Cardiovascular Effects of Sphingosine-1-Phosphate (S1P)

  • Bodo LevkauEmail author
Part of the Handbook of Experimental Pharmacology book series (HEP, volume 216)


Sphingosine-1-phosphate (S1P) regulates important functions in cardiac and vascular homeostasis. It has been implied to play causal roles in the pathogenesis of many cardiovascular disorders such as coronary artery disease, atherosclerosis, myocardial infarction, and heart failure. The majority of S1P in plasma is associated with high-density lipoproteins (HDL), and their S1P content has been shown to be responsible, at least in part, for several of the beneficial effects of HDL on cardiovascular risk. The attractiveness of S1P-based drugs for potential cardiovascular applications is increasing in the wake of the clinical approval of FTY720, but answers to important questions on the effects of S1P in cardiovascular biology and medicine must still be found. This chapter focuses on the current understanding of the role of S1P and its receptors in cardiovascular physiology, pathology, and disease.


High-density lipoproteins (HDL) Apolipoproteins Myocardial infarction Preconditioning Arterial tone Atherosclerosis Endothelial permeability Coronary artery disease (CAD) Macrophages Heart rate FTY720 


  1. Alewijnse AE, Peters SL (2008) Sphingolipid signalling in the cardiovascular system: good, bad or both? Eur J Pharmacol 585:292–302PubMedGoogle Scholar
  2. Alewijnse AE, Peters SL, Michel MC (2004) Cardiovascular effects of sphingosine-1-phosphate and other sphingomyelin metabolites. Br J Pharmacol 143:666–684PubMedGoogle Scholar
  3. Allende ML, Proia RL (2002) Sphingosine-1-phosphate receptors and the development of the vascular system. Biochim Biophys Acta 1582:222–227PubMedGoogle Scholar
  4. Argraves KM, Wilkerson BA, Argraves WS, Fleming PA, Obeid LM, Drake CJ (2004) Sphingosine-1-phosphate signaling promotes critical migratory events in vasculogenesis. J Biol Chem 279:50580–50590PubMedGoogle Scholar
  5. Bandhuvula P, Honbo N, Wang GY, Jin ZQ, Fyrst H et al (2011) S1P lyase: a novel therapeutic target for ischemia-reperfusion injury of the heart. Am J Physiol Heart Circ Physiol 300:H1753–H1761PubMedGoogle Scholar
  6. Barter P, Gotto AM, LaRosa JC, Maroni J, Szarek M et al (2007) HDL cholesterol, very low levels of LDL cholesterol, and cardiovascular events. N Engl J Med 357:1301–1310PubMedGoogle Scholar
  7. Bode C, Sensken SC, Peest U, Beutel G, Thol F et al (2010) Erythrocytes serve as a reservoir for cellular and extracellular sphingosine 1-phosphate. J Cell Biochem 109:1232–1243PubMedGoogle Scholar
  8. Bolick DT, Srinivasan S, Kim KW, Hatley ME, Clemens JJ et al (2005) Sphingosine-1-phosphate prevents tumor necrosis factor-{alpha}-mediated monocyte adhesion to aortic endothelium in mice. Arterioscler Thromb Vasc Biol 25:976–981PubMedGoogle Scholar
  9. Bolli R (2001) Cardioprotective function of inducible nitric oxide synthase and role of nitric oxide in myocardial ischemia and preconditioning: an overview of a decade of research. J Mol Cell Cardiol 33:1897–1918PubMedGoogle Scholar
  10. Bolz SS, Vogel L, Sollinger D, Derwand R, Boer C et al (2003) Sphingosine kinase modulates microvascular tone and myogenic responses through activation of RhoA/Rho kinase. Circulation 108:342–347PubMedGoogle Scholar
  11. Bornfeldt KE, Graves LM, Raines EW, Igarashi Y, Wayman G et al (1995) Sphingosine-1-phosphate inhibits PDGF-induced chemotaxis of human arterial smooth muscle cells: spatial and temporal modulation of PDGF chemotactic signal transduction. J Cell Biol 130:193–206PubMedGoogle Scholar
  12. Budde K, Schmouder RL, Brunkhorst R, Nashan B, Lucker PW et al (2002) First human trial of FTY720, a novel immunomodulator, in stable renal transplant patients. J Am Soc Nephrol 13:1073–1083PubMedGoogle Scholar
  13. Camerer E, Regard JB, Cornelissen I, Srinivasan Y, Duong DN et al (2009) Sphingosine-1-phosphate in the plasma compartment regulates basal and inflammation-induced vascular leak in mice. J Clin Invest 119:1871–1879PubMedGoogle Scholar
  14. Christoffersen C, Obinata H, Kumaraswamy SB, Galvani S, Ahnstrom J et al (2011) Endothelium-protective sphingosine-1-phosphate provided by HDL-associated apolipoprotein M. Proc Natl Acad Sci USA 108:9613–9618PubMedGoogle Scholar
  15. Chun J, Hla T, Lynch KR, Spiegel S, Moolenaar WH (2010) International Union of Basic and Clinical Pharmacology. LXXVIII. Lysophospholipid receptor nomenclature. Pharmacol Rev 62:579–587PubMedGoogle Scholar
  16. Cohen JACJ (2011) Mechanisms of fingolimod’s efficacy and adverse effects in multiple sclerosis. Ann Neurol 69:759–777PubMedGoogle Scholar
  17. Coroneos E, Martinez M, McKenna S, Kester M (1995) Differential regulation of sphingomyelinase and ceramidase activities by growth factors and cytokines. Implications for cellular proliferation and differentiation. J Biol Chem 270:23305–23309PubMedGoogle Scholar
