Fox. A competitive aggregation model for Flash NanoPrecipitation. Journal of Colloid and Interface Science, 351:330–342, 2010.CrossRefGoogle Scholar
  8. O. Desjardins, R. O. Fox, and P. Villedieu. A quadrature-based moment closure for the Williams spray equation. In Proceedings of the Summer Program 2006, Center for Turbulence Research, Stanford, pages 223–234, 2006.Google Scholar
  9. O. Desjardins, R. O. Fox, and P. Villedieu. A quadrature-based moment method for dilute fluid-particle flows. Journal of Computational Physics, 227:2514–2539, 2008.MathSciNetCrossRefzbMATHGoogle Scholar
  10. R. Fan, D. L. Marchisio, and R. O. Fox. Application of the direct quadrature method of moments to polydisperse gas-solid fluidized beds. Powder Technology, 139:7–20, 2004.CrossRefGoogle Scholar
  11. R. Fan and R. O. Fox. Segregation in polydisperse fluidized beds: Validation of a multi-fluid model. Chemical Engineering Science, 63:272–285, 2008.CrossRefGoogle Scholar
  12. R. O. Fox. Computational Models for Turbulent Reacting Flows. Cambridge University Press, Cambridge, UK, 2003.CrossRefGoogle Scholar
  13. R. O. Fox. Bivariate direct quadrature method of moments for coagulation and sintering of particle populations. Journal of Aerosol Science, 37:1562–1580, 2006.CrossRefGoogle Scholar
  14. R. O. Fox. CFD models for analysis and design of chemical reactors. Advances in Chemical Engineering, 31:231–305, 2007.CrossRefGoogle Scholar
  15. R. O. Fox. A quadrature-based third-order moment method for dilute gasparticle flows. Journal of Computational Physics, 227:6313–6350, 2008.MathSciNetCrossRefzbMATHGoogle Scholar
  16. R. O. Fox. Higher-order quadrature-based moment methods for kinetic equations. Journal of Computational Physics, 228:7771–7791, 2009a.CrossRefzbMATHGoogle Scholar
  17. R. O. Fox. Optimal moment sets for the multivariate direct quadrature method of moments. Industrial & Engineering Chemistry Research, 48:9686–9696, 2009b.CrossRefGoogle Scholar
  18. R. O. Fox. Large-eddy-simulation tools for multiphase flows. Annual Review of Fluid Mechanics, 44:47–76, 2012.CrossRefGoogle Scholar
  19. R. O. Fox, F. Laurent, and M. Massot. Numerical simulation of spray coalescence in an Eulerian framework: direct quadrature method of moments and multi-fluid method. Journal of Computational Physics, 227:3058–3088, 2008.MathSciNetCrossRefzbMATHGoogle Scholar
  20. R. O. Fox and V. Raman. A multienvironment conditional probability density function model for turbulent reacting flows. Physics of Fluids, 16:4551–4565, 2004.CrossRefGoogle Scholar
  21. R. O. Fox and P. Vedula. Quadrature-based moment model for moderately dense polydisperse gas-particle flows. Industrial & Engineering Chemistry Research, 49:5174–5187, 2010.CrossRefGoogle Scholar
  22. L. Fréret, F. Laurent, S. de Chaisemartin, D. Kah, R. O. Fox, P. Vedula, J. Reveillon, and M. Massot. Turbulent combustion of polydisperse evaporating sprays with droplet crossing: Eulerian modeling of collisions at finite Knudsen and validation. In Proceedings of the Summer Program 2008, Center for Turbulence Research, Stanford, pages 277–288, 2008.Google Scholar
  23. M. Icardi, P. Asinari, D. L. Marchisio, S. Izquierdo, and R. O. Fox. Quadrature-based moment closures for non-equilibrium flows: hardsphere collisions and approach to equilibrium. Journal of Computational Physics, 231:7431–7449, 2012.MathSciNetCrossRefGoogle Scholar
  24. D. Kah, F. Laurent, L. Fréret, S. de Chaisemartin, R. O. Fox, J. Reveillon, and M. Massot. Eulerian quadrature-based moment models for dilute polydisperse evaporating sprays. Flow, Turbulence, and Combustion 85:649–676, 2010.CrossRefzbMATHGoogle Scholar
  25. F. Laurent, A. Vié, C. Chalons, R. O. Fox, and M. Massot. A hierarchy of Eulerian models for trajectory crossing in particle-laden turbulent flows over a wide range of Stokes numbers. In Annual Research Brief 2013, Center for Turbulence Research, Stanford, pages 1–12, 2013.Google Scholar
  26. N. Le Lostec, R. O. Fox, O. Simonin, and P. Villedieu. Numerical description of dilute particle-laden flows by a quadrature-based moment method. In Proceedings of the Summer Program 2008, Center for Turbulence Research, Stanford, pages 209–221, 2008.Google Scholar
