The Role of Elastin in Wound Healing and Dermal Substitute Design

  • Jelena Rnjak-Kovacina
  • Anthony S. WeissEmail author


Elastin makes up 2–4 % of the dry weight of the human skin dermis, yet despite its relatively low abundance, it serves major structural, mechanical, and cell-signaling roles (Fig. 5.1) (Vrhovski and Weiss 1998). The integrity of the elastic fiber network is a strong determinant of the skin’s elasticity, resilience, quality, and texture (Kielty 2006; Roten et al. 1996). Its importance is particularly exemplified by the severity of skin impairment in various genetic disorders that affect elastin expression in the dermis, such as cutis laxa and pseudoxanthoma elasticum (Kielty 2006).


Wound Contraction Elastin Fiber Dermal Substitute Pseudoxanthoma Elasticum Cutis Laxa 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Almine JF, Bax DV, Mithieux SM, Nivison-Smith L, Rnjak J, Waterhouse A et al (2010) Elastin-based materials. Chem Soc Rev 39(9):3371–3379PubMedCrossRefGoogle Scholar
  2. Amadeu TP, Braune AS, Porto LC, Desmouliere A, Costa AM (2004) Fibrillin-1 and elastin are differentially expressed in hypertrophic scars and keloids. Wound Repair Regen 12:169–174PubMedCrossRefGoogle Scholar
  3. Annabi N, Mithieux SM, Boughton EA, Ruys AJ, Weiss AS, Dehghani F (2009a) Synthesis of highly porous crosslinked elastin hydrogels and their interaction with fibroblasts in vitro. Biomaterials 30:4550–4557PubMedCrossRefGoogle Scholar
  4. Annabi N, Mithieux SM, Weiss AS, Dehghani F (2009b) The fabrication of elastin-based hydrogels using high pressure co(2). Biomaterials 30:1–7PubMedCrossRefGoogle Scholar
  5. Annabi N, Mithieux SM, Weiss AS, Dehghani F (2010) Cross-linked open-pore elastic hydrogels based on tropoelastin, elastin and high pressure co2. Biomaterials 31:1655–1665PubMedCrossRefGoogle Scholar
  6. Arora PD, Narani N, McCulloch CA (1999) The compliance of collagen gels regulates transforming growth factor-beta induction of alpha-smooth muscle actin in fibroblasts. Am J Pathol 154:871–882PubMedCrossRefGoogle Scholar
  7. Balasubramani M, Kumar TR, Babu M (2001) Skin substitutes: a review. Burns 27:534–544PubMedCrossRefGoogle Scholar
  8. Berthod F, Germain L, Li H, Xu W, Damour O, Auger FA (2001) Collagen fibril network and elastic system remodeling in a reconstructed skin transplanted on nude mice. Matrix Biol 20:463–473PubMedCrossRefGoogle Scholar
  9. Bisaccia F, Morelli MA, De Biasi M, Traniello S, Spisani S, Tamburro AM (1994) Migration of monocytes in the presence of elastolytic fragments of elastin and in synthetic derivates. Structure-activity relationships. Int J Pept Protein Res 44:332–341PubMedCrossRefGoogle Scholar
  10. Callcut RA, Schurr MJ, Sloan M, Faucher LD (2006) Clinical experience with alloderm: a one-staged composite dermal/epidermal replacement utilizing processed cadaver dermis and thin autografts. Burns 32:583–588PubMedCrossRefGoogle Scholar
  11. Chen G, Chen J, Zhuo S, Xiong S, Zeng H, Jiang X et al (2009) Nonlinear spectral imaging of human hypertrophic scar based on two-photon excited fluorescence and second-harmonic generation. Br J Dermatol 161:48–55PubMedCrossRefGoogle Scholar