  18. Coussin F, Scott RH, Wise A, Nixon GF (2002) Comparison of sphingosine 1-phosphate-induced intracellular signaling pathways in vascular smooth muscles: differential role in vasoconstriction. Circ Res 91:151–157PubMedGoogle Scholar
  19. Dantas AP, Igarashi J, Michel T (2003) Sphingosine 1-phosphate and control of vascular tone. Am J Physiol Heart Circ Physiol 284:H2045–H2052PubMedGoogle Scholar
  20. Dettbarn CA, Betto R, Salviati G, Palade P, Jenkins GM, Sabbadini RA (1994) Modulation of cardiac sarcoplasmic reticulum ryanodine receptor by sphingosine. J Mol Cell Cardiol 26:229–242PubMedGoogle Scholar
  21. Deutschman DH, Carstens JS, Klepper RL, Smith WS, Page MT et al (2003) Predicting obstructive coronary artery disease with serum sphingosine-1-phosphate. Am Heart J 146:62–68PubMedGoogle Scholar
  22. Duan HF, Wang H, Yi J, Liu HJ, Zhang QW et al (2007) Adenoviral gene transfer of sphingosine kinase 1 protects heart against ischemia/reperfusion-induced injury and attenuates its postischemic failure. Hum Gene Ther 18:1119–1128PubMedGoogle Scholar
  23. Feistritzer C, Riewald M (2005) Endothelial barrier protection by activated protein C through PAR1-dependent sphingosine 1-phosphate receptor-1 crossactivation. Blood 105:3178–3184PubMedGoogle Scholar
  24. Finigan JH, Dudek SM, Singleton PA, Chiang ET, Jacobson JR et al (2005) Activated protein C mediates novel lung endothelial barrier enhancement: role of sphingosine 1-phosphate receptor transactivation. J Biol Chem 280:17286–17293PubMedGoogle Scholar
  25. Forrest MSS, Hajdu R et al (2004) Immune cell regulation and cardiovascular effects of sphingosine 1-phosphate receptor agonists in rodents are mediated via distinct receptor subtypes. J Pharmacol Exp Ther 309:758–768PubMedGoogle Scholar
  26. Foss FW Jr, Snyder AH, Davis MD, Rouse M, Okusa MD et al (2007) Synthesis and biological evaluation of gamma-aminophosphonates as potent, subtype-selective sphingosine 1-phosphate receptor agonists and antagonists. Bioorg Med Chem 15:663–677PubMedGoogle Scholar
  27. Frias MA, James RW, Gerber-Wicht C, Lang U (2009) Native and reconstituted HDL activate Stat3 in ventricular cardiomyocytes via ERK1/2: role of sphingosine-1-phosphate. Cardiovasc Res 82:313–323PubMedGoogle Scholar
  28. Fukuhara S, Simmons S, Kawamura S, Inoue A, Orba Y et al (2012) The sphingosine-1-phosphate transporter Spns2 expressed on endothelial cells regulates lymphocyte trafficking in mice. J Clin Invest 122:1416–1426PubMedGoogle Scholar
  29. Gellings Lowe N, Swaney JS, Moreno KM, Sabbadini RA (2009) Sphingosine-1-phosphate and sphingosine kinase are critical for transforming growth factor-beta-stimulated collagen production by cardiac fibroblasts. Cardiovasc Res 82:303–312PubMedGoogle Scholar
  30. Grabski AD, Shimizu T, Deou J, Mahoney WM Jr, Reidy MA, Daum G (2009) Sphingosine-1-phosphate receptor-2 regulates expression of smooth muscle alpha-actin after arterial injury. Arterioscler Thromb Vasc Biol 29:1644–1650PubMedGoogle Scholar
  31. Gray MO, Zhou HZ, Schafhalter-Zoppoth I, Zhu P, Mochly-Rosen D, Messing RO (2004) Preservation of base-line hemodynamic function and loss of inducible cardioprotection in adult mice lacking protein kinase C epsilon. J Biol Chem 279:3596–3604PubMedGoogle Scholar
  32. Guo J, MacDonell KL, Giles WR (1999) Effects of sphingosine 1-phosphate on pacemaker activity in rabbit sino-atrial node cells. Pflugers Arch 438:642–648PubMedGoogle Scholar
  33. Hannun YA, Bell RM (1989) Functions of sphingolipids and sphingolipid breakdown products in cellular regulation. Science 243:500–507PubMedGoogle Scholar
  34. Hannun YA, Obeid LM (2008) Principles of bioactive lipid signalling: lessons from sphingolipids. Nat Rev Mol Cell Biol 9:139–150PubMedGoogle Scholar
  35. Hansson GK, Libby P (2006) The immune response in atherosclerosis: a double-edged sword. Nat Rev Immunol 6:508–519PubMedGoogle Scholar
  36. Hausenloy DJ, Yellon DM (2007) Reperfusion injury salvage kinase signalling: taking a RISK for cardioprotection. Heart Fail Rev 12:217–234PubMedGoogle Scholar
  37. Hla T (2004) Physiological and pathological actions of sphingosine 1-phosphate. Semin Cell Dev Biol 15:513–520PubMedGoogle Scholar
  38. Hla T, Lee MJ, Ancellin N, Paik JH, Kluk MJ (2001) Lysophospholipids–receptor revelations. Science 294:1875–1878PubMedGoogle Scholar
  39. Hobson JP, Rosenfeldt HM, Barak LS, Olivera A, Poulton S et al (2001) Role of the sphingosine-1-phosphate receptor EDG-1 in PDGF-induced cell motility. Science 291:1800–1803PubMedGoogle Scholar
  40. Hofmann U, Burkard N, Vogt C, Thoma A, Frantz S et al (2009) Protective effects of sphingosine-1-phosphate receptor agonist treatment after myocardial ischaemia-reperfusion. Cardiovasc Res 83:285–293PubMedGoogle Scholar
