Advertisement

Normal Human Serum Lysis of Non-human Trypanosomes and Resistance of T. b. rhodesiense and T. b. gambiense

  • Paul Capewell
  • Caroline Clucas
  • William Weir
  • Nicola Veitch
  • Annette MacLeodEmail author
Chapter

Abstract

Trypanosoma brucei can be segregated into three morphologically identical sub-species based on host, geography and pathology. T. b. brucei is limited to domestic and wild animals throughout sub-Saharan Africa and is non-infective to humans due to trypanosome lytic factors found in human serum. There are two trypanosome lytic factors in human serum (TLF-1 & 2), both containing the proteins Apolipoprotein L1 (APOL1) and Haptoglobin-related protein (HPR). It has been conclusively demonstrated that the lytic component of TLF is APOL1, although HPR is required for maximal lysis by facilitating uptake of TLF particles via the HpHbR cell surface receptor. T. b. gambiense and T. b. rhodesiense are able to resist these lytic factors to cause human African sleeping sickness. T. b. rhodesiense is able to neutralise APOL1 due to expression of Serum Resistance-Associated gene (SRA). SRA is not found in the more prevalent human infective sub-species, T. b. gambiense, which causes over 97 % of reported human cases. Study of T. b. gambiense is complicated in that there are two distinct groups. Group 1 is invariably resistant to lysis and by far the more prevalent group. Group 2 T. b. gambiense exhibit a variable resistance phenotype and are only found at a small number of Côte d’Ivoire and Burkina Faso foci. Little is known as to how both groups are able to resist lysis by normal human serum; however, members of group 1 T. b. gambiense display both reduced expression and activity of HpHbR that may contribute to the resistance phenotype.

Keywords

Normal Human Serum Expression Site High Density Lipoprotein Particle Trypanosome Species Flagellar Pocket 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Alsford S et al (2011) High-throughput phenotyping using parallel sequencing of RNA interference targets in the African trypanosome. Genome Res 21(6):915–924PubMedGoogle Scholar
  2. Alsford S et al (2012) High-throughput decoding of antitrypanosomal drug efficacy and resistance. Nature 482(7384):232–236PubMedGoogle Scholar
  3. Balmer O et al (2011) Phylogeography and taxonomy of Trypanosoma brucei. PLoS Negl Trop Dis 5(2):e961PubMedGoogle Scholar
  4. Baral TN et al (2006) Experimental therapy of African trypanosomiasis with a nanobody-conjugated human trypanolytic factor. Nat Med 12(5):580–584PubMedGoogle Scholar
  5. Barry JD, McCulloch R (2001) Antigenic variation in trypanosomes: enhanced phenotypic variation in a eukaryotic parasite. Adv Parasitol 49:1–70PubMedGoogle Scholar
  6. Bishop JR, Shimamura M, Hajduk SL (2001) Insight into the mechanism of trypanosome lytic factor-1 killing of Trypanosoma brucei brucei. Mol Biochem Parasitol 118(1):33–40PubMedGoogle Scholar
  7. Bitter W et al (1998) The role of transferrin-receptor variation in the host range of Trypanosoma brucei. Nature 391(6666):499–502PubMedGoogle Scholar
  8. Blanche PJ et al (1981) Characterization of human high-density lipoproteins by gradient gel electrophoresis. Biochim Biophys Acta 665(3):408–419PubMedGoogle Scholar
  9. Bonkovsky HL (1991) Iron and the liver. Am J Med Sci 301(1):32PubMedGoogle Scholar
  10. Bullard W et al (2012) Haptoglobin-hemoglobin receptor independent killing of African trypanosomes by human serum. Virulence 3(1):72–76PubMedGoogle Scholar
  11. Campillo N, Carrington M (2003) The origin of the serum resistance associated (SRA) gene and a model of the structure of the SRA polypeptide from Trypanosoma brucei rhodesiense. Mol Biochem Parasitol 127(1):79–84PubMedGoogle Scholar
