Sphingolipids in Disease pp 275-303

Part of the Handbook of Experimental Pharmacology book series (HEP, volume 216)

Regulation of the Sphingosine Kinase/Sphingosine 1-Phosphate Pathway

Chapter

Abstract

Sphingolipids have emerged as pleiotropic signaling molecules with roles in numerous cellular and biological functions. Defining the regulatory mechanisms governing sphingolipid metabolism is crucial in order to develop a complete understanding of the biological functions of sphingolipid metabolites. The sphingosine kinase/ sphingosine 1-phosphate pathway was originally thought to function in the irreversible breakdown of sphingoid bases; however, in the last few decades it has materialized as an extremely important signaling pathway involved in a plethora of cellular events contributing to both normal and pathophysiological events. Recognition of the SK/S1P pathway as a second messaging system has aided in the identification of many mechanisms of its regulation; however, a cohesive, global understanding of the regulatory mechanisms controlling the SK/S1P pathway is lacking. In this chapter, the role of the SK/S1P pathway as a second messenger is discussed, and its role in mediating TNF-α- and EGF-induced biologies is examined. This work provides a comprehensive look into the roles and regulation of the sphingosine kinase/ sphingosine 1-phosphate pathway and highlights the potential of the pathway as a therapeutic target.

Keywords

sphingolipids growth factors epidermal growth factor (EGF) platelet derived growth factor (PDGF) tumor necrosis-α (TNFα) cytokines interleukin tumor growth factor-β (TGFβ) hormones 

References

  1. Alemany R, van Koppen CJ et al (2007) Regulation and functional roles of sphingosine kinases. Naunyn Schmiedebergs Arch Pharmacol 374(5–6):413–428PubMedCrossRefGoogle Scholar
  2. Alvarez SE, Harikumar KB et al (2010) Sphingosine-1-phosphate is a missing cofactor for the E3 ubiquitin ligase TRAF2. Nature 465(7301):1084–1088PubMedCrossRefGoogle Scholar
  3. Anelli V, Gault CR et al (2008) Sphingosine kinase 1 is up-regulated during hypoxia in U87MG glioma cells. Role of hypoxia-inducible factors 1 and 2. J Biol Chem 283(6):3365–3375PubMedCrossRefGoogle Scholar
  4. Baker DA, Barth J et al (2010) Genetic sphingosine kinase 1 deficiency significantly decreases synovial inflammation and joint erosions in murine TNF-alpha-induced arthritis. J Immunol 185(4):2570–2579PubMedCrossRefGoogle Scholar
  5. Baker DA, Obeid LM et al (2011) Impact of sphingosine kinase on inflammatory pathways in fibroblast-like synoviocytes. Inflamm Allergy Drug Targets 10(6):464–471PubMedCrossRefGoogle Scholar
  6. Barr RK, Lynn HE et al (2008) Deactivation of sphingosine kinase 1 by protein phosphatase 2A. J Biol Chem 283(50):34994–35002PubMedCrossRefGoogle Scholar
  7. Barth BM, Gustafson SJ et al (2011) Ceramide kinase regulates TNFalpha-stimulated NADPH oxidase activity and eicosanoid biosynthesis in neuroblastoma cells. Cell Signal 24(6): 1126–1133PubMedCrossRefGoogle Scholar
  8. Barth BM, Gustafson SJ et al (2012) Neutral sphingomyelinase activation precedes NADPH oxidase-dependent damage in neurons exposed to the proinflammatory cytokine tumor necrosis factor-alpha. J Neurosci Res 90(1):229–242PubMedCrossRefGoogle Scholar
  9. Bartke N, Hannun YA (2009) Bioactive sphingolipids: metabolism and function. J Lipid Res 50(Suppl): S91–S96PubMedCrossRefGoogle Scholar
  10. Berdyshev EV, Gorshkova I et al (2011) Intracellular S1P generation is essential for S1P-induced motility of human lung endothelial cells: role of sphingosine kinase 1 and S1P lyase. PLoS One 6(1):e16571PubMedCrossRefGoogle Scholar
  11. Billich A, Bornancin F et al (2005) Basal and induced sphingosine kinase 1 activity in A549 carcinoma cells: function in cell survival and IL-1beta and TNF-alpha induced production of inflammatory mediators. Cell Signal 17(10):1203–1217PubMedCrossRefGoogle Scholar
  12. Billich A, Urtz N et al (2009) Sphingosine kinase 1 is essential for proteinase-activated receptor-1 signalling in epithelial and endothelial cells. Int J Biochem Cell Biol 41(7):1547–1555PubMedCrossRefGoogle Scholar
  13. Bode C, Sensken SC et al (2010) Erythrocytes serve as a reservoir for cellular and extracellular sphingosine 1-phosphate. J Cell Biochem 109(6):1232–1243PubMedGoogle Scholar
  14. Bretscher A (1989) Rapid phosphorylation and reorganization of ezrin and spectrin accompany morphological changes induced in A-431 cells by epidermal growth factor. J Cell Biol 108(3): 921–930PubMedCrossRefGoogle Scholar