  41. Hofmann U, Hu K, Walter F, Burkard N, Ertl G et al (2010) Pharmacological pre- and post-conditioning with the sphingosine-1-phosphate receptor modulator FTY720 after myocardial ischaemia-reperfusion. Br J Pharmacol 160:1243–1251PubMedGoogle Scholar
  42. Hughes JE, Srinivasan S, Lynch KR, Proia RL, Ferdek P, Hedrick CC (2008) Sphingosine-1-phosphate induces an antiinflammatory phenotype in macrophages. Circ Res 102:950–958PubMedGoogle Scholar
  43. Igarashi J, Michel T (2008) S1P and eNOS regulation. Biochim Biophys Acta 1781:489–495PubMedGoogle Scholar
  44. Igarashi J, Michel T (2009) Sphingosine-1-phosphate and modulation of vascular tone. Cardiovasc Res 82:212–220PubMedGoogle Scholar
  45. Ishii I, Ye X, Friedman B, Kawamura S, Contos JJ et al (2002) Marked perinatal lethality and cellular signaling deficits in mice null for the two sphingosine 1-phosphate (S1P) receptors, S1P(2)/LP(B2)/EDG-5 and S1P(3)/LP(B3)/EDG-3. J Biol Chem 277:25152–25159PubMedGoogle Scholar
  46. Jin ZQ, Zhou HZ, Zhu P, Honbo N, Mochly-Rosen D et al (2002) Cardioprotection mediated by sphingosine-1-phosphate and ganglioside GM-1 in wild-type and PKC epsilon knockout mouse hearts. Am J Physiol Heart Circ Physiol 282:H1970–H1977PubMedGoogle Scholar
  47. Jin ZQ, Goetzl EJ, Karliner JS (2004) Sphingosine kinase activation mediates ischemic preconditioning in murine heart. Circulation 110:1980–1989PubMedGoogle Scholar
  48. Jin ZQ, Huang Y, Vessey DA, Karliner JS (2005) A sphingosine kinase 1 mutation sensitizes the myocardium to ischemia/reperfusion injury and abrogates ischemic preconditioning. Circ Res 97:1204Google Scholar
  49. Jin ZQ, Karliner JS, Vessey DA (2008) Ischaemic postconditioning protects isolated mouse hearts against ischaemia/reperfusion injury via sphingosine kinase isoform-1 activation. Cardiovasc Res 79:134–140PubMedGoogle Scholar
  50. Johnson KR, Johnson KY, Becker KP, Bielawski J, Mao C, Obeid LM (2003) Role of human sphingosine-1-phosphate phosphatase 1 in the regulation of intra- and extracellular sphingosine-1-phosphate levels and cell viability. J Biol Chem 278:34541–34547PubMedGoogle Scholar
  51. Kacimi R, Vessey DA, Honbo N, Karliner JS (2007) Adult cardiac fibroblasts null for sphingosine kinase-1 exhibit growth dysregulation and an enhanced proinflammatory response. J Mol Cell Cardiol 43:85–91PubMedGoogle Scholar
  52. Karliner JS (2006) Toward solving the riddle: the enigma becomes less mysterious. Circ Res 99:465–467PubMedGoogle Scholar
  53. Karliner JS (2009) Sphingosine kinase and sphingosine 1-phosphate in cardioprotection. J Cardiovasc Pharmacol 53:189–197PubMedGoogle Scholar
  54. Karliner JS, Honbo N, Summers K, Gray MO, Goetzl EJ (2001) The lysophospholipids sphingosine-1-phosphate and lysophosphatidic acid enhance survival during hypoxia in neonatal rat cardiac myocytes. J Mol Cell Cardiol 33:1713–1717PubMedGoogle Scholar
  55. Karuna R, Park R, Othman A, Holleboom AG, Motazacker MM et al (2011) Plasma levels of sphingosine-1-phosphate and apolipoprotein M in patients with monogenic disorders of HDL metabolism. Atherosclerosis 219:855–863PubMedGoogle Scholar
  56. Kawahara A, Nishi T, Hisano Y, Fukui H, Yamaguchi A, Mochizuki N (2009) The sphingolipid transporter spns2 functions in migration of zebrafish myocardial precursors. Science 323:524–527PubMedGoogle Scholar
  57. Keul P, Sattler K, Levkau B (2007) HDL and its sphingosine-1-phosphate content in cardioprotection. Heart Fail Rev 12:301–306PubMedGoogle Scholar
  58. Keul P, Tolle M, Lucke S, von Wnuck LK, Heusch G et al (2007) The sphingosine-1-phosphate analogue FTY720 reduces atherosclerosis in apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Biol 27:607–613PubMedGoogle Scholar
  59. Keul P, Lucke S, von Wnuck LK, Bode C, Graler M et al (2010) Sphingosine-1-phosphate receptor macrophages in inflammation/macrophages in inflammation and atherosclerosis. Circ Res 108:314–323PubMedGoogle Scholar
  60. Keul P, Lucke S, von Wnuck LK, Bode C, Graler M et al (2011) Sphingosine-1-phosphate receptor 3 promotes recruitment of monocyte/macrophages in inflammation and atherosclerosis. Circ Res 108:314–323PubMedGoogle Scholar
  61. Kim M, Kim N, D’Agati VD, Emala CW Sr, Lee HT (2007) Isoflurane mediates protection from renal ischemia-reperfusion injury via sphingosine kinase and sphingosine-1-phosphate-dependent pathways. Am J Physiol Renal Physiol 293:F1827–F1835PubMedGoogle Scholar
  62. Kimura T, Boehmler AM, Seitz G, Kuci S, Wiesner T et al (2004) The sphingosine 1-phosphate receptor agonist FTY720 supports CXCR4-dependent migration and bone marrow homing of human CD34+ progenitor cells. Blood 103:4478–4486PubMedGoogle Scholar
  63. Kimura T, Tomura H, Mogi C, Kuwabara A, Damirin A et al (2006) Role of scavenger receptor class B type I and sphingosine 1-phosphate receptors in high density lipoprotein-induced inhibition of adhesion molecule expression in endothelial cells. J Biol Chem 281:37457–37467PubMedGoogle Scholar