  12. Compton CC, Gill JM, Bradford DA, Regauer S, Gallico GG, O’Connor NE (1989) Skin regenerated from cultured epithelial autografts on full-thickness burn wounds from 6 days to 5 years after grafting. A light, electron microscopic and immunohistochemical study. Lab Invest 60:600–612PubMedGoogle Scholar
  13. Daamen WF, Nillesen ST, Wismans R, Reinhardt D, Hafmans T, Veerkamp JH et al (2006) Depots of solubilised elastin promote the formation of blood vessels and elastic fibres in rat. J Control Release 116:e84–e85PubMedCrossRefGoogle Scholar
  14. Daamen WF, Nillesen ST, Wismans RG, Reinhardt DP, Hafmans T, Veerkamp JH et al (2008) A biomaterial composed of collagen and solubilized elastin enhances angiogenesis and elastic fiber formation without calcification. Tissue Eng Part A 14:349–360PubMedCrossRefGoogle Scholar
  15. Darby IA, Hewitson TD (2007) Fibroblast differentiation in wound healing and fibrosis. Int Rev Cytol 257:143–179PubMedCrossRefGoogle Scholar
  16. De Vries HJ, Middelkoop E, Mekkes JR, Dutrieux RP, Wildevuur CH, Westerhof W (1994) Dermal regeneration in native non-cross-linked collagen sponges with different extracellular matrix molecules. Wound Rep Reg 2:37–47CrossRefGoogle Scholar
  17. De Vries HJ, Zeegelaar JE, Middelkoop E, Gijsbers G, Van Marle J, Wildevuur CH et al (1995) Reduced wound contraction and scar formation in punch biopsy wounds. Native collagen dermal substitutes. A clinical study. Br J Dermatol 132:690–697PubMedCrossRefGoogle Scholar
  18. Desmouliere A, Geinoz A, Gabbiani F, Gabbiani G (1993) Transforming growth factor-beta 1 induces alpha-smooth muscle actin expression in granulation tissue myofibroblasts and in quiescent and growing cultured fibroblasts. J Cell Biol 122:103–111PubMedCrossRefGoogle Scholar
  19. Farahani RM, Kloth LC (2008) The hypothesis of ‘biophysical matrix contraction’: wound contraction revisited. Int Wound J 5:477–482PubMedCrossRefGoogle Scholar
  20. Fujimoto N, Tajima S, Ishibashi A (2000) Elastin peptides induce migration and terminal differentiation of cultured keratinocytes via 67 kda elastin receptor in vitro: 67 kda elastin receptor is expressed in the keratinocytes eliminating elastic materials in elastosis perforans serpiginosa. J Invest Dermatol 115:633–639PubMedCrossRefGoogle Scholar
  21. Goffin JM, Pittet P, Csucs G, Lussi JW, Meister JJ, Hinz B (2006) Focal adhesion size controls tension-dependent recruitment of alpha-smooth muscle actin to stress fibers. J Cell Biol 172:259–268PubMedCrossRefGoogle Scholar
  22. Grosso LE, Scott M (1993) Peptide sequences selected by ba4, a tropoelastin-specific monoclonal antibody, are ligands for the 67-kilodalton bovine elastin receptor. Biochemistry 32:13369–13374PubMedCrossRefGoogle Scholar
  23. Hafemann B, Ensslen S, Erdmann C, Niedballa R, Zuhlke A, Ghofrani K et al (1999) Use of a collagen/elastin-membrane for the tissue engineering of dermis. Burns 25:373–384PubMedCrossRefGoogle Scholar
  24. Harrison CA, MacNeil S (2008) The mechanism of skin graft contraction: an update on current research and potential future therapies. Burns 34:153–163PubMedCrossRefGoogle Scholar
  25. Hashimoto T, Suzuki Y, Tanihara M, Kakimaru Y, Suzuki K (2004) Development of alginate wound dressings linked with hybrid peptides derived from laminin and elastin. Biomaterials 25:1407–1414PubMedCrossRefGoogle Scholar