  15. Bu S, Yamanaka M et al (2006) Dihydrosphingosine 1-phosphate stimulates MMP1 gene expression via activation of ERK1/2-Ets1 pathway in human fibroblasts. FASEB J 20(1):184–186PubMedGoogle Scholar
  16. Camerer E, Regard JB et al (2009) Sphingosine-1-phosphate in the plasma compartment regulates basal and inflammation-induced vascular leak in mice. J Clin Invest 119(7):1871–1879PubMedGoogle Scholar
  17. Candela M, Barker SC et al (1991) Sphingosine synergistically stimulates tumor necrosis factor alpha-induced prostaglandin E2 production in human fibroblasts. J Exp Med 174(6): 1363–1369PubMedCrossRefGoogle Scholar
  18. Cencetti F, Bernacchioni C et al (2010) Transforming growth factor-beta1 induces transdifferentiation of myoblasts into myofibroblasts via up-regulation of sphingosine kinase-1/S1P3 axis. Mol Biol Cell 21(6):1111–1124PubMedCrossRefGoogle Scholar
  19. Chandru H, Boggaram V (2007) The role of sphingosine 1-phosphate in the TNF-alpha induction of IL-8 gene expression in lung epithelial cells. Gene 391(1–2):150–160PubMedCrossRefGoogle Scholar
  20. Chao HH, Chen CH et al (2010) L-Carnitine attenuates angiotensin II-induced proliferation of cardiac fibroblasts: role of NADPH oxidase inhibition and decreased sphingosine-1-phosphate generation. J Nutr Biochem 21(7):580–588PubMedCrossRefGoogle Scholar
  21. Chen XL, Grey JY et al (2004) Sphingosine kinase-1 mediates TNF-alpha-induced MCP-1 gene expression in endothelial cells: upregulation by oscillatory flow. Am J Physiol Heart Circ Physiol 287(4):H1452–H1458PubMedCrossRefGoogle Scholar
  22. Chen Q, Carroll HP et al (2006) The newest interleukins: recent additions to the ever-growing cytokine family. Vitam Horm 74:207–228PubMedCrossRefGoogle Scholar
  23. Dakroub Z, Kreydiyyeh SI (2012) Sphingosine-1-phosphate is a mediator of TNF-alpha action on the Na+/K + ATPase in HepG2 cells. J Cell Biochem 113(6):2077–2085PubMedCrossRefGoogle Scholar
  24. De Palma C, Meacci E et al (2006) Endothelial nitric oxide synthase activation by tumor necrosis factor alpha through neutral sphingomyelinase 2, sphingosine kinase 1, and sphingosine 1 phosphate receptors: a novel pathway relevant to the pathophysiology of endothelium. Arterioscler Thromb Vasc Biol 26(1):99–105PubMedCrossRefGoogle Scholar
  25. De Palma C, Falcone S et al (2008) Endothelial nitric oxide synthase overexpression by neuronal cells in neurodegeneration: a link between inflammation and neuroprotection. J Neurochem 106(1):193–204PubMedCrossRefGoogle Scholar
  26. Delcourt N, Bockaert J et al (2007) GPCR-jacking: from a new route in RTK signalling to a new concept in GPCR activation. Trends Pharmacol Sci 28(12):602–607PubMedCrossRefGoogle Scholar
  27. Denker SP, Huang DC et al (2000) Direct binding of the Na–H exchanger NHE1 to ERM proteins regulates the cortical cytoskeleton and cell shape independently of H(+) translocation. Mol Cell 6(6):1425–1436PubMedCrossRefGoogle Scholar
  28. Derrett-Smith EC, Dooley A et al (2010) Systemic vasculopathy with altered vasoreactivity in a transgenic mouse model of scleroderma. Arthritis Res Ther 12(2):R69PubMedCrossRefGoogle Scholar
  29. Doll F, Pfeilschifter J et al (2005) The epidermal growth factor stimulates sphingosine kinase-1 expression and activity in the human mammary carcinoma cell line MCF7. Biochim Biophys Acta 1738(1–3):72–81PubMedGoogle Scholar
  30. Doll F, Pfeilschifter J et al (2007) Prolactin upregulates sphingosine kinase-1 expression and activity in the human breast cancer cell line MCF7 and triggers enhanced proliferation and migration. Endocr Relat Cancer 14(2):325–335PubMedCrossRefGoogle Scholar
  31. Donati C, Nincheri P et al (2007) Tumor necrosis factor-alpha exerts pro-myogenic action in C2C12 myoblasts via sphingosine kinase/S1P(2) signaling. FEBS Lett 581(23):4384–4388PubMedCrossRefGoogle Scholar
  32. Du J, Zeng C et al (2012) LPS and TNF-alpha induce expression of sphingosine-1-phosphate receptor-2 in human microvascular endothelial cells. Pathol Res Pract 208(2):82–88PubMedCrossRefGoogle Scholar
  33. El-Shewy HM, Johnson KR et al (2006) Insulin-like growth factors mediate heterotrimeric G protein-dependent ERK1/2 activation by transactivating sphingosine-1-phosphate receptors. J Biol Chem 281(42):31399–31407PubMedCrossRefGoogle Scholar
  34. El-Shewy HM, Abdel-Samie SA et al (2011) Phospholipase C and protein kinase C-beta 2 mediate insulin-like growth factor II-dependent sphingosine kinase 1 activation. Mol Endocrinol 25(12): 2144–2156PubMedCrossRefGoogle Scholar
  35. Estrada-Bernal A, Lawler SE et al (2011) The role of sphingosine kinase-1 in EGFRvIII-regulated growth and survival of glioblastoma cells. J Neurooncol 102(3):353–366PubMedCrossRefGoogle Scholar
