Advertisement

Introduction to the Structure, Function, and Comparative Anatomy of the Vertebrae and the Intervertebral Disc

  • Irving M. ShapiroEmail author
  • Makarand V. Risbud
Chapter

Abstract

The goal of this introductory chapter is to provide an overview of the design, evolution, and basic characteristics of the disc and the vertebrae that comprise the human spine. As with any survey, the state of current knowledge reflects the work of earlier cohorts of individuals whose insightful observations relied almost entirely on observation, argument, and inductive reasoning. Over the centuries, sequential observations by men like Aristotle, Vesalius, Hunter, and Winslow have all contributed to understanding how the oversized human head can restrictively swivel on the multiple bones of the vertebrate spine and in doing so provide our species with its huge biological advantage.

Keywords

Intervertebral Disc Nucleus Pulposus Annulus Fibrosus Thoracic Vertebra Axial Skeleton 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors would like to thank Dr. Chris Keppler for the radiographs shown in Fig. 1.2, the Smithsonian Institution for the permission to reproduce the image of Pikaia (Box 1.1), Scanco Medical for the use of the microCT image shown in Fig. 1.5, and F. Michael Angelo, MA, for use of the plates shown in Figs. 1.1, 1.2, 1.3, and 1.4. Lastly, the authors wish to thank the NIH and NIAMS for the ongoing support through grants AR050087 and AR055655.