  12. Capewell P et al (2011) Differences between Trypanosoma brucei gambiense groups 1 and 2 in their resistance to killing by trypanolytic factor 1. PLoS Negl Trop Dis 5(9):e1287PubMedGoogle Scholar
  13. Castelli WP et al (1977) HDL cholesterol and other lipids in coronary heart disease. The cooperative lipoprotein phenotyping study. Circulation 55(5):767–772PubMedGoogle Scholar
  14. Checchi F et al (2008) The natural progression of gambiense sleeping sickness: what is the evidence? PLoS Negl Trop Dis 2(12):e303PubMedGoogle Scholar
  15. Connell GE, Smithies O (1959) Human haptoglobins: estimation and purification. Biochem J 72(1):115–121PubMedGoogle Scholar
  16. Conrad DF et al (2010) Origins and functional impact of copy number variation in the human genome. Nature 464(7289):704–712PubMedGoogle Scholar
  17. De Greef C, Hamers R (1994) The serum resistance-associated (SRA) gene of Trypanosoma brucei rhodesiense encodes a variant surface glycoprotein-like protein. Mol Biochem Parasitol 68(2):277–284PubMedGoogle Scholar
  18. De Greef C et al (1989) A gene expressed only in serum-resistant variants of Trypanosoma brucei rhodesiense. Mol Biochem Parasitol 36(2):169–176PubMedGoogle Scholar
  19. De Greef C et al (1992) Only the serum-resistant bloodstream forms of Trypanosoma brucei rhodesiense express the serum resistance associated (SRA) protein. Ann Soc Belg Med Trop 72(Suppl 1):13–21PubMedGoogle Scholar
  20. Drain J, Bishop JR, Hajduk SL (2001) Haptoglobin-related protein mediates trypanosome lytic factor binding to trypanosomes. J Biol Chem 276(32):30254–30260PubMedGoogle Scholar
  21. Dunn W, Hubbard A, Aronson N (1980) Low temperature selectively inhibits fusion between pinocytic vesicles and lysosomes during heterophagy of 125I-asialofetuin by the perfused rat liver. J Biol Chem 255(12):5971PubMedGoogle Scholar
  22. Enyaru JCK et al (2006) Detection of T.b. rhodesiense trypanosomes in humans and domestic animals in south east Uganda by amplification of serum resistance-associated gene. Ann N Y Acad Sci 1081:311–319PubMedGoogle Scholar
  23. Faulkner SD et al (2006) In vitro generation of human high-density-lipoprotein-resistant Trypanosoma brucei brucei. Eukaryot Cell 5(8):1276–1286PubMedGoogle Scholar
  24. Felgner P et al (1981) Epidemiological studies on the animal reservoir of gambiense sleeping sickness. Part II. Parasitological and immunodiagnostic examination of the human population. Tropenmed Parasitol 32(3):134–140PubMedGoogle Scholar
  25. Fèvre EM et al (2001) The origins of a new Trypanosoma brucei rhodesiense sleeping sickness outbreak in eastern Uganda. Lancet 358(9282):625–628PubMedGoogle Scholar
  26. Fèvre EM et al (2005) A burgeoning epidemic of sleeping sickness in Uganda. Lancet 366(9487):745–747PubMedGoogle Scholar
  27. Frezil JL (1983) Human trypanosomiasis in the Congo. ORSTOM, ParisGoogle Scholar
  28. Genovese G et al (2010) Association of Trypanolytic ApoL1 variants with kidney disease in African Americans. Science 329(5993):841–845PubMedGoogle Scholar
  29. Gibson WC (2005) The SRA gene: the key to understanding the nature of Trypanosoma brucei rhodesiense. Parasitology 131(2):143PubMedGoogle Scholar
  30. Gibson W, Mehlitz D, Lanham SM (1978) The identification of Trypanosoma brucei gambiense in Liberian pigs and dogs by isoenzymes and by resistance to human plasma. Tropenmed Parasitol 29(3):335–345PubMedGoogle Scholar
  31. Gibson WC, Marshall DC, Godfrey DG (1980) Numerical analysis of enzyme polymorphism: a new approach to the epidemiology and taxonomy of trypanosomes of the subgenus Trypanozoon. Adv Parasitol 18:175–246PubMedGoogle Scholar