  36. Fischer I, Alliod C et al (2011) Sphingosine kinase 1 and sphingosine 1-phosphate receptor 3 are functionally upregulated on astrocytes under pro-inflammatory conditions. PLoS One 6(8):e23905PubMedCrossRefGoogle Scholar
  37. Fletcher JI, Haber M et al (2010) ABC transporters in cancer: more than just drug efflux pumps. Nat Rev Cancer 10(2):147–156PubMedCrossRefGoogle Scholar
  38. Francy JM, Nag A et al (2007) Sphingosine kinase 1 expression is regulated by signaling through PI3K, AKT2, and mTOR in human coronary artery smooth muscle cells. Biochim Biophys Acta 1769(4):253–265PubMedCrossRefGoogle Scholar
  39. Fujita T, Okada T et al (2004) Delta-catenin/NPRAP (neural plakophilin-related armadillo repeat protein) interacts with and activates sphingosine kinase 1. Biochem J 382(Pt 2):717–723PubMedGoogle Scholar
  40. Fukuda Y, Aoyama Y et al (2004) Identification of PECAM-1 association with sphingosine kinase 1 and its regulation by agonist-induced phosphorylation. Biochim Biophys Acta 1636(1):12–21PubMedCrossRefGoogle Scholar
  41. Gao P, Smith CD (2011) Ablation of sphingosine kinase-2 inhibits tumor cell proliferation and migration. Mol Cancer Res 9(11):1509–1519PubMedCrossRefGoogle Scholar
  42. Gao H, Fan Y et al (2012) Optimization on preparation condition of epimedium polysaccharide liposome and evaluation of its adjuvant activity. Int J Biol Macromol 50(1):207–213PubMedCrossRefGoogle Scholar
  43. Garofalo M, Romano G et al (2012) EGFR and MET receptor tyrosine kinase-altered microRNA expression induces tumorigenesis and gefitinib resistance in lung cancers. Nat Med 18(1): 74–82CrossRefGoogle Scholar
  44. Gault CR, Obeid LM et al (2010) An overview of sphingolipid metabolism: from synthesis to breakdown. Adv Exp Med Biol 688:1–23PubMedCrossRefGoogle Scholar
  45. Gault CR, Eblen ST et al (2012) Oncogenic K-Ras regulates bioactive sphingolipids in a sphingosine kinase 1 dependent manner. J Biol Chem 287(38):31794–31803PubMedCrossRefGoogle Scholar
  46. Ghosh TK, Bian J et al (1990) Intracellular calcium release mediated by sphingosine derivatives generated in cells. Science 248(4963):1653–1656PubMedCrossRefGoogle Scholar
  47. Hait NC, Sarkar S et al (2005) Role of sphingosine kinase 2 in cell migration toward epidermal growth factor. J Biol Chem 280(33):29462–29469PubMedCrossRefGoogle Scholar
  48. Hait NC, Bellamy A et al (2007) Sphingosine kinase type 2 activation by ERK-mediated phosphorylation. J Biol Chem 282(16):12058–12065PubMedCrossRefGoogle Scholar
  49. Hait NC, Allegood J et al (2009) Regulation of histone acetylation in the nucleus by sphingosine-1-phosphate. Science 325(5945):1254–1257PubMedCrossRefGoogle Scholar
  50. Hammad SM (2011) Blood sphingolipids in homeostasis and pathobiology. Adv Exp Med Biol 721:57–66PubMedCrossRefGoogle Scholar
  51. Hammad SM, Taha TA et al (2006) Oxidized LDL immune complexes induce release of sphingosine kinase in human U937 monocytic cells. Prostaglandins Other Lipid Mediat 79(1–2):126–140PubMedCrossRefGoogle Scholar
  52. Hammad SM, Crellin HG et al (2008) Dual and distinct roles for sphingosine kinase 1 and sphingosine 1 phoshate in the response to inflammatory stimuli in RAW macrophages. Prostaglandins Other Lipid Mediat 85(3–4):107–114PubMedCrossRefGoogle Scholar
  53. Heffernan-Stroud LA, Helke KL et al (2012) Defining a role for sphingosine kinase 1 in p53-dependent tumors. Oncogene 31(9):1166–1175PubMedCrossRefGoogle Scholar
  54. Higuchi M, Singh S et al (1996) Acidic sphingomyelinase-generated ceramide is needed but not sufficient for TNF-induced apoptosis and nuclear factor-kappa B activation. J Immunol 157(1): 297–304PubMedGoogle Scholar
  55. Hisano Y, Kobayashi N et al (2011) The sphingosine 1-phosphate transporter, SPNS2, functions as a transporter of the phosphorylated form of the immunomodulating agent FTY720. J Biol Chem 286(3):1758–1766PubMedCrossRefGoogle Scholar
  56. Hisano Y, Kobayashi N et al (2012) Mouse SPNS2 functions as a sphingosine-1-phosphate transporter in vascular endothelial cells. PLoS One 7(6):e38941PubMedCrossRefGoogle Scholar
  57. Hla T (2001) Sphingosine 1-phosphate receptors. Prostaglandins Other Lipid Mediat 64(1–4): 135–142PubMedCrossRefGoogle Scholar
  58. Hla T, Brinkmann V (2011) Sphingosine 1-phosphate (S1P): physiology and the effects of S1P receptor modulation. Neurology 76(8 Suppl 3):S3–S8PubMedCrossRefGoogle Scholar
  59. Hla T, Maciag T (1990a) An abundant transcript induced in differentiating human endothelial cells encodes a polypeptide with structural similarities to G-protein-coupled receptors. J Biol Chem 265(16):9308–9313PubMedGoogle Scholar