  64. Kluk MJ, Hla T (2001) Role of the sphingosine 1-phosphate receptor EDG-1 in vascular smooth muscle cell proliferation and migration. Circ Res 89:496–502PubMedGoogle Scholar
  65. Klingenberg R, Nofer JR, Rudling M, Bea F, Blessing E et al (2007) Sphingosine-1-phosphate analogue FTY720 causes lymphocyte redistribution and hypercholesterolemia in ApoE-deficient mice. Arterioscler Thromb Vasc Biol 27:2392–2399PubMedGoogle Scholar
  66. Knapp M, Baranowski M, Lisowska A, Musial W (2012) Decreased free sphingoid base concentration in the plasma of patients with chronic systolic heart failure. Adv Med Sci 57(1):100–105PubMedGoogle Scholar
  67. Kobayashi N, Yamaguchi A, Nishi T (2009) Characterization of the ATP-dependent sphingosine 1-phosphate transporter in rat erythrocytes. J Biol Chem 284:21192–21200PubMedGoogle Scholar
  68. Kono M, Mi Y, Liu Y, Sasaki T, Allende ML et al (2004) The sphingosine-1-phosphate receptors S1P1, S1P2, and S1P3 function coordinately during embryonic angiogenesis. J Biol Chem 279:29367–29373PubMedGoogle Scholar
  69. Kontush A, Chapman MJ (2006) Functionally defective high-density lipoprotein: a new therapeutic target at the crossroads of dyslipidemia, inflammation, and atherosclerosis. Pharmacol Rev 58:342–374PubMedGoogle Scholar
  70. Kontush A, Therond P, Zerrad A, Couturier M, Negre-Salvayre A et al (2007) Preferential sphingosine-1-phosphate enrichment and sphingomyelin depletion are key features of small dense HDL3 particles: relevance to antiapoptotic and antioxidative activities. Arterioscler Thromb Vasc Biol 27:1843–1849PubMedGoogle Scholar
  71. Koyrakh LRM, Brinkmann V, Wickman K (2005) The heart rate decrease caused by acute FTY720 administration is mediated by the G protein-gated potassium channel I. Am J Transplant 5:529–536PubMedGoogle Scholar
  72. Kunisada K, Tone E, Fujio Y, Matsui H, Yamauchi-Takihara K, Kishimoto T (1998) Activation of gp130 transduces hypertrophic signals via STAT3 in cardiac myocytes. Circulation 98:346–352PubMedGoogle Scholar
  73. Kupperman E, An S, Osborne N, Waldron S, Stainier DY (2000) A sphingosine-1-phosphate receptor regulates cell migration during vertebrate heart development. Nature 406:192–195PubMedGoogle Scholar
  74. Landeen LK, Dederko DA, Kondo CS, Hu BS, Aroonsakool N et al (2008) Mechanisms of the negative inotropic effects of sphingosine-1-phosphate on adult mouse ventricular myocytes. Am J Physiol Heart Circ Physiol 294:H736–H749PubMedGoogle Scholar
  75. Lecour S, Smith RM, Woodward B, Opie LH, Rochette L, Sack MN (2002) Identification of a novel role for sphingolipid signaling in TNF alpha and ischemic preconditioning mediated cardioprotection. J Mol Cell Cardiol 34:509–518PubMedGoogle Scholar
  76. Lee MJ, Thangada S, Claffey KP, Ancellin N, Liu CH et al (1999) Vascular endothelial cell adherens junction assembly and morphogenesis induced by sphingosine-1-phosphate. Cell 99:301–312PubMedGoogle Scholar
  77. Lee JF, Zeng Q, Ozaki H, Wang L, Hand AR et al (2006) Dual roles of tight junction-associated protein, zonula occludens-1, in sphingosine 1-phosphate-mediated endothelial chemotaxis and barrier integrity. J Biol Chem 281:29190–29200PubMedGoogle Scholar
  78. Lee YM, Venkataraman K, Hwang SI, Han DK, Hla T (2007) A novel method to quantify sphingosine 1-phosphate by immobilized metal affinity chromatography (IMAC). Prostaglandins Other Lipid Mediat 84:154–162PubMedGoogle Scholar
  79. Levkau B (2008) Sphingosine-1-phosphate in the regulation of vascular tone: a finely tuned integration system of S1P sources, receptors, and vascular responsiveness. Circ Res 103:231–233PubMedGoogle Scholar
  80. Levkau B, Hermann S, Theilmeier G, van der Giet M, Chun J et al (2004) High-density lipoprotein stimulates myocardial perfusion in vivo. Circulation 110:3355–3359PubMedGoogle Scholar
  81. Limaye V, Xia P, Hahn C, Smith M, Vadas MA et al (2009) Chronic increases in sphingosine kinase-1 activity induce a pro-inflammatory, pro-angiogenic phenotype in endothelial cells. Cell Mol Biol Lett 14:424–441PubMedGoogle Scholar
  82. Liu Y, Wada R, Yamashita T, Mi Y, Deng CX et al (2000) Edg-1, the G protein-coupled receptor for sphingosine-1-phosphate, is essential for vascular maturation. J Clin Invest 106:951–961PubMedGoogle Scholar
  83. Li X, Stankovic M, Bonder CS, Hahn CN, Parsons M et al (2008) Basal and angiopoietin-1-mediated endothelial permeability is regulated by sphingosine kinase-1. Blood 111:3489–3497PubMedGoogle Scholar
  84. Lorenz JN, Arend LJ, Robitz R, Paul RJ, MacLennan AJ (2007) Vascular dysfunction in S1P2 sphingosine 1-phosphate receptor knockout mice. Am J Physiol Regul Integr Comp Physiol 292:R440–R446PubMedGoogle Scholar
  85. Lowe NGSJ, Vekich JA, Patel HH, Roth DM, Sabbadini RA (2006) S1P-stimulated cardiac fibrosis is attenuated by a novel anti-S1P monoclonal antibody (Abstract 981). Circulation 114:II179Google Scholar