  32. Gibson W et al (1997) Intraclonal mating in Trypanosoma brucei is associated with out-crossing. Microbiology 143(3):909–920PubMedGoogle Scholar
  33. Gibson W, Backhouse T, Griffiths A (2002) The human serum resistance associated gene is ubiquitous and conserved in Trypanosoma brucei rhodesiense throughout East Africa. Infect Genet Evol 1(3):207–214PubMedGoogle Scholar
  34. Gillett MP, Owen JS (1991) Trypanosoma brucei brucei: differences in the trypanocidal activity of human plasma and its relationship to the level of high density lipoproteins. Trans R Soc Trop Med Hyg 85(5):612–616PubMedGoogle Scholar
  35. Giroud C et al (2009) Murine models for Trypanosoma brucei gambiense disease progression—from silent to chronic infections and early brain tropism. PLoS Negl Trop Dis 3(9):e509PubMedGoogle Scholar
  36. Godfrey DG, Kilgour V (1976) Enzyme electrophoresis in characterizing the causative organism of Gambian trypanosomiasis. Trans R Soc Trop Med Hyg 70(3):219–224PubMedGoogle Scholar
  37. Godfrey DG et al (1990) The distribution, relationships and identification of enzymic variants within the subgenus Trypanozoon. Adv Parasitol 29:1–74PubMedGoogle Scholar
  38. Gordon T et al (1977) High density lipoprotein as a protective factor against coronary heart disease. The Framingham Study. Am J Med 62(5):707PubMedGoogle Scholar
  39. Grab DJ, Kennedy PGE (2008) Traversal of human and animal trypanosomes across the blood-brain barrier. J Neurovirol 14(5):344–351PubMedGoogle Scholar
  40. Hager KM et al (1994) Endocytosis of a cytotoxic human high density lipoprotein results in disruption of acidic intracellular vesicles and subsequent killing of African trypanosomes. J Cell Biol 126:155–167PubMedGoogle Scholar
  41. Hajduk SL et al (1989) Lysis of Trypanosoma brucei by a toxic subspecies of human high density lipoprotein. J Biol Chem 264(9):5210–5217PubMedGoogle Scholar
  42. Harrington JM et al (2010) The plasma membrane of bloodstream-form African trypanosomes confers susceptibility and specificity to killing by hydrophobic peptides. J Biol Chem 285(37):28659–28666PubMedGoogle Scholar
  43. Harrington JM et al (2012) Novel African trypanocidal agents: membrane rigidifying peptides. PLoS One 7(9):e44384PubMedGoogle Scholar
  44. Higgins MK, Tkachenko O, Brown A (2013) Structure of the trypanosome haptoglobin– hemoglobin receptor and implications for nutrient uptake and innate immunity. Proc Natl Acad Sci U S A 110(5):1905–1910Google Scholar
  45. Hutchinson OC et al (2003) Lessons learned from the emergence of a new Trypanosoma brucei rhodesiense sleeping sickness focus in Uganda. Lancet Infect Dis 3(1):42–45PubMedGoogle Scholar
  46. Ilboudo H et al (2012) APOL1 expression is induced by Trypanosoma brucei gambiense infection but is not associated with differential susceptibility to sleeping sickness. Infect Genet Evol 12(7):1519–1523PubMedGoogle Scholar
  47. Imrie H, Ferguson D, Day KP (2004) Human serum haptoglobin is toxic to Plasmodium falciparum in vitro. Mol Biochem Parasitol 133(1):93–98PubMedGoogle Scholar
  48. Jenni L et al (1986) Hybrid formation between African trypanosomes during cyclical transmission. Nature 322(6075):173–175PubMedGoogle Scholar
  49. Kærn M et al (2005) Stochasticity in gene expression: from theories to phenotypes. Nat Rev Genet 6(6):451–464PubMedGoogle Scholar
  50. Kieft R et al (2010) Mechanism of Trypanosoma brucei gambiense (group 1) resistance to human trypanosome lytic factor. Proc Natl Acad Sci U S A 107(37):16137–16141PubMedGoogle Scholar
  51. Koffi M et al (2009) Population genetics of Trypanosoma brucei gambiense, the agent of sleeping sickness in Western Africa. Proc Natl Acad Sci U S A 106:209–214PubMedGoogle Scholar