  60. Hla T, Maciag T (1990b) Isolation of immediate-early differentiation mRNAs by enzymatic amplification of subtracted cDNA from human endothelial cells. Biochem Biophys Res Commun 167(2):637–643PubMedCrossRefGoogle Scholar
  61. Hla T, Venkataraman K et al (2008) The vascular S1P gradient-cellular sources and biological significance. Biochim Biophys Acta 1781(9):477–482PubMedCrossRefGoogle Scholar
  62. Hobson JP, Rosenfeldt HM et al (2001) Role of the sphingosine-1-phosphate receptor EDG-1 in PDGF-induced cell motility. Science 291(5509):1800–1803PubMedCrossRefGoogle Scholar
  63. Hsu A, Zhang W et al (2012) Sphingosine-1-phosphate receptor-3 signaling up-regulates epidermal growth factor receptor and enhances epidermal growth factor receptor-mediated carcinogenic activities in cultured lung adenocarcinoma cells. Int J Oncol 40(5):1619–1626PubMedGoogle Scholar
  64. Igarashi N, Okada T et al (2003) Sphingosine kinase 2 is a nuclear protein and inhibits DNA synthesis. J Biol Chem 278(47):46832–46839PubMedCrossRefGoogle Scholar
  65. Ikeda H, Ohkawa R et al (2010) Plasma concentration of bioactive lipid mediator sphingosine 1-phosphate is reduced in patients with chronic hepatitis C. Int J Clin Chim Acta 411(9–10):765–770Google Scholar
  66. Jenkins RW, Clarke CJ et al (2011) Regulation of CC ligand 5/RANTES by acid sphingomyelinase and acid ceramidase. J Biol Chem 286(15):13292–13303PubMedCrossRefGoogle Scholar
  67. Johnson KR, Becker KP et al (2002) PKC-dependent activation of sphingosine kinase 1 and translocation to the plasma membrane. Extracellular release of sphingosine-1-phosphate induced by phorbol 12-myristate 13-acetate (PMA). J Biol Chem 277(38):35257–35262PubMedCrossRefGoogle Scholar
  68. Johnson KR, Johnson KY et al (2005) Immunohistochemical distribution of sphingosine kinase 1 in normal and tumor lung tissue. J Histochem Cytochem 53(9):1159–1166PubMedCrossRefGoogle Scholar
  69. Johnstone ED, Mackova M et al (2005) Multiple anti-apoptotic pathways stimulated by EGF in cytotrophoblasts. Placenta 26(7):548–555PubMedCrossRefGoogle Scholar
  70. Kang JS, Yoon YD et al (2006) Glabridin suppresses intercellular adhesion molecule-1 expression in tumor necrosis factor-alpha-stimulated human umbilical vein endothelial cells by blocking sphingosine kinase pathway: implications of Akt, extracellular signal-regulated kinase, and nuclear factor-kappaB/Rel signaling pathways. Mol Pharmacol 69(3):941–949PubMedGoogle Scholar
  71. Katsuma S, Hada Y et al (2002) Signalling mechanisms in sphingosine 1-phosphate-promoted mesangial cell proliferation. Genes Cells 7(12):1217–1230PubMedCrossRefGoogle Scholar
  72. Kawahara A, Nishi T et al (2009) The sphingolipid transporter spns2 functions in migration of zebrafish myocardial precursors. Science 323(5913):524–527PubMedCrossRefGoogle Scholar
  73. Kawamori T, Osta W et al (2006) Sphingosine kinase 1 is up-regulated in colon carcinogenesis. FASEB J 20(2):386–388PubMedGoogle Scholar
  74. Kawamori T, Kaneshiro T et al (2009) Role for sphingosine kinase 1 in colon carcinogenesis. FASEB J 23(2):405–414PubMedCrossRefGoogle Scholar
  75. Kobayashi N, Yamaguchi A et al (2009) Characterization of the ATP-dependent sphingosine 1-phosphate transporter in rat erythrocytes. J Biol Chem 284(32):21192–21200PubMedCrossRefGoogle Scholar
  76. Kohama T, Olivera A et al (1998) Molecular cloning and functional characterization of murine sphingosine kinase. J Biol Chem 273(37):23722–23728PubMedCrossRefGoogle Scholar
  77. Kono Y, Nishiuma T et al (2007) Sphingosine kinase 1 regulates differentiation of human and mouse lung fibroblasts mediated by TGF-beta1. Am J Respir Cell Mol Biol 37(4):395–404PubMedCrossRefGoogle Scholar
  78. Krieg J, Hunter T (1992) Identification of the two major epidermal growth factor-induced tyrosine phosphorylation sites in the microvillar core protein ezrin. J Biol Chem 267(27):19258–19265PubMedGoogle Scholar
  79. Kusner DJ, Thompson CR et al (2007) The localization and activity of sphingosine kinase 1 are coordinately regulated with actin cytoskeletal dynamics in macrophages. J Biol Chem 282(32): 23147–23162PubMedCrossRefGoogle Scholar
  80. Lacana E, Maceyka M et al (2002) Cloning and characterization of a protein kinase A anchoring protein (AKAP)-related protein that interacts with and regulates sphingosine kinase 1 activity. J Biol Chem 277(36):32947–32953PubMedCrossRefGoogle Scholar
  81. Lamour NF, Chalfant CE (2005) Ceramide-1-phosphate: the "missing" link in eicosanoid biosynthesis and inflammation. Mol Interv 5(6):358–367PubMedCrossRefGoogle Scholar