  26. Haslik W, Kamolz LP, Nathschlager G, Andel H, Meissl G, Frey M (2007a) First experiences with the collagen-elastin matrix matriderm as a dermal substitute in severe burn injuries of the hand. Burns 33:364–368PubMedCrossRefGoogle Scholar
  27. Haslik W, Kamolz LP, Nathschläger G, Andel H, Meissl G, Frey M (2007b) First experiences with the collagen-elastin matrix matriderm® as a dermal substitute in severe burn injuries of the hand. Burns 33:364–368PubMedCrossRefGoogle Scholar
  28. Haslik W, Kamolz LP, Manna F, Hladik M, Rath T, Frey M (2010) Management of full-thickness skin defects in the hand and wrist region: first long-term experiences with the dermal matrix matriderm®. J Plast Reconstr Aesthet Surg 63(2):360–364PubMedCrossRefGoogle Scholar
  29. Hinek A, Wang Y, Liu K, Mitts TF, Jimenez F (2005) Proteolytic digest derived from bovine ligamentum nuchae stimulates deposition of new elastin-enriched matrix in cultures and transplants of human dermal fibroblasts. J Dermatol Sci 39:155–166PubMedCrossRefGoogle Scholar
  30. Hinz B (2007) Formation and function of the myofibroblast during tissue repair. J Invest Dermatol 127:526–537PubMedCrossRefGoogle Scholar
  31. Hinz B, Gabbiani G (2003) Cell-matrix and cell-cell contacts of myofibroblasts: role in connective tissue remodeling. Thromb Haemost 90:993–1002PubMedGoogle Scholar
  32. Hinz B, Dugina V, Ballestrem C, Wehrle-Haller B, Chaponnier C (2003) Alpha-smooth muscle actin is crucial for focal adhesion maturation in myofibroblasts. Mol Biol Cell 14:2508–2519PubMedCrossRefGoogle Scholar
  33. Kielty CM (2006) Elastic fibres in health and disease. Expert Rev Mol Med 8:1–23PubMedCrossRefGoogle Scholar
  34. Kloxin AM, Benton JA, Anseth KS (2010) In situ elasticity modulation with dynamic substrates to direct cell phenotype. Biomaterials 31:1–8PubMedCrossRefGoogle Scholar
  35. Lamme EN, de Vries HJ, van Veen H, Gabbiani G, Westerhof W, Middelkoop E (1996) Extracellular matrix characterization during healing of full-thickness wounds treated with a collagen/elastin dermal substitute shows improved skin regeneration in pigs. J Histochem Cytochem 44:1311–1322PubMedCrossRefGoogle Scholar
  36. Lattari V, Jones LM, Varcelotti JR, Latenser BA, Sherman HF, Barrette RR (1997) The use of a permanent dermal allograft in full-thickness burns of the hand and foot: a report of three cases. J Burn Care Rehabil 18:147–155PubMedCrossRefGoogle Scholar
  37. Leask A, Abraham DJ (2004) Tgf-beta signaling and the fibrotic response. FASEB J 18:816–827PubMedCrossRefGoogle Scholar
  38. Raghunath M, Bachi T, Meuli M, Altermatt S, Gobet R, Bruckner-Tuderman L et al (1996) Fibrillin and elastin expression in skin regenerating from cultured keratinocyte autografts: morphogenesis of microfibrils begins at the dermo-epidermal junction and precedes elastic fiber formation. J Invest Dermatol 106:1090–1095PubMedCrossRefGoogle Scholar
  39. Ramirez F (2000) Pathophysiology of the microfibril/elastic fiber system: introduction. Matrix Biol 19:455–456PubMedCrossRefGoogle Scholar
  40. Rnjak J, Li Z, Maitz PK, Wise SG, Weiss AS (2009) Primary human dermal fibroblast interactions with open weave three-dimensional scaffolds prepared from synthetic human elastin. Biomaterials 30:6469–6477PubMedCrossRefGoogle Scholar