  52. Lane R, Crosskey R (1993) Medical insects and arachnids. Chapman & Hall, LondonGoogle Scholar
  53. Laveran A, Mesnil F (1912) Trypanosomes et Trypanosomiases. Trypanosomiase humaine ou maladie du sommeil. Masson, ParisGoogle Scholar
  54. Lecordier L et al (2009) C-terminal mutants of apolipoprotein L-I efficiently kill both Trypanosoma brucei brucei and Trypanosoma brucei rhodesiense. PLoS Pathog 5(12):e1000685PubMedGoogle Scholar
  55. Ligtenberg MJ et al (1994) Reconstitution of a surface transferrin binding complex in insect form Trypanosoma brucei. EMBO J 13(11):2565PubMedGoogle Scholar
  56. Lorenz P et al (1994) Importance of acidic intracellular compartments in the lysis of Trypanosoma brucei brucei by normal human serum. Trans R Soc Trop Med Hyg 88(4):487–488PubMedGoogle Scholar
  57. Lugli EB et al (2004) Characterization of primate trypanosome lytic factors. Mol Biochem Parasitol 138(1):9–20PubMedGoogle Scholar
  58. MacLean L et al (2004) Severity of human African trypanosomiasis in East Africa is associated with geographic location, parasite genotype, and host inflammatory cytokine response profile. Infect Immun 72(12):7040–7044PubMedGoogle Scholar
  59. MacLeod A et al (2000) Minisatellite marker analysis of Trypanosoma brucei: reconciliation of clonal, panmictic, and epidemic population genetic structures. Proc Natl Acad Sci 97(24):13442–13447PubMedGoogle Scholar
  60. MacLeod A et al (2001) Evidence for multiple origins of human infectivity in Trypanosoma brucei revealed by minisatellite variant repeat mapping. J Mol Evol 52(3):290–301PubMedGoogle Scholar
  61. Mathieu-Daude F, Bicart-See A (1994) Identification of Trypanosoma brucei gambiense group I by a specific kinetoplast DNA probe. Am J Trop Med Hyg 50(1):13–19PubMedGoogle Scholar
  62. McEvoy SM, Maeda N (1988) Complex events in the evolution of the haptoglobin gene cluster in primates. J Biol Chem 263(30):15740PubMedGoogle Scholar
  63. Mehlitz D (1979) Trypanosome infections in domestic animals in Liberia. Tropenmed Parasitol 30(2):212–219PubMedGoogle Scholar
  64. Mehlitz D, Brinkmann U, Haller L (1981) Epidemiological studies on the animal reservoir of Gambiense sleeping sickness. Part I. Review of literature and description of the study areas. Tropenmed Parasitol 32(3):129–133PubMedGoogle Scholar
  65. Mehlitz D, Zillmann U, Scott CM (1982) Epidemiological studies on the animal reservoir of Gambiense sleeping sickness. Part III. Characterization of trypanozoon stocks by isoenzymes and sensitivity to human serum. Tropenmed Parasitol 33(3):113–118PubMedGoogle Scholar
  66. Miller N (1978) The evidence for the antiatherogenicity of high density lipoprotein in man. Lipids 13(12):914–919PubMedGoogle Scholar
  67. Miller NE et al (1977) The Tromsø Heart Study: high density lipoprotein and coronary heart disease: a prospective case control study. Lancet 309(8019):965–968Google Scholar
  68. Milner JD, Hajduk SL (1999) Expression and localization of serum resistance associated protein in Trypanosoma brucei rhodesiense. Mol Biochem Parasitol 104(2):271–283PubMedGoogle Scholar
  69. Molina-Portela MP, Samanovic M, Raper J (2008) Distinct roles of apolipoprotein components within the trypanosome lytic factor complex revealed in a novel transgenic mouse model. J Exp Med 205(8):1721–1728PubMedGoogle Scholar
  70. Morrison LJ et al (2008) Trypanosoma brucei gambiense Type 1 populations from human patients are clonal and display geographical genetic differentiation. Infect Genet Evol 8(6):847–854PubMedGoogle Scholar
  71. Natesan SK et al (2010) Evidence that low endocytic activity is not directly responsible for human serum resistance in the insect form of African trypanosomes. BMC Res Notes 3(1):63PubMedGoogle Scholar