  82. Lanterman MM, Saba JD (1998) Characterization of sphingosine kinase (SK) activity in Saccharomyces cerevisiae and isolation of SK-deficient mutants. Biochem J 332(Pt 2):525–531PubMedGoogle Scholar
  83. Leclercq TM, Moretti PA et al (2008) Eukaryotic elongation factor 1A interacts with sphingosine kinase and directly enhances its catalytic activity. J Biol Chem 283(15):9606–9614PubMedCrossRefGoogle Scholar
  84. Leclercq TM, Moretti PA et al (2011) Guanine nucleotides regulate sphingosine kinase 1 activation by eukaryotic elongation factor 1A and provide a mechanism for eEF1A-associated oncogenesis. Oncogene 30(3):372–378PubMedCrossRefGoogle Scholar
  85. Li QF, Wu CT et al (2007) Activation of sphingosine kinase mediates suppressive effect of interleukin-6 on human multiple myeloma cell apoptosis. Br J Haematol 138(5):632–639PubMedCrossRefGoogle Scholar
  86. Lim KG, Sun C et al (2011a) (R)-FTY720 methyl ether is a specific sphingosine kinase 2 inhibitor: effect on sphingosine kinase 2 expression in HEK 293 cells and actin rearrangement and survival of MCF-7 breast cancer cells. Cell Signal 23(10):1590–1595PubMedCrossRefGoogle Scholar
  87. Lim KG, Tonelli F et al (2011b) FTY720 analogues as sphingosine kinase 1 inhibitors: enzyme inhibition kinetics, allosterism, proteasomal degradation, and actin rearrangement in MCF-7 breast cancer cells. J Biol Chem 286(21):18633–18640PubMedCrossRefGoogle Scholar
  88. Lin H, Baby N et al (2011) Expression of sphingosine kinase 1 in amoeboid microglial cells in the corpus callosum of postnatal rats. J Neuroinflammation 8:13PubMedCrossRefGoogle Scholar
  89. Liu H, Toman RE et al (2003) Sphingosine kinase type 2 is a putative BH3-only protein that induces apoptosis. J Biol Chem 278(41):40330–40336PubMedCrossRefGoogle Scholar
  90. Liu X, Guo XZ et al (2011) KAI1 inhibits HGF-induced invasion of pancreatic cancer by sphingosine kinase activity. Hepatobiliary Pancreat Dis Int 10(2):201–208PubMedCrossRefGoogle Scholar
  91. Long JS, Edwards J et al (2010) Sphingosine kinase 1 induces tolerance to human epidermal growth factor receptor 2 and prevents formation of a migratory phenotype in response to sphingosine 1-phosphate in estrogen receptor-positive breast cancer cells. Mol Cell Biol 30(15):3827–3841PubMedCrossRefGoogle Scholar
  92. Loveridge C, Tonelli F et al (2010) The sphingosine kinase 1 inhibitor 2-(p-hydroxyanilino)-4-(p-chlorophenyl)thiazole induces proteasomal degradation of sphingosine kinase 1 in mammalian cells. J Biol Chem 285(50):38841–38852PubMedCrossRefGoogle Scholar
  93. Maceyka M, Nava VE et al (2004) Aminoacylase 1 is a sphingosine kinase 1-interacting protein. FEBS Lett 568(1–3):30–34PubMedCrossRefGoogle Scholar
  94. Maceyka M, Sankala H et al (2005) SphK1 and SphK2, sphingosine kinase isoenzymes with opposing functions in sphingolipid metabolism. J Biol Chem 280(44):37118–37129PubMedCrossRefGoogle Scholar
  95. Maceyka M, Alvarez SE et al (2008) Filamin A links sphingosine kinase 1 and sphingosine-1-phosphate receptor 1 at lamellipodia to orchestrate cell migration. Mol Cell Biol 28(18): 5687–5697PubMedCrossRefGoogle Scholar
  96. MacKinnon AC, Buckley A et al (2002) Sphingosine kinase: a point of convergence in the action of diverse neutrophil priming agents. J Immunol 169(11):6394–6400PubMedGoogle Scholar
  97. Mao H, Lebrun DG et al (2012) Deregulated signaling pathways in glioblastoma multiforme: molecular mechanisms and therapeutic targets. Cancer Invest 30(1):48–56PubMedCrossRefGoogle Scholar
  98. Martin JL, Lin MZ et al (2009) Potentiation of growth factor signaling by insulin-like growth factor-binding protein-3 in breast epithelial cells requires sphingosine kinase activity. J Biol Chem 284(38):25542–25552PubMedCrossRefGoogle Scholar
  99. Melendez AJ (2008) Sphingosine kinase signalling in immune cells: potential as novel therapeutic targets. Biochim Biophys Acta 1784(1):66–75PubMedCrossRefGoogle Scholar
  100. Meng H, Yuan Y et al (2011) Loss of Sphingosine kinase 1/S1P signaling impairs cell growth and survival of neurons and progenitor cells in the developing sensory ganglia. PLoS One 6(11):e27150PubMedCrossRefGoogle Scholar
  101. Merrill AH Jr (2011) Sphingolipid and glycosphingolipid metabolic pathways in the era of sphingolipidomics. Chem Rev 111(10):6387–6422PubMedCrossRefGoogle Scholar
  102. Meyer zu Heringdorf D, Lass H et al (1999) Role of sphingosine kinase in Ca(2+) signalling by epidermal growth factor receptor. FEBS Lett 461(3):217–222PubMedCrossRefGoogle Scholar