  86. Ludwig L, Weihrauch D, Kersten JR, Pagel PS, Warltier DC (2004) Protein kinase C translocation and Src protein tyrosine kinase activation mediate isoflurane-induced preconditioning in vivo: potential downstream targets of mitochondrial adenosine triphosphate-sensitive potassium channels and reactive oxygen species. Anesthesiology 100:532–539PubMedGoogle Scholar
  87. Luke MM, O’Meara ES, Rowland CM, Shiffman D, Bare LA et al (2009) Gene variants associated with ischemic stroke: the cardiovascular health study. Stroke 40:363–368PubMedGoogle Scholar
  88. MacLennan AJ, Carney PR, Zhu WJ, Chaves AH, Garcia J et al (2001) An essential role for the H218/AGR16/Edg-5/LP(B2) sphingosine 1-phosphate receptor in neuronal excitability. Eur J Neurosci 14:203–209PubMedGoogle Scholar
  89. Mandala SM, Thornton R, Galve-Roperh I, Poulton S, Peterson C et al (2000) Molecular cloning and characterization of a lipid phosphohydrolase that degrades sphingosine-1-phosphate and induces cell death. Proc Natl Acad Sci USA 97:7859–7864PubMedGoogle Scholar
  90. Mandala S, Hajdu R, Bergstrom J, Quackenbush E, Xie J et al (2002) Alteration of lymphocyte trafficking by sphingosine-1-phosphate receptor agonists. Science 296:346–349PubMedGoogle Scholar
  91. Mann DL (2012) Sphingosine 1-phosphate as a therapeutic target in heart failure: more questions than answers. Circulation 125(22):2692–2694PubMedGoogle Scholar
  92. Mazurais D, Robert P, Gout B, Berrebi-Bertrand I, Laville MP, Calmels T (2002) Cell type-specific localization of human cardiac S1P receptors. J Histochem Cytochem 50:661–670PubMedGoogle Scholar
  93. McVerry BJ, Garcia JG (2005) In vitro and in vivo modulation of vascular barrier integrity by sphingosine 1-phosphate: mechanistic insights. Cell Signal 17:131–139PubMedGoogle Scholar
  94. Means CK, Brown JH (2009) Sphingosine-1-phosphate receptor signalling in the heart. Cardiovasc Res 82:193–200PubMedGoogle Scholar
  95. Means CK, Xiao CY, Li Z, Zhang T, Omens JH et al (2007) Sphingosine 1-phosphate S1P2 and S1P3 receptor-mediated Akt activation protects against in vivo myocardial ischemia-reperfusion injury. Am J Physiol Heart Circ Physiol 292:H2944–H2951PubMedGoogle Scholar
  96. Means CK, Miyamoto S, Chun J, Brown JH (2008) S1P1 receptor localization confers selectivity for Gi-mediated cAMP and contractile responses. J Biol Chem 283:11954–11963PubMedGoogle Scholar
  97. Meissner A, Yang J, Kroetsch JT, Sauve M, Dax H et al (2012) TNFalpha-mediated down-regulation of CFTR drives pathological S1P signaling in a mouse model of heart failure. Circulation 125(22):2739–2750PubMedGoogle Scholar
  98. Mehta D, Konstantoulaki M, Ahmmed GU, Malik AB (2005) Sphingosine 1-phosphate-induced mobilization of intracellular Ca2+ mediates rac activation and adherens junction assembly in endothelial cells. J Biol Chem 280:17320–17328PubMedGoogle Scholar
  99. Michaud MD, Robitaille GA, Gratton JP, Richard DE (2009) Sphingosine-1-phosphate: a novel nonhypoxic activator of hypoxia-inducible factor-1 in vascular cells. Arterioscler Thromb Vasc Biol 29:902–908PubMedGoogle Scholar
  100. Michaud J, Im DS, Hla T (2010) Inhibitory role of sphingosine 1-phosphate receptor 2 in macrophage recruitment during inflammation. J Immunol 184:1475–1483PubMedGoogle Scholar
  101. Mizugishi K, Yamashita T, Olivera A, Miller GF, Spiegel S, Proia RL (2005) Essential role for sphingosine kinases in neural and vascular development. Mol Cell Biol 25:11113–11121PubMedGoogle Scholar
  102. Muller H, Hofer S, Kaneider N, Neuwirt H, Mosheimer B et al (2005) The immunomodulator FTY720 interferes with effector functions of human monocyte-derived dendritic cells. Eur J Immunol 35:533–545PubMedGoogle Scholar
  103. Murakami A, Takasugi H, Ohnuma S, Koide Y, Sakurai A et al (2010) Sphingosine 1-phosphate (S1P) regulates vascular contraction via S1P3 receptor: investigation based on a new S1P3 receptor antagonist. Mol Pharmacol 77:704–713PubMedGoogle Scholar
  104. Murata N, Sato K, Kon J, Tomura H, Yanagita M et al (2000) Interaction of sphingosine 1-phosphate with plasma components, including lipoproteins, regulates the lipid receptor-mediated actions. Biochem J 352(Pt 3):809–815PubMedGoogle Scholar
  105. Nofer JR, van der Giet M, Tolle M, Wolinska I, von Wnuck LK et al (2004) HDL induces NO-dependent vasorelaxation via the lysophospholipid receptor S1P3. J Clin Invest 113:569–581PubMedGoogle Scholar
  106. Nofer JR, Bot M, Brodde M, Taylor PJ, Salm P et al (2007) FTY720, a synthetic sphingosine 1 phosphate analogue, inhibits development of atherosclerosis in low-density lipoprotein receptor-deficient mice. Circulation 115:501–508PubMedGoogle Scholar
  107. Okajima F (2002) Plasma lipoproteins behave as carriers of extracellular sphingosine 1-phosphate: is this an atherogenic mediator or an anti-atherogenic mediator? Biochim Biophys Acta 1582:132–137PubMedGoogle Scholar