  72. Njiokou F et al (2006) Wild fauna as a probable animal reservoir for Trypanosoma brucei gambiense in Cameroon. Infect Genet Evol 6(2):147–153PubMedGoogle Scholar
  73. Oli MW et al (2006) Serum resistance-associated protein blocks lysosomal targeting of trypanosome lytic factor in Trypanosoma brucei. Eukaryot Cell 5(1):132–139PubMedGoogle Scholar
  74. Ortiz JC, Sechelski JB, Seed JR (1994) Characterization of human serum-resistant and serum-sensitive clones from a single Trypanosoma brucei gambiense parental clone. J Parasitol 80(4):550–557PubMedGoogle Scholar
  75. Ortiz-Ordóñez JC, Sechelski JB, Seed JR (1994) Mechanism of lysis of Trypanosoma brucei gambiense by human serum. J Parasitol 80(6):924–930PubMedGoogle Scholar
  76. Owen JS, Gillett M, Hughes TE (1992) Transgenic mice expressing human apolipoprotein AI have sera with modest trypanolytic activity in vitro but remain susceptible to infection by Trypanosoma brucei brucei. J Lipid Res 33(11):1639–1646PubMedGoogle Scholar
  77. Paindavoine P et al (1986) The use of DNA hybridization and numerical taxonomy in determining relationships between Trypanosoma brucei stocks and subspecies. Parasitology 92(Pt 1):31–50PubMedGoogle Scholar
  78. Paindavoine P et al (1989) Different allele frequencies in Trypanosoma brucei brucei and Trypanosoma brucei gambiense populations. Mol Biochem Parasitol 32(1):61–71PubMedGoogle Scholar
  79. Pays E, Vanhollebeke B (2009) Human innate immunity against African trypanosomes. Curr Opin Immunol 21(5):493–498PubMedGoogle Scholar
  80. Pays E et al (2006) The trypanolytic factor of human serum. Nat Rev Microbiol 4(6):477–486PubMedGoogle Scholar
  81. Penchenier L et al (2005) Spontaneous cure of domestic pigs experimentally infected by Trypanosoma brucei gambiense: implications for the control of sleeping sickness. Vet Parasitol 133(1):7–11PubMedGoogle Scholar
  82. Pérez-Morga D et al (2005) Apolipoprotein L-I promotes trypanosome lysis by forming pores in lysosomal membranes. Science 309(5733):469–472PubMedGoogle Scholar
  83. Picozzi K (2005) Sleeping sickness in Uganda: a thin line between two fatal diseases. BMJ 331(7527):1238–1241PubMedGoogle Scholar
  84. Poelvoorde P et al (2004) Distribution of apolipoprotein L-I and trypanosome lytic activity among primate sera. Mol Biochem Parasitol 134(1):155–157PubMedGoogle Scholar
  85. Radwanska M, Chamekh M et al (2002a) The serum resistance-associated gene as a diagnostic tool for the detection of Trypanosoma brucei rhodesiense. Am J Trop Med Hyg 67(6):684–690PubMedGoogle Scholar
  86. Radwanska M, Claes F et al (2002b) Novel primer sequences for polymerase chain reaction-based detection of Trypanosoma brucei gambiense. Am J Trop Med Hyg 67(3):289–295PubMedGoogle Scholar
  87. Raper J, Nussenzweig V, Tomlinson S (1996) The main lytic factor of Trypanosoma brucei brucei in normal human serum is not high density lipoprotein. J Exp Med 183(3):1023PubMedGoogle Scholar
  88. Raper J et al (2001) Trypanosome lytic factors: novel mediators of human innate immunity. Curr Opin Microbiol 4(4):402–408PubMedGoogle Scholar
  89. Rifkin MR (1978a) Identification of the trypanocidal factor in normal human serum: high density lipoprotein. Proc Natl Acad Sci 75(7):3450–3454PubMedGoogle Scholar
  90. Rifkin MR (1978b) Trypanosoma brucei: some properties of the cytotoxic reaction induced by normal human serum. Exp Parasitol 46(2):189–206PubMedGoogle Scholar
  91. Rifkin M (1984) Trypanosoma brucei: biochemical and morphological studies of cytotoxicity caused by normal human serum. Exp Parasitol 58(1):81–93PubMedGoogle Scholar