References

  1. Agrawal A, Guttapalli A, Narayan S, Albert TJ, Shapiro IM, Risbud MV (2007) Normoxic stabilization of HIF-1alpha drives glycolytic metabolism and regulates aggrecan gene expression in nucleus pulposus cells of the rat intervertebral disk. Am J Physiol Cell Physiol 293:C621–C631PubMedCrossRefGoogle Scholar
  2. Archer CW, Dowthwaite GP, Francis-West P (2003) Development of synovial joints. Birth Defects Res C Embryo Today 69:144–155PubMedCrossRefGoogle Scholar
  3. Aubin J, Lemieux M, Tremblay M, Behringer RR, Jeannotte L (1998) Transcriptional interferences at the Hoxa4/Hoxa5 locus: importance of correct Hoxa5 expression for the proper specification of the axial skeleton. Dev Dyn 212:141–156PubMedCrossRefGoogle Scholar
  4. Belavý DL, Bansmann PM, Böhme G, Frings-Meuthen P, Heer M, Rittweger J, Zange J, Felsenberg D (2011) Changes in intervertebral disc morphology persist 5 mo after 21-day bed rest. J Appl Physiol 111:1304–1314PubMedCrossRefGoogle Scholar
  5. Benazeraf B, Francois P, Baker RE, Denans N, Little CD, Pourquie’ O (2010) A random cell motility gradient downstream of FGF controls elongation of an amniote embryo. Nature 466:248–252PubMedCrossRefGoogle Scholar
  6. Bougery JM, Jacob NH (1833) Atlas of complete treatise on human anatomy comprising operative medicine. C.A. Delaunay, ParisGoogle Scholar
  7. Brunet LJ, McMahon JA, McMahon AP, Harland RM (1998) Noggin, cartilage morphogenesis, and joint formation in the mammalian skeleton. Science 280:1455–1457PubMedCrossRefGoogle Scholar
  8. Chal J, Pourquie’ O (2009) Patterning and differentiation of the vertebrate spine. In: Pourquie O (ed) The skeletal system. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 41–116Google Scholar
  9. Crock HV, Yoshizawa H (1976) The blood supply of the lumbar vertebral column. Clin Orthop Relat Res 115:6–21PubMedGoogle Scholar
  10. Dahia CL, Mahoney EJ, Durrani AA, Wylie C (2009) Intercellular signaling pathways active during intervertebral disc growth, differentiation, and aging. Spine (Phila Pa 1976) 34:456–462CrossRefGoogle Scholar
  11. Dequeant ML, Glynn E, Gaudenz K, Wahl M, Chen J, Mushegian A, Pourquie’ O (2006) A complex oscillating network of signaling genes underlies the mouse segmentation clock. Science 314:1595–1598PubMedCrossRefGoogle Scholar
  12. Frobin W, Brinckmann P, Biggemann M, Tillotson M, Burton K (1997) Precision measurement of disc height, vertebral height and sagittal plane displacement from lateral radiographic views of the lumbar spine. Clin Biomech (Bristol, Avon) 12(Suppl 1):S1–S63CrossRefGoogle Scholar
  13. Galis F (1999) Why do almost all mammals have seven cervical vertebrae? Developmental constraints, Hox genes, and cancer. J Exp Zool 285:19–26PubMedCrossRefGoogle Scholar
  14. Gan JC, Ducheyne P, Vresilovic EJ, Swaim W, Shapiro IM (2003) Intervertebral disc tissue engineering I: characterization of the nucleus pulposus. Clin Orthop Relat Res 411:305–314PubMedCrossRefGoogle Scholar
  15. Garstang W (1928) The morphology of the tunicata, and its bearings on the phylogeny of the chordata. Q J Microsc Sci 72:51–187Google Scholar
  16. Gilbert SF, Zevit Z (2001) Congenital human baculum deficiency: the generative bone of Genesis 2:21–23. Am J Med Genet 101:284–285PubMedCrossRefGoogle Scholar
  17. Iwama H, Kato K, Imachi H, Murao K, Masaki T (2013) Human microRNAs originated from two periods at accelerated rates in mammalian evolution. Mol Biol Evol 30(3):613–626PubMedCrossRefGoogle Scholar
  18. Jiang YJ, Aerne BL, Smithers L, Haddon C, Ish-Horowicz D, Lewis J (2000) Notch signalling and the synchronization of the somite segmentation clock. Nature 408(6811):475–9Google Scholar
  19. Jones P, Gardner L, Menage J, Williams GT, Roberts S (2008) Intervertebral disc cells as competent phagocytes in vitro: implications for cell death in disc degeneration. Arthritis Res Ther 10:R86PubMedCrossRefGoogle Scholar
  20. Lizars J (1857) A system of anatomical plates of the human body; accompanied with descriptions, and physiological, pathological, and surgical observations. Lizars, EdinburghGoogle Scholar
  21. Macpherson JM, Ye Y (1998) The cat vertebral column: stance configuration and range of motion. Exp Brain Res 119:324–332, RESEARCH ARTICLEPubMedCrossRefGoogle Scholar
  22. Makhoul RG, Machleder HI (1992) Developmental anomalies at the thoracic outlet: an analysis of 200 consecutive cases. J Vasc Surg 16:534–542PubMedCrossRefGoogle Scholar
  23. Marchand F, Ahmed AM (1990) Investigation of the laminate structure of lumbar disc anulus fibrosus. Spine (Phila Pa 1976) 15:402–410CrossRefGoogle Scholar
  24. Moore RJ (2000) The vertebral end-plate: what do we know? Eur Spine J 9:92–96PubMedCrossRefGoogle Scholar
  25. Mundy C, Yasuda T, Kinumatsu T, Yamaguchi Y, Iwamoto M, Enomoto-Iwamoto M et al (2011) Synovial joint formation requires local Ext1 expression and heparan sulfate production in developing mouse embryo limbs and spine. Dev Biol 351:70–81PubMedCrossRefGoogle Scholar
  26. Nachemson A, Lewin T, Maroudas A, Freeman MA (1970) In vitro diffusion of dye through the end-plates and the annulus fibrosus of human lumbar inter-vertebral discs. Acta Orthop Scand 41:589–607PubMedCrossRefGoogle Scholar
  27. Narita Y, Kuratani S (2005) Evolution of the vertebral formulae in mammals: a perspective on developmental constraints. J Exp Zool B Mol Dev Evol 304:91–106PubMedCrossRefGoogle Scholar
  28. Nerlich AG, Weiler C, Zipperer J, Narozny M, Boos N (2002) Immunolocalization of phagocytic cells in normal and degenerated intervertebral discs. Spine 27:2484–2490PubMedCrossRefGoogle Scholar
  29. O’Connell GD, Vresilovic EJ, Elliott DM (2007) Comparison of animals used in disc research to human lumbar disc geometry. Spine (Phila Pa 1976) 32:328–333CrossRefGoogle Scholar
  30. Pacifici M, Koyama E, Iwamoto M (2005) Mechanisms of synovial joint and articular cartilage formation: recent advances, but many lingering mysteries. Birth Defects Res C Embryo Today 75:237–248PubMedCrossRefGoogle Scholar
  31. Peacock A (1951) Observations on the pre-natal development of the intervertebral disc in man. J Anat 85(Pt 3):260–274PubMedGoogle Scholar
  32. Pourquie’ O (2011) Vertebrate segmentation from cyclic gene networks to scoliosis. Cell 145:651–663Google Scholar
  33. Schumacher R, Mai A, Gutjahr P (1992) Association of rib anomalies and malignancy in childhood. Eur J Pediatr 151:432–434PubMedCrossRefGoogle Scholar
  34. Shapiro IM, Vresilovic EJ, Risbud MV (2012) Is the spinal motion segment a diarthrodial polyaxial joint: what a nice nucleus like you doing in a joint like this? Bone 50:771–776PubMedCrossRefGoogle Scholar
  35. Shu DG, Morris SC, Han J, Zhang ZF, Yasui K, Janvier P, Chen L, Zhang XL, Liu JN, Li Y, Liu HQ (2003) Head and backbone of the Early Cambrian vertebrate Haikouichthys. Nature 421(6922):526–529PubMedCrossRefGoogle Scholar
  36. Souter WA, Taylor TK (1970) Sulphated acid mucopolysaccharide metabolism in the rabbit intervertebral disc. J Bone Joint Surg Br 52:371–384PubMedGoogle Scholar
  37. Taylor JR (1975) Growth of human intervertebral discs and vertebral bodies. J Anat 120(Pt 1):49–68PubMedGoogle Scholar
  38. Tubbs RS, Vahedi P, Loukas M, Shoja MM, Cohen-Gadol AA (2011) Hubert von Luschka (1820–1875): his life, discoveries, and contributions to our understanding of the nervous system: Historical vignette. J Neurosurg 114:268–272PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2014

Authors and Affiliations

  1. 1.Department of Orthopaedic Surgery and Graduate Program in Cell and Developmental BiologyJefferson Medical College, Thomas Jefferson UniversityPhiladelphiaUSA

Personalised recommendations