  108. Okamoto H, Takuwa N, Yokomizo T, Sugimoto N, Sakurada S et al (2000) Inhibitory regulation of Rac activation, membrane ruffling, and cell migration by the G protein-coupled sphingosine-1-phosphate receptor EDG5 but not EDG1 or EDG3. Mol Cell Biol 20:9247–9261PubMedGoogle Scholar
  109. Olivera A, Spiegel S (1993) Sphingosine-1-phosphate as second messenger in cell proliferation induced by PDGF and FCS mitogens. Nature 365:557–560PubMedGoogle Scholar
  110. Oral H, Dorn GW 2nd, Mann DL (1997) Sphingosine mediates the immediate negative inotropic effects of tumor necrosis factor-alpha in the adult mammalian cardiac myocyte. J Biol Chem 272:4836–4842PubMedGoogle Scholar
  111. Osborne N, Brand-Arzamendi K, Ober EA, Jin SW, Verkade H et al (2008) The spinster homolog, two of hearts, is required for sphingosine 1-phosphate signaling in zebrafish. Curr Biol 18:1882–1888PubMedGoogle Scholar
  112. Ozaki H, Hla T, Lee MJ (2003) Sphingosine-1-phosphate signaling in endothelial activation. J Atheroscler Thromb 10:125–131PubMedGoogle Scholar
  113. Pappu R, Schwab SR, Cornelissen I, Pereira JP, Regard JB et al (2007) Promotion of lymphocyte egress into blood and lymph by distinct sources of sphingosine-1-phosphate. Science 316:295–298PubMedGoogle Scholar
  114. Peter BF, Lidington D, Harada A, Bolz HJ, Vogel L et al (2008) Role of sphingosine-1-phosphate phosphohydrolase 1 in the regulation of resistance artery tone. Circ Res 103:315–324PubMedGoogle Scholar
  115. Pettus BJ, Bielawski J, Porcelli AM, Reames DL, Johnson KR et al (2003) The sphingosine kinase 1/sphingosine-1-phosphate pathway mediates COX-2 induction and PGE2 production in response to TNF-alpha. FASEB J 17:1411–1421PubMedGoogle Scholar
  116. Rivera R, Chun J (2008) Biological effects of lysophospholipids. Rev Physiol Biochem Pharmacol 160:25–46PubMedGoogle Scholar
  117. Rizza C, Leitinger N, Yue J, Fischer DJ, Wang DA et al (1999) Lysophosphatidic acid as a regulator of endothelial/leukocyte interaction. Lab Invest 79:1227–1235PubMedGoogle Scholar
  118. Robert P, Tsui P, Laville MP, Livi GP, Sarau HM et al (2001) EDG1 receptor stimulation leads to cardiac hypertrophy in rat neonatal myocytes. J Mol Cell Cardiol 33:1589–1606PubMedGoogle Scholar
  119. Rosen H, Gonzalez-Cabrera P, Marsolais D, Cahalan S, Don AS, Sanna MG (2008) Modulating tone: the overture of S1P receptor immunotherapeutics. Immunol Rev 223:221–235PubMedGoogle Scholar
  120. Rosen H, Gonzalez-Cabrera PJ, Sanna MG, Brown S (2009) Sphingosine 1-phosphate receptor signaling. Annu Rev Biochem 78:743–768PubMedGoogle Scholar
  121. Ryser MF, Ugarte F, Lehmann R, Bornhauser M, Brenner S (2008) S1P(1) overexpression stimulates S1P-dependent chemotaxis of human CD34+ hematopoietic progenitor cells but strongly inhibits SDF-1/CXCR4-dependent migration and in vivo homing. Mol Immunol 46:166–171PubMedGoogle Scholar
  122. Ryu Y, Takuwa N, Sugimoto N, Sakurada S, Usui S et al (2002) Sphingosine-1-phosphate, a platelet-derived lysophospholipid mediator, negatively regulates cellular Rac activity and cell migration in vascular smooth muscle cells. Circ Res 90:325–332PubMedGoogle Scholar
  123. Saba JD, Hla T (2004) Point-counterpoint of sphingosine 1-phosphate metabolism. Circ Res 94:724–734PubMedGoogle Scholar
  124. Salomone S, Potts EM, Tyndall S, Ip PC, Chun J et al (2008) Analysis of sphingosine 1-phosphate receptors involved in constriction of isolated cerebral arteries with receptor null mice and pharmacological tools. Br J Pharmacol 153:140–147PubMedGoogle Scholar
  125. Salomone S, Soydan G, Ip PC, Hopson KM, Waeber C (2010) Vessel-specific role of sphingosine kinase 1 in the vasoconstriction of isolated basilar arteries. Pharmacol Res 62:465–474PubMedGoogle Scholar
  126. Sanchez T, Skoura A, Wu MT, Casserly B, Harrington EO, Hla T (2007) Induction of vascular permeability by the sphingosine-1-phosphate receptor-2 (S1P2R) and its downstream effectors ROCK and PTEN. Arterioscler Thromb Vasc Biol 27:1312–1318PubMedGoogle Scholar
  127. Sanna MG, Liao J, Jo E, Alfonso C, Ahn MY et al (2004) Sphingosine 1-phosphate (S1P) receptor subtypes S1P1 and S1P3, respectively, regulate lymphocyte recirculation and heart rate. J Biol Chem 279:13839–13848PubMedGoogle Scholar
  128. Sanna MG, Wang SK, Gonzalez-Cabrera PJ, Don A, Marsolais D et al (2006) Enhancement of capillary leakage and restoration of lymphocyte egress by a chiral S1P1 antagonist in vivo. Nat Chem Biol 2:434–441PubMedGoogle Scholar
  129. Sattler K, Levkau B (2009) Sphingosine-1-phosphate as a mediator of high-density lipoprotein effects in cardiovascular protection. Cardiovasc Res 82:201–211PubMedGoogle Scholar
  130. Sattler KJ, Elbasan S, Keul P, Elter-Schulz M, Bode C et al (2010) Sphingosine 1-phosphate levels in plasma and HDL are altered in coronary artery disease. Basic Res Cardiol 105:821–832PubMedGoogle Scholar