  103. Michaud J, Kohno M et al (2006) Normal acute and chronic inflammatory responses in sphingosine kinase 1 knockout mice. FEBS Lett 580(19):4607–4612PubMedCrossRefGoogle Scholar
  104. Mizugishi K, Yamashita T et al (2005) Essential role for sphingosine kinases in neural and vascular development. Mol Cell Biol 25(24):11113–11121PubMedCrossRefGoogle Scholar
  105. Mullen TD, Hannun YA et al (2012) Ceramide synthases at the centre of sphingolipid metabolism and biology. Biochem J 441(3):789–802PubMedCrossRefGoogle Scholar
  106. Muller G, Ayoub M et al (1995) PKC zeta is a molecular switch in signal transduction of TNF-alpha, bifunctionally regulated by ceramide and arachidonic acid. EMBO J 14(9):1961–1969PubMedGoogle Scholar
  107. Niedernberg A, Tunaru S et al (2003) Comparative analysis of functional assays for characterization of agonist ligands at G protein-coupled receptors. J Biomol Screen 8(5):500–510PubMedCrossRefGoogle Scholar
  108. Niessen F, Schaffner F et al (2008) Dendritic cell PAR1–P3 signalling couples coagulation and inflammation. Nature 452(7187):654–658PubMedCrossRefGoogle Scholar
  109. Nieuwenhuis B, Luth A et al (2010) Dexamethasone protects human fibroblasts from apoptosis via an S1P3-receptor subtype dependent activation of PKB/Akt and Bcl XL. Pharm Res 61(5): 449–459CrossRefGoogle Scholar
  110. Nincheri P, Bernacchioni C et al (2010) Sphingosine kinase-1/S1P1 signalling axis negatively regulates mitogenic response elicited by PDGF in mouse myoblasts. Cell Signal 22(11): 1688–1699PubMedCrossRefGoogle Scholar
  111. Nishiuma T, Nishimura Y et al (2008) Inhalation of sphingosine kinase inhibitor attenuates airway inflammation in asthmatic mouse model. Am J Physiol Lung Cell Mol Physiol 294(6):L1085–L1093PubMedCrossRefGoogle Scholar
  112. Okada T, Ding G et al (2005) Involvement of N-terminal-extended form of sphingosine kinase 2 in serum-dependent regulation of cell proliferation and apoptosis. J Biol Chem 280(43): 36318–36325PubMedCrossRefGoogle Scholar
  113. Okada T, Kajimoto T et al (2009) Sphingosine kinase/sphingosine 1-phosphate signalling in central nervous system. Cell Signal 21(1):7–13PubMedCrossRefGoogle Scholar
  114. Olivera A, Spiegel S (1993) Sphingosine-1-phosphate as second messenger in cell proliferation induced by PDGF and FCS mitogens. Nature 365(6446):557–560PubMedCrossRefGoogle Scholar
  115. Olivera A, Rosenfeldt HM et al (2003) Sphingosine kinase type 1 induces G12/13-mediated stress fiber formation, yet promotes growth and survival independent of G protein-coupled receptors. J Biol Chem 278(47):46452–46460PubMedCrossRefGoogle Scholar
  116. Olivera A, Urtz N et al (2006) IgE-dependent activation of sphingosine kinases 1 and 2 and secretion of sphingosine 1-phosphate requires Fyn kinase and contributes to mast cell responses. J Biol Chem 281(5):2515–2525PubMedCrossRefGoogle Scholar
  117. Paugh BS, Paugh SW et al (2008) EGF regulates plasminogen activator inhibitor-1 (PAI-1) by a pathway involving c-Src, PKCdelta, and sphingosine kinase 1 in glioblastoma cells. FASEB J 22(2):455–465PubMedCrossRefGoogle Scholar
  118. Pchejetski D, Kunduzova O et al (2007) Oxidative stress-dependent sphingosine kinase-1 inhibition mediates monoamine oxidase A-associated cardiac cell apoptosis. Circ Res 100(1):41–49PubMedCrossRefGoogle Scholar
  119. Pettus BJ, Bielawski J et al (2003) The sphingosine kinase 1/sphingosine-1-phosphate pathway mediates COX-2 induction and PGE2 production in response to TNF-alpha. FASEB J 17(11): 1411–1421PubMedCrossRefGoogle Scholar
  120. Pitman MR, Barr RK et al (2011) A critical role for the protein phosphatase 2A B’alpha regulatory subunit in dephosphorylation of sphingosine kinase 1. Int J Biochem Cell Biol 43(3):342–347PubMedCrossRefGoogle Scholar
  121. Pitson SM, D’Andrea RJ et al (2000) Human sphingosine kinase: purification, molecular cloning and characterization of the native and recombinant enzymes. Biochem J 350(Pt 2):429–441PubMedCrossRefGoogle Scholar
  122. Pitson SM, Moretti PA et al (2002) The nucleotide-binding site of human sphingosine kinase 1. J Biol Chem 277(51):49545–49553PubMedCrossRefGoogle Scholar
  123. Pitson SM, Moretti PA et al (2003) Activation of sphingosine kinase 1 by ERK1/2-mediated phosphorylation. EMBO J 22(20):5491–5500PubMedCrossRefGoogle Scholar
  124. Pyne S, Pyne N (2000) Sphingosine 1-phosphate signalling via the endothelial differentiation gene family of G-protein-coupled receptors. Pharmacol Ther 88(2):115–131PubMedCrossRefGoogle Scholar
  125. Pyne NJ, Pyne S (2010) Sphingosine 1-phosphate and cancer. Nat Rev Cancer 10(7):489–503PubMedCrossRefGoogle Scholar