  92. Rifkin MR et al (1994) Human serum-sensitive Trypanosoma brucei rhodesiense: a comparison with serologically identical human serum-resistant clones. Mol Biochem Parasitol 66(2):211–220PubMedGoogle Scholar
  93. Salmon D et al (1994) A novel heterodimeric transferrin receptor encoded by a pair of VSG expression site-associated genes in T. brucei. Cell 78(1):75–86PubMedGoogle Scholar
  94. Samanovic M, Molina-Portela MP, Chessler A (2009) Trypanosome lytic factor, an antimicrobial high-density lipoprotein, ameliorates Leishmania infection. PLoS Pathog 5(1)Google Scholar
  95. Seed JR, Sechelski O (1990) A survey for a trypanocidal factor in primate sera. J Protozool 37(5):393–400PubMedGoogle Scholar
  96. Seyfang A, Mecke D (1990) Degradation, recycling, and shedding of Trypanosoma brucei variant surface glycoprotein. J Protozool 37(6):546–552PubMedGoogle Scholar
  97. Shiflett AM et al (2005) Human high density lipoproteins are platforms for the assembly of multi-component innate immune complexes. J Biol Chem 280(38):32578–32585PubMedGoogle Scholar
  98. Shiflett A et al (2007) African trypanosomes: intracellular trafficking of host defense molecules. J Eukaryot Microbiol 54(1):18–21PubMedGoogle Scholar
  99. Shimamura M, Hager KM, Hajduk SL (2001) The lysosomal targeting and intracellular metabolism of trypanosome lytic factor by Trypanosoma brucei brucei. Mol Biochem Parasitol 115(2):227–237PubMedGoogle Scholar
  100. Simo G et al (2006) High prevalence of Trypanosoma brucei gambiense group 1 in pigs from the Fontem sleeping sickness focus in Cameroon. Vet Parasitol 139(1–3):57–66PubMedGoogle Scholar
  101. Smith AB, Esko JD, Hajduk SL (1995) Killing of trypanosomes by the human haptoglobin-related protein. Science 268(5208):284–286PubMedGoogle Scholar
  102. Stephens NA, Hajduk SL (2011) Endosomal localization of the serum resistance-associated protein in African trypanosomes confers human infectivity. Eukaryot Cell 10(8):1023–1033PubMedGoogle Scholar
  103. Stevens JR, Tibyrenc M (1996) Trypanosoma brucei sl: evolution, linkage and the clonality debate. Parasitology 112(5):481–488PubMedGoogle Scholar
  104. Symula RE, Beadell JS, Sistrom M (2012) Trypanosoma brucei gambiense group 1 is distinguished by a unique amino acid substitution in the HpHb receptor implicated in human serum resistance. PLoS Negl Trop Dis 6(7):e1728PubMedGoogle Scholar
  105. Tait A, Babiker EA, Le Ray D (1984) Enzyme variation in Trypanosoma brucei ssp. I. Evidence for the sub-speciation of Trypanosoma brucei gambiense. Parasitology 89(2):311–326PubMedGoogle Scholar
  106. Targett GA, Wilson VC (1973) The blood incubation infectivity test as a means of distinguishing between Trypanosoma brucei brucei and T. brucei rhodesiense. Int J Parasitol 3(1):5–11PubMedGoogle Scholar
  107. Thomson R et al (2009) Hydrodynamic gene delivery of baboon trypanosome lytic factor eliminates both animal and human-infective African trypanosomes. Proc Natl Acad Sci U S A 106(46):19509–19514PubMedGoogle Scholar
  108. Tomlinson S, Raper J (1996) The lysis of Trypanosoma brucei brucei by human serum. Nat Biotechnol 14(6):717–721PubMedGoogle Scholar
  109. Tomlinson S et al (1995) High-density-lipoprotein-independent killing of Trypanosoma brucei by human serum. Mol Biochem Parasitol 70(1–2):131–138PubMedGoogle Scholar
  110. Turner CMR et al (1990) Evidence that the mechanism of gene exchange in Trypanosoma brucei involves meiosis and syngamy. Parasitology 106(1):209–214Google Scholar
  111. Turner C et al (2004) Human infectivity trait in Trypanosoma brucei: stability, heritability and relationship to sra expression. Parasitology 129(4):445–454PubMedGoogle Scholar