  131. Schulz R, Kelm M, Heusch G (2004) Nitric oxide in myocardial ischemia/reperfusion injury. Cardiovasc Res 61:402–413PubMedGoogle Scholar
  132. Sevvana M, Ahnstrom J, Egerer-Sieber C, Lange HA, Dahlback B, Muller YA (2009) Serendipitous fatty acid binding reveals the structural determinants for ligand recognition in apolipoprotein M. J Mol Biol 393:920–936PubMedGoogle Scholar
  133. Shiffman D, O’Meara ES, Bare LA, Rowland CM, Louie JZ et al (2008) Association of gene variants with incident myocardial infarction in the Cardiovascular Health Study. Arterioscler Thromb Vasc Biol 28:173–179PubMedGoogle Scholar
  134. Shimamura K, Takashiro Y, Akiyama N, Hirabayashi T, Murayama T (2004) Expression of adhesion molecules by sphingosine 1-phosphate and histamine in endothelial cells. Eur J Pharmacol 486:141–150PubMedGoogle Scholar
  135. Shimizu T, Nakazawa T, Cho A, Dastvan F, Shilling D et al (2007) Sphingosine 1-phosphate receptor 2 negatively regulates neointimal formation in mouse arteries. Circ Res 101:995–1000PubMedGoogle Scholar
  136. Singleton PA, Dudek SM, Chiang ET, Garcia JG (2005) Regulation of sphingosine 1-phosphate-induced endothelial cytoskeletal rearrangement and barrier enhancement by S1P1 receptor, PI3 kinase, Tiam1/Rac1, and alpha-actinin. FASEB J 19:1646–1656PubMedGoogle Scholar
  137. Skoura A, Hla T (2009) Regulation of vascular physiology and pathology by the S1P2 receptor subtype. Cardiovasc Res 82:221–228PubMedGoogle Scholar
  138. Skoura A, Michaud J, Im DS, Thangada S, Xiong Y et al (2011) Sphingosine-1-phosphate receptor-2 function in myeloid cells regulates vascular inflammation and atherosclerosis. Arterioscler Thromb Vasc Biol 31:81–85PubMedGoogle Scholar
  139. Skoura A, Sanchez T, Claffey K, Mandala SM, Proia RL, Hla T (2007) Essential role of sphingosine 1-phosphate receptor 2 in pathological angiogenesis of the mouse retina. J Clin Invest 117:2506–2516PubMedGoogle Scholar
  140. Skyschally A, Gres P, Hoffmann S, Haude M, Erbel R et al (2007) Bidirectional role of tumor necrosis factor-alpha in coronary microembolization: progressive contractile dysfunction versus delayed protection against infarction. Circ Res 100:140–146PubMedGoogle Scholar
  141. Spiegel S, Milstien S (2003) Sphingosine-1-phosphate: an enigmatic signalling lipid. Nat Rev Mol Cell Biol 4:397–407PubMedGoogle Scholar
  142. Strub GM, Paillard M, Liang J, Gomez L, Allegood JC et al (2011) Sphingosine-1-phosphate produced by sphingosine kinase 2 in mitochondria interacts with prohibitin 2 to regulate complex IV assembly and respiration. FASEB J 25:600–612PubMedGoogle Scholar
  143. Tanimoto T, Jin ZG, Berk BC (2002) Transactivation of vascular endothelial growth factor (VEGF) receptor Flk-1/KDR is involved in sphingosine 1-phosphate-stimulated phosphorylation of Akt and endothelial nitric-oxide synthase (eNOS). J Biol Chem 277:42997–43001PubMedGoogle Scholar
  144. Tauseef M, Kini V, Knezevic N, Brannan M, Ramchandaran R et al (2008) Activation of sphingosine kinase-1 reverses the increase in lung vascular permeability through sphingosine-1-phosphate receptor signaling in endothelial cells. Circ Res 103:1164–1172PubMedGoogle Scholar
  145. Theilmeier G, Schmidt C, Herrmann J, Keul P, Schafers M et al (2006) High-density lipoproteins and their constituent, sphingosine-1-phosphate, directly protect the heart against ischemia/reperfusion injury in vivo via the S1P3 lysophospholipid receptor. Circulation 114:1403–1409PubMedGoogle Scholar
  146. Thielmann M, Dorge H, Martin C, Belosjorow S, Schwanke U et al (2002) Myocardial dysfunction with coronary microembolization: signal transduction through a sequence of nitric oxide, tumor necrosis factor-alpha, and sphingosine. Circ Res 90:807–813PubMedGoogle Scholar
  147. Tolle M, Levkau B, Keul P, Brinkmann V, Giebing G et al (2005) Immunomodulator FTY720 Induces eNOS-dependent arterial vasodilatation via the lysophospholipid receptor S1P3. Circ Res 96:913–920PubMedGoogle Scholar
  148. Tolle M, Pawlak A, Schuchardt M, Kawamura A, Tietge UJ et al (2008) HDL-associated lysosphingolipids inhibit NAD(P)H oxidase-dependent monocyte chemoattractant protein-1 production. Arterioscler Thromb Vasc Biol 28:1542–1548PubMedGoogle Scholar
  149. Tsukada YT, Sanna MG, Rosen H, Gottlieb RA (2007) S1P1-selective agonist SEW2871 exacerbates reperfusion arrhythmias. J Cardiovasc Pharmacol 50:660–669PubMedGoogle Scholar
  150. van Meer G, Voelker DR, Feigenson GW (2008) Membrane lipids: where they are and how they behave. Nat Rev Mol Cell Biol 9:112–124PubMedGoogle Scholar
  151. Venkataraman K, Lee YM, Michaud J, Thangada S, Ai Y et al (2008) Vascular endothelium as a contributor of plasma sphingosine 1-phosphate. Circ Res 102:669–676PubMedGoogle Scholar