  126. Pyne S, Pyne NJ (2011) Translational aspects of sphingosine 1-phosphate biology. Trends Mol Med 17(8):463–472PubMedCrossRefGoogle Scholar
  127. Pyne S, Lee SC et al (2009) Role of sphingosine kinases and lipid phosphate phosphatases in regulating spatial sphingosine 1-phosphate signalling in health and disease. Cell Signal 21(1): 14–21PubMedCrossRefGoogle Scholar
  128. Radeff-Huang J, Seasholtz TM et al (2007) Tumor necrosis factor-alpha-stimulated cell proliferation is mediated through sphingosine kinase-dependent Akt activation and cyclin D expression. J Biol Chem 282(2):863–870PubMedCrossRefGoogle Scholar
  129. Riccio A (2010) New endogenous regulators of class I histone deacetylases. Sci Signal 3(103):pe1PubMedCrossRefGoogle Scholar
  130. Rius J (1997) A new probability distribution of the triplet from Patterson function arguments V. Acta Crystallogr D Biol Crystallogr 53(Pt 5):535–539PubMedCrossRefGoogle Scholar
  131. Rosenfeldt HM, Hobson JP et al (2001a) EDG-1 links the PDGF receptor to Src and focal adhesion kinase activation leading to lamellipodia formation and cell migration. FASEB J 15(14): 2649–2659PubMedCrossRefGoogle Scholar
  132. Rosenfeldt HM, Hobson JP et al (2001b) The sphingosine-1-phosphate receptor EDG-1 is essential for platelet-derived growth factor-induced cell motility. Biochem Soc Trans 29(Pt 6):836–839PubMedCrossRefGoogle Scholar
  133. Salvado L, Serrano-Marco L et al (2012) Targeting PPARbeta/delta for the treatment of type 2 diabetes mellitus. Expert Opin Ther Targets 16(2):209–223PubMedCrossRefGoogle Scholar
  134. Sarkar S, Maceyka M et al (2005) Sphingosine kinase 1 is required for migration, proliferation and survival of MCF-7 human breast cancer cells. FEBS Lett 579(24):5313–5317PubMedCrossRefGoogle Scholar
  135. Sethu S, Mendez-Corao G et al (2008) Phospholipase D1 plays a key role in TNF-alpha signaling. J Immunol 180(9):6027–6034PubMedGoogle Scholar
  136. Shi Y, Rehman H et al (2012) Sphingosine kinase-2 inhibition improves mitochondrial function and survival after hepatic ischemia-reperfusion. J Hepatol 56(1):137–145PubMedCrossRefGoogle Scholar
  137. Shida D, Fang X et al (2008) Cross-talk between LPA1 and epidermal growth factor receptors mediates up-regulation of sphingosine kinase 1 to promote gastric cancer cell motility and invasion. Cancer Res 68(16):6569–6577PubMedCrossRefGoogle Scholar
  138. Shu X, Wu W et al (2002) Sphingosine kinase mediates vascular endothelial growth factor-induced activation of ras and mitogen-activated protein kinases. Mol Cell Biol 22(22): 7758–7768PubMedCrossRefGoogle Scholar
  139. Silver RM (1996) Scleroderma. Clinical problems. The lungs. Rheum Dis Clin North Am 22(4): 825–840PubMedCrossRefGoogle Scholar
  140. Singh AT, Dharmarajan A et al (2012) Sphingosine-sphingosine-1-phosphate pathway regulates trophoblast differentiation and syncytialization. Reprod Biomed Online 24(2):224–234PubMedCrossRefGoogle Scholar
  141. Siow D, Wattenberg B (2011) The compartmentalization and translocation of the sphingosine kinases: mechanisms and functions in cell signaling and sphingolipid metabolism. Crit Rev Biochem Mol Biol 46(5):365–375PubMedCrossRefGoogle Scholar
  142. Siow DL, Anderson CD et al (2011) Sphingosine kinase localization in the control of sphingolipid metabolism. Adv Enzyme Regul 51(1):229–244PubMedCrossRefGoogle Scholar
  143. Soliven B, Ma L et al (2003) PDGF upregulates delayed rectifier via Src family kinases and sphingosine kinase in oligodendroglial progenitors. Am J Physiol Cell Physiol 284(1):C85–C93PubMedGoogle Scholar
  144. Song JH, Kim M et al (2010) Isoflurane via TGF-beta1 release increases caveolae formation and organizes sphingosine kinase signaling in renal proximal tubules. Am J Physiol Renal Physiol 298(4):F1041–F1050PubMedCrossRefGoogle Scholar
  145. Spiegel S, Milstien S (2003) Sphingosine-1-phosphate: an enigmatic signalling lipid. Nat Rev Mol Cell Biol 4(5):397–407PubMedCrossRefGoogle Scholar
  146. Stahelin RV, Hwang JH et al (2005) The mechanism of membrane targeting of human sphingosine kinase 1. J Biol Chem 280(52):43030–43038PubMedCrossRefGoogle Scholar
  147. Stoffel W (1970) Studies on the biosynthesis and degradation of sphingosine bases. Chem Phys Lipids 5(1):139–158PubMedCrossRefGoogle Scholar
  148. Strub GM, Paillard M et al (2011) Sphingosine-1-phosphate produced by sphingosine kinase 2 in mitochondria interacts with prohibitin 2 to regulate complex IV assembly and respiration. FASEB J 25(2):600–612PubMedCrossRefGoogle Scholar