  27. Y. Liu, C. Cheng, R. K. Prud’homme, and R. O. Fox. Mixing in a multi-inlet vortex mixer (MIVM) for flash nano-precipitation. Chemical Engineering Science, 63:2829–2842, 2008.CrossRefGoogle Scholar
  28. D. L. Marchisio, A. A. Barresi, and R. O. & Fox. Simulation of turbulent precipitation in a semi-batch Taylor-Couette reactor. AIChE Journal, 47:664–676, 2004.CrossRefGoogle Scholar
  29. D. L. Marchisio and R. O. Fox. Solution of population balance equations using the direct quadrature method of moments. Journal of Aerosol Science, 36:43–73, 2005.CrossRefGoogle Scholar
  30. D. L. Marchisio and R. O. Fox. Multiphase Reacting Flows: Modelling and Simulation. Springer, Berlin, Germany, 2007.CrossRefGoogle Scholar
  31. D. L. Marchisio and R. O. Fox. Computational Models for Polydisperse Particulate and Multiphase Systems. Cambridge University Press, Cambridge, UK, 2013.CrossRefGoogle Scholar
  32. D. L. Marchisio, R. O. Fox, A. A. Barresi, M. Garbero, and G. Baldi. On the simulation of turbulent precipitation in a tubular reactor via computational fluid dynamics (CFD). Chemical Engineering Research and Design, 79:998–1004, 2001.CrossRefGoogle Scholar
  33. D. L. Marchisio, J. T. Pikturna, R. O. Fox, R. D. Vigil, and A. A. Barresi. Quadrature method of moments for population-balance equations. AIChE Journal, 49:1266–1276, 2004a.CrossRefGoogle Scholar
  34. D. L. Marchisio, J. T. Pikturna, L. Wang, R. D. Vigil, and R. O. Fox. Quadratic method of moments for population balances in CFD applications: Comparison with experimental data. Chemistry and Engineering Transactions, 1:305–310, 2004b.Google Scholar
  35. D. L. Marchisio, R. D. Vigil, and R. O. Fox. Quadrature method of moments for aggregation-breakage processes. Journal of Colloid and Interface Science, 258:322–334, 2003.CrossRefGoogle Scholar
  36. M. Mehta, V. Raman, and R. O. Fox. On the role of gas-phase chemistry in the production of titania nanoparticles in turbulent flames. Chemical Engineering Science, 2012.Google Scholar
  37. M. Mehta, Y. Sung, V. Raman, and R. O. Fox. Multiscale modeling of TiO2 nanoparticle production in flame reactors: Effect of chemical mechanism. Industrial & Engineering Chemistry Research, 49:10663–10673, 2010.CrossRefGoogle Scholar
  38. A. Passalacqua and R. O. Fox. Advanced continuum modeling of gas-particle flows beyond the hydrodynamic limit. Applied Mathematical Modelling, 35:1616–1627, 2011a.MathSciNetCrossRefzbMATHGoogle Scholar
  39. A. Passalacqua and R. O. Fox. Implementation of an iterative solution procedure for multi-fluid gas-particle flow models on unstructured grids. Powder Technology, 213:174–187, 2011b.CrossRefGoogle Scholar
  40. A. Passalacqua and R. O. Fox. Simulation of mono- and bidisperse gasparticle flow in a riser with a third-order quadrature-based moment method. Industrial & Engineering Chemistry Research, 2012.Google Scholar
  41. A. Passalacqua, R. O. Fox, R. Garg, and S. Subramaniam. A fully coupled quadrature-based moment method for dilute to moderately dilute fluidparticle flows. Chemical Engineering Science, 65:2267–2283, 2010.CrossRefGoogle Scholar
  42. A. Passalacqua, J. E. Galvin, P. Vedula, C. M. Hrenya, and R. O. Fox. A quadrature-based kinetic model for dilute non-isothermal granular flows. Communications in Computational Physics, 10:216–252, 2011.MathSciNetGoogle Scholar
  43. D. Piton, R. O. Fox, and B. Marcant. Simulation of fine particle formation by precipitation using computational fluid dynamics. The Canadian Journal of Chemical Engineering, 78:983–993, 2000.CrossRefGoogle Scholar
  44. V. Raman, H. Pitsch, and R. O. Fox. Eulerian transported probability density function sub-filter model for large-eddy simulations of turbulent combustion. Combustion Theory and Modelling, 10:439–458, 2006.MathSciNetCrossRefzbMATHGoogle Scholar
  45. R. G. Rokkam, R. O. Fox, and M. E. Muhle. CFD modeling of electrostatic forces in gas-solid fluidized beds. The Journal of Computational Multiphase Flows, 2:189–205, 2010a.CrossRefGoogle Scholar
  46. R. G. Rokkam, R. O. Fox, and M. E. Muhle. Computational fluid dynamics and electrostatic modeling of polymerization fluidized-bed reactors. Powder Technology, 203:109–124, 2010b.CrossRefGoogle Scholar