  152. Vessey DA, Kelley M, Li L, Huang Y, Zhou HZ et al (2006) Role of sphingosine kinase activity in protection of heart against ischemia reperfusion injury. Med Sci Monit 12:BR318–BR324PubMedGoogle Scholar
  153. Vessey DA, Kelley M, Li L, Huang Y (2009) Sphingosine protects aging hearts from ischemia/reperfusion injury: superiority to sphingosine 1-phosphate and ischemic pre- and post-conditioning. Oxid Med Cell Longev 2:146–151PubMedGoogle Scholar
  154. Vessey DA, Jin Z, Kelley M, Honbo N, Zhang J, Karliner JS (2011) A sphingosine kinase form 2 knockout sensitizes mouse myocardium to ischemia/reoxygenation injury and diminishes responsiveness to ischemic preconditioning. Oxid Med Cell Longev 2011:1–8, Article ID 961059Google Scholar
  155. Visentin B, Vekich JA, Sibbald BJ, Cavalli AL, Moreno KM et al (2006) Validation of an anti-sphingosine-1-phosphate antibody as a potential therapeutic in reducing growth, invasion, and angiogenesis in multiple tumor lineages. Cancer Cell 9:225–238PubMedGoogle Scholar
  156. Walter DH, Rochwalsky U, Reinhold J, Seeger F, Aicher A et al (2007) Sphingosine-1-phosphate stimulates the functional capacity of progenitor cells by activation of the CXCR4-dependent signaling pathway via the S1P3 receptor. Arterioscler Thromb Vasc Biol 27:275–282PubMedGoogle Scholar
  157. Wamhoff BR, Lynch KR, Macdonald TL, Owens GK (2008) Sphingosine-1-phosphate receptor subtypes differentially regulate smooth muscle cell phenotype. Arterioscler Thromb Vasc Biol 28:1454–1461PubMedGoogle Scholar
  158. Wang F, Okamoto Y, Inoki I, Yoshioka K, Du W et al (2010) Sphingosine-1-phosphate receptor-2 deficiency leads to inhibition of macrophage proinflammatory activities and atherosclerosis in apoE-deficient mice. J Clin Invest 120:3979–3995PubMedGoogle Scholar
  159. Waters C, Sambi B, Kong KC, Thompson D, Pitson SM et al (2003) Sphingosine 1-phosphate and platelet-derived growth factor (PDGF) act via PDGF beta receptor-sphingosine 1-phosphate receptor complexes in airway smooth muscle cells. J Biol Chem 278:6282–6290PubMedGoogle Scholar
  160. Wendler CC, Rivkees SA (2006) Sphingosine-1-phosphate inhibits cell migration and endothelial to mesenchymal cell transformation during cardiac development. Dev Biol 291:264–277PubMedGoogle Scholar
  161. Whetzel AM, Bolick DT, Srinivasan S, Macdonald TL, Morris MA et al (2006) Sphingosine-1 phosphate prevents monocyte/endothelial interactions in type 1 diabetic NOD mice through activation of the S1P1 receptor. Circ Res 99:731–739PubMedGoogle Scholar
  162. Xia P, Gamble JR, Rye KA, Wang L, Hii CS et al (1998) Tumor necrosis factor-alpha induces adhesion molecule expression through the sphingosine kinase pathway. Proc Natl Acad Sci USA 95:14196–14201PubMedGoogle Scholar
  163. Xie B, Shen J, Dong A, Rashid A, Stoller G, Campochiaro PA (2009) Blockade of sphingosine-1-phosphate reduces macrophage influx and retinal and choroidal neovascularization. J Cell Physiol 218:192–198PubMedGoogle Scholar
  164. Xin C, Ren S, Kleuser B, Shabahang S, Eberhardt W et al (2004) Sphingosine 1-phosphate cross-activates the Smad signaling cascade and mimics transforming growth factor-beta-induced cell responses. J Biol Chem 279:35255–35262PubMedGoogle Scholar
  165. Yeboah J, McNamara C, Jiang XC, Tabas I, Herrington DM et al (2010) Association of plasma sphingomyelin levels and incident coronary heart disease events in an adult population: multi-ethnic study of atherosclerosis. Arterioscler Thromb Vasc Biol 30:628–633PubMedGoogle Scholar
  166. Yeh CC, Li H, Malhotra D, Huang MC, Zhu BQ et al (2009) Sphingolipid signaling and treatment during remodeling of the uninfarcted ventricular wall after myocardial infarction. Am J Physiol Heart Circ Physiol 296:H1193–H1199PubMedGoogle Scholar
  167. Zhang B, Tomura H, Kuwabara A, Kimura T, Miura S et al (2005) Correlation of high density lipoprotein (HDL)-associated sphingosine 1-phosphate with serum levels of HDL-cholesterol and apolipoproteins. Atherosclerosis 178:199–205PubMedGoogle Scholar
  168. Zhang J, Honbo N, Goetzl EJ, Chatterjee K, Karliner JS, Gray MO (2007) Signals from type 1 sphingosine 1-phosphate receptors enhance adult mouse cardiac myocyte survival during hypoxia. Am J Physiol Heart Circ Physiol 293:H3150–H3158PubMedGoogle Scholar
  169. Zhao ZQ, Corvera JS, Halkos ME, Kerendi F, Wang NP et al (2003) Inhibition of myocardial injury by ischemic postconditioning during reperfusion: comparison with ischemic preconditioning. Am J Physiol Heart Circ Physiol 285:H579–H588PubMedGoogle Scholar
  170. Zhou J, Saba JD (1998) Identification of the first mammalian sphingosine phosphate lyase gene and its functional expression in yeast. Biochem Biophys Res Commun 242:502–507PubMedGoogle Scholar

Copyright information

© Springer-Verlag Wien 2013

Authors and Affiliations

  1. 1.Institute of PathophysiologyUniversity Hospital Essen, University of Duisburg-EssenEssenGermany

Personalised recommendations