  149. Sukocheva OA, Wang L et al (2003) Sphingosine kinase transmits estrogen signaling in human breast cancer cells. Mol Endocrinol 17(10):2002–2012PubMedCrossRefGoogle Scholar
  150. Sukocheva O, Wadham C et al (2006) Estrogen transactivates EGFR via the sphingosine 1-phosphate receptor Edg-3: the role of sphingosine kinase-1. J Cell Biol 173(2):301–310PubMedCrossRefGoogle Scholar
  151. Sutherland CM, Moretti PA et al (2006) The calmodulin-binding site of sphingosine kinase and its role in agonist-dependent translocation of sphingosine kinase 1 to the plasma membrane. J Biol Chem 281(17):11693–11701PubMedCrossRefGoogle Scholar
  152. Taha TA, Osta W et al (2004) Down-regulation of sphingosine kinase-1 by DNA damage: dependence on proteases and p53. J Biol Chem 279(19):20546–20554PubMedCrossRefGoogle Scholar
  153. Taha TA, Kitatani K et al (2005) Tumor necrosis factor induces the loss of sphingosine kinase-1 by a cathepsin B-dependent mechanism. J Biol Chem 280(17):17196–17202PubMedCrossRefGoogle Scholar
  154. Taha TA, El-Alwani M et al (2006) Sphingosine kinase-1 is cleaved by cathepsin B in vitro: identification of the initial cleavage sites for the protease. FEBS Lett 580(26):6047–6054PubMedCrossRefGoogle Scholar
  155. Uhlenbrock K, Gassenhuber H et al (2002) Sphingosine 1-phosphate is a ligand of the human gpr3, gpr6 and gpr12 family of constitutively active G protein-coupled receptors. Cell Signal 14(11): 941–953PubMedCrossRefGoogle Scholar
  156. Uhlenbrock K, Huber J et al (2003) Fluid shear stress differentially regulates gpr3, gpr6, and gpr12 expression in human umbilical vein endothelial cells. Cell Physiol Biochem 13(2):75–84PubMedCrossRefGoogle Scholar
  157. van Koppen CJ, Meyer zu Heringdorf D et al (2001) Sphingosine kinase-mediated calcium signaling by muscarinic acetylcholine receptors. Life Sci 68(22–23):2535–2540PubMedCrossRefGoogle Scholar
  158. Venkataraman K, Thangada S et al (2006) Extracellular export of sphingosine kinase-1a contributes to the vascular S1P gradient. Biochem J 397(3):461–471PubMedCrossRefGoogle Scholar
  159. Wadgaonkar R, Patel V et al (2009) Differential regulation of sphingosine kinases 1 and 2 in lung injury. Am J Physiol Lung Cell Mol Physiol 296(4):L603–L613PubMedCrossRefGoogle Scholar
  160. Wang LS, Chow KC et al (2002) Effects of platelet activating factor, butyrate and interleukin-6 on cyclooxygenase-2 expression in human esophageal cancer cells. Scand J Gastroenterol 37(4): 467–475PubMedCrossRefGoogle Scholar
  161. Xia P, Gamble JR et al (1998) Tumor necrosis factor-alpha induces adhesion molecule expression through the sphingosine kinase pathway. PNAS 95(24):14196–14201PubMedCrossRefGoogle Scholar
  162. Xia P, Wang L et al (2002) Sphingosine kinase interacts with TRAF2 and dissects tumor necrosis factor-alpha signaling. J Biol Chem 277(10):7996–8003PubMedCrossRefGoogle Scholar
  163. Yamamoto Y, Olson DM et al (2010) Increased expression of enzymes for sphingosine 1-phosphate turnover and signaling in human decidua during late pregnancy. Biol Reprod 82(3):628–635PubMedCrossRefGoogle Scholar
  164. Yamanaka M, Shegogue D et al (2004) Sphingosine kinase 1 (SPHK1) is induced by transforming growth factor-beta and mediates TIMP-1 up-regulation. J Biol Chem 279(52):53994–54001PubMedCrossRefGoogle Scholar
  165. Yang Z, Costanzo M et al (1993) Tumor necrosis factor activation of the sphingomyelin pathway signals nuclear factor kappa B translocation in intact HL-60 cells. J Biol Chem 268(27): 20520–20523PubMedGoogle Scholar
  166. Yokota S, Taniguchi Y et al (2004) Asp177 in C4 domain of mouse sphingosine kinase 1a is important for the sphingosine recognition. FEBS Lett 578(1–2):106–110PubMedCrossRefGoogle Scholar
  167. Yu H, Shao Y et al (2012) Acetylation of sphingosine kinase 1 regulates cell growth and cell-cycle progression. Biochem Biophys Res Commun 417(4):1242–1247PubMedCrossRefGoogle Scholar
  168. Zebol JR, Hewitt NM et al (2009) The CCT/TRiC chaperonin is required for maturation of sphingosine kinase 1. Int J Biochem Cell Biol 41(4):822–827PubMedCrossRefGoogle Scholar
  169. Zhu HY, Da WM (2007) Regulation of immunity by sphingosine 1-phosphate and its G protein-coupled receptors–review. J Exp Hematol 5(6):1317–1324Google Scholar

Copyright information

© Springer-Verlag Wien 2013

Authors and Affiliations

  1. 1.The Department of Molecular and Cellular Biology and PathobiologyThe Medical University of South CarolinaCharlestonUSA
  2. 2.The Department of MedicineHealth Science Center, Stony Brook UniversityStony BrookUSA
  3. 3.The Northport VA Medical CenterNorthportUSA

Personalised recommendations