  47. J. Sanyal, D. L. Marchisio, R. O. Fox, and K. Dhanasekharan. On the comparison between population balance models for CFD simulation of bubble columns. Industrial & Engineering Chemistry Research, 44:5063–5072, 2005.CrossRefGoogle Scholar
  48. S. T. Smith and R. O. Fox. A term-by-term direct numerical simulation validation study of the multi-environment conditional probability-densityfunction model for turbulent reacting flows. Physics of Fluids, 19:085102, 2007a.CrossRefGoogle Scholar
  49. S. T. Smith, R. O. Fox, and V. Raman. A quadrature closure for the reaction-source term in conditional-moment closure. Proceedings of the Combustion Institute, 31:1675–1682, 2007b.CrossRefGoogle Scholar
  50. M. Soos, L. Wang, R. O. Fox, J. Sefcik, and M. Morbidelli. Population balance modeling of aggregation and breakage in turbulent Taylor-Couette flow. Journal of Colloid and Interface Science, 307:433–446, 2007.CrossRefGoogle Scholar
  51. Y. Sung, V. Raman, and R. O. Fox. Large-eddy simulation based multiscale modeling of TiO2 nanoparticle synthesis in turbulent flame reactors using detailed nucleation chemistry. Chemical Engineering Science, 66:4370–4381, 2011.CrossRefGoogle Scholar
  52. Q. Tang, W. Zhao, M. Bockelie, and R. O. Fox. Multi-environment probability density function method for modelling turbulent combustion using realistic chemical kinetics. Combustion Theory and Modelling, 11:889–907, 2007.CrossRefzbMATHGoogle Scholar
  53. S. Tenneti, R. Garg, C. M. Hrenya, R. O. Fox, and S. Subramaniam. Direct numerical simulation of gas-solid suspensions at moderate Reynolds number: Quantifying the coupling between hydrodynamic forces and particle velocity fluctuations. Powder Technology, 203:57–69, 2010.CrossRefGoogle Scholar
  54. A. Vié, C. Chalons, R. O. Fox, F., Laurent, and M. Massot. A multi-Gaussian quadrature method of moments for simulating high Stokes number turbulent two-phase flows. In Annual Research Brief 2012, Center for Turbulence Research, Stanford, pages 309–320, 2012.Google Scholar
  55. R. D. Vigil, I. Vermeersch, and R. O. Fox. Destructive aggregation: Aggregation with collision-induced breakage. Journal of Colloid and Interface Science, 302:149–158, 2006.CrossRefGoogle Scholar
  56. V. Vikas, C. D. Hauck, Z. J. Wang, and R. O. Fox. Radiation transport modeling using extended quadrature method of moments. Journal of Computational Physics, 2012a.Google Scholar
  57. V. Vikas, Z. J. Wang, and R. O. Fox. Realizable high-order finite-volume schemes for quadrature-based moment methods applied to diffusion population balance equations. Journal of Computational Physics, 2012b.Google Scholar
  58. V. Vikas, Z. J. Wang, A. Passalacqua, and R. O. Fox,. Realizable high-order finite-volume schemes for quadrature-based moment methods. Journal of Computational Physics, 230:5328–5352, 2011a.MathSciNetCrossRefzbMATHGoogle Scholar
  59. V. Vikas, C. Yuan, Z. J. Wang, and R. O. Fox. Modeling of bubble-column flows with quadrature-based moment methods. Chemical Engineering Science, 66:3058–3070, 2011b.CrossRefGoogle Scholar
  60. C. Yuan and R. O. Fox. Conditional quadrature method of moments for kinetic equations. Journal of Computational Physics, 230:8216–8246, 2011.MathSciNetCrossRefzbMATHGoogle Scholar
  61. C. Yuan, F. Laurent, R. O. and Fox. An extended quadrature method of moments for population balance equations. Journal of Aerosol Science, 51:1–23, 2012.CrossRefGoogle Scholar
  62. Y. Zou, M. E. Kavousanakis, I. G. Kevrekidis, and R. O. Fox. Coarsegrained computation for particle coagulation and sintering processes by linking quadrature method of moments with Monte Carlo. Journal of Computational Physics, 229:5299–5314, 2010.MathSciNetCrossRefzbMATHGoogle Scholar
  63. A. Zucca, D. L. Marchisio, A. Barresi, and R. O. Fox. Implementation of the population balance equation in CFD codes for modelling soot formation in turbulent flames. Chemical Engineering Science, 61:87–95, 2006.CrossRefGoogle Scholar

Copyright information

© CISM, Udine 2014

Authors and Affiliations

  • Rodney O. Fox
    • 1
    • 2
  1. 1.Department of Chemical and Biological EngineeringIowa State UniversityAmesUSA
  2. 2.Laboratoire EM2C-UPR CNRS 288Ecole Centrale ParisChâtenay-MalabryFrance

Personalised recommendations