  112. Tytler EM et al (1995) Reconstitution of the trypanolytic factor from components of a subspecies of human high-density lipoproteins. Mol Biochem Parasitol 69(1):9–17PubMedGoogle Scholar
  113. Van Luenen HGAM et al (2005) Trypanosomes change their transferrin receptor expression to allow effective uptake of host transferrin. Mol Microbiol 58(1):151–165PubMedGoogle Scholar
  114. van Meirvenne N, Maginus E, Janssens PG (1976) The effect of normal human serum on trypanosomes of distinct antigenic type (ETat 1 to 12) isolated from a strain of Trypanosoma brucei rhodesiense. Ann Soc Belg Med Trop 56(1):55–63PubMedGoogle Scholar
  115. Vanhamme L, Pays E (2004) The trypanosome lytic factor of human serum and the molecular basis of sleeping sickness. Int J Parasitol 34(8):887–898PubMedGoogle Scholar
  116. Vanhamme L et al (2003) Apolipoprotein L-I is the trypanosome lytic factor of human serum. Nature 422(6927):83–87PubMedGoogle Scholar
  117. Vanhamme L et al (2004) The Trypanosoma brucei reference strain TREU927/4 contains T. brucei rhodesiense-specific SRA sequences, but displays a distinct phenotype of relative resistance to human serum. Mol Biochem Parasitol 135(1):39–47PubMedGoogle Scholar
  118. Vanhollebeke B, Pays E (2006) The function of apolipoproteins L. Cell Mol Life Sci 63(17):1937–1944PubMedGoogle Scholar
  119. Vanhollebeke B, Pays E (2010) The trypanolytic factor of human serum: many ways to enter the parasite, a single way to kill. Mol Microbiol 76(4):806–814PubMedGoogle Scholar
  120. Vanhollebeke B et al (2006) Human Trypanosoma evansi infection linked to a lack of apolipoprotein L-I. N Engl J Med 355(26):2752–2756PubMedGoogle Scholar
  121. Vanhollebeke B et al (2007) Distinct roles of haptoglobin-related protein and apolipoprotein LI in trypanolysis by human serum. Proc Natl Acad Sci U S A 104(10):4118PubMedGoogle Scholar
  122. Vanhollebeke B et al (2008) A haptoglobin-hemoglobin receptor conveys innate immunity to Trypanosoma brucei in humans. Science 320(5876):677–681PubMedGoogle Scholar
  123. Welburn S et al (2001) Identification of human-infective trypanosomes in animal reservoir of sleeping sickness in Uganda by means of serum-resistance-associated (SRA) gene. Lancet 358(9298):2017–2019PubMedGoogle Scholar
  124. Willett KC, Fairbairn H (1955) The Tinde experiment: a study of Trypanosoma rhodesiense during eighteen years of cyclical transmission. Ann Trop Med Parasitol 49(3):278–292PubMedGoogle Scholar
  125. World Health Organization (2006) Human African Trypanosomiasis (sleeping sickness): epidemiological update. Weekly epidemiological record 81:69–80Google Scholar
  126. Xong HV et al (1998) A VSG expression site-associated gene confers resistance to human serum in Trypanosoma rhodesiense. Cell 95(6):839–846PubMedGoogle Scholar
  127. Zhaorigetu S et al (2008) ApoL1, a BH3-only lipid-binding protein, induces autophagic cell death. Autophagy 4(8):1079–1082PubMedGoogle Scholar
  128. Zillmann U, Mehlitz D, Sachs R (1984) Identity of Trypanozoon stocks isolated from man and a domestic dog in Liberia. Tropenmed Parasitol 35(2):105–108PubMedGoogle Scholar

Copyright information

© Springer-Verlag Wien 2014

Authors and Affiliations

  • Paul Capewell
    • 1
  • Caroline Clucas
    • 1
  • William Weir
    • 1
  • Nicola Veitch
    • 2
  • Annette MacLeod
    • 1
    Email author
  1. 1.Wellcome Centre for Molecular Parasitology, College of Medical, Veterinary and Life Sciences, Institute of Biodiversity Animal Health and Comparative MedicineUniversity of GlasgowGlasgowUK
  2. 2.College of Medical, Veterinary and Life Sciences, Institute of Biodiversity Animal Health and Comparative MedicineUniversity of GlasgowGlasgowUK

Personalised recommendations