  41. Rnjak J, Wise SG, Mithieux SM, Weiss AS (2011a) Severe burn injuries and the role of elastin in the design of dermal substitutes. Tissue Eng Part B Rev 17(2):81–91PubMedCrossRefGoogle Scholar
  42. Rnjak-Kovacina J, Wise SG, Li Z, Maitz PK, Young CJ, Wang Y et al (2011b) Tailoring the porosity and pore size of electrospun synthetic human elastin scaffolds for dermal substitute bioengineering. Biomaterials 32(28):6729–6736CrossRefGoogle Scholar
  43. Rnjak-Kovacina J, Wise SG, Li Z, Maitz PK, Young CJ, Wang Y, Weiss AS (2012). Electrospun synthetic human elastin: collagen composite scaffolds for dermal tissue engineering. Acta Biomaterialia 8:3714–3722PubMedCrossRefGoogle Scholar
  44. Roten SV, Bhat S, Bhawan J (1996) Elastic fibers in scar tissue. J Cutan Pathol 23:37–42PubMedCrossRefGoogle Scholar
  45. Ryssel H, Gazyakan E, Germann G, Ohlbauer M (2008) The use of matriderm in early excision and simultaneous autologous skin grafting in burns–a pilot study. Burns 34:93–97PubMedCrossRefGoogle Scholar
  46. Ryssel H, Germann G, Kloeters O, Gazyakan E, Radu CA (2010) Dermal substitution with matriderm® in burns on the dorsum of the hand. Burns 36:1248–1253PubMedCrossRefGoogle Scholar
  47. Senior RM, Griffin GL, Mecham RP (1980) Chemotactic activity of elastin-derived peptides. J Clin Invest 66:859–862PubMedCrossRefGoogle Scholar
  48. Senior RM, Griffin GL, Mecham RP (1982) Chemotactic responses of fibroblasts to tropoelastin and elastin-derived peptides. J Clin Invest 70:614–618PubMedCrossRefGoogle Scholar
  49. Truong AT, Kowal-Vern A, Latenser BA, Wiley DE, Walter RJ (2005) Comparison of dermal substitutes in wound healing utilizing a nude mouse model. J Burns Wounds 4:e4PubMedGoogle Scholar
  50. Tsuji T, Sawabe M (1987) Elastic fibers in scar tissue: scanning and transmission electron microscopic studies. J Cutan Pathol 14:106–113PubMedCrossRefGoogle Scholar
  51. Uitto VJ, Larjava H (1991) Extracellular matrix molecules and their receptors: an overview with special emphasis on periodontal tissues. Crit Rev Oral Biol Med 2:323–354PubMedGoogle Scholar
  52. van Zuijlen PP, van Trier AJ, Vloemans JF, Groenevelt F, Kreis RW, Middelkoop E (2000) Graft survival and effectiveness of dermal substitution in burns and reconstructive surgery in a one-stage grafting model. Plast Reconstr Surg 106:615–623PubMedGoogle Scholar
  53. Vrhovski B, Weiss AS (1998) Biochemistry of tropoelastin. Eur J Biochem 258:1–18PubMedCrossRefGoogle Scholar
  54. Wainwright DJ (1995) Use of an acellular allograft dermal matrix (alloderm) in the management of full-thickness burns. Burns 21:243–248PubMedCrossRefGoogle Scholar
  55. Yim H, Cho YS, Seo CH, Lee BC, Ko JH, Kim D et al (2010) The use of alloderm on major burn patients: alloderm prevents post-burn joint contracture. Burns 36:322–328PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2013

Authors and Affiliations

  1. 1.Department of Biomedical EngineeringTufts UniversityBostonUSA
  2. 2.School of Molecular BioscienceUniversity of SydneySydneyAustralia
  3. 3.Bosch InstituteUniversity of SydneySydneyAustralia
  4. 4.Charles Perkins CentreUniversity of SydneySydneyAustralia

Personalised recommendations