Robotically Fabricated Wood Plate Morphologies

Robotic prefabrication of a biomimetic, geometrically differentiated, lightweight, finger joint timber plate structure
  • Tobias Schwinn
  • Oliver David Krieg
  • Achim Menges


Due to their relative affordability and ease of use industrial manipulators aka robots have become increasingly common in the field of architectural experimentation and research. Specifically for timber construction, their higher degrees of kinematic freedom and fabricational flexibility, compared to established and process-specific computer numerically controlled (CNC) wood working machines, allow for new design and fabrication strategies or else the reinterpretation and re-appropriation of existing techniques — both of which offer the potential for novel architectural systems. In the case study presented here an investigation into the transfer of morphological principles of a biological role model (Clypeasteroida) is initiated by the robotic implementation of a newly developed finger-joint fabrication process. In the subsequent biomimetic design process the principles are translated into a generative computational design tool incorporating structural constraints as well as those of robotic fabrication leading to a fullscale built prototype.


robotic fabrication biomimetics parametric design timber construction finger joint 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bagger A 2010, Plate shell structures of glass. Studies leading to guidelines for structural design. Technical University of Denmark.Google Scholar
  2. Bechthold M 2010, “The Return of the Future: A Second Go at Robotic Construction”, Architectural Design, 80(4), pp. 116–121.CrossRefGoogle Scholar
  3. Bonwetsch T, Gramazio F and Kohler M 2007, “Digitally Fabricating Non-standardised Brick Walls”, ManuBuild Conference Proceedings, Rotterdam, pp. 191–196.Google Scholar
  4. Brell-Çokcan S, Reis M, Schmiedhofer H, and Braumann J 2009, “Digital Design to Digital Production” Proceedings of the 27th eCAADe Conference, Istanbul, Turkey, pp. 323–329.Google Scholar
  5. Brell-Çokcan S and Braumann J 2010, “A New Parametric Design Tool for Robot Milling”, Proceedings of the 30th ACADIA Conference 2010, New York, USA, pp. 357–363.Google Scholar
  6. Brell-Çokcan S and Braumann J 2011, “Parametric Robot Control”, Proceedings of the 31st ACADIA Conference 2011, Calgary/Banff, Canada, pp. 242–251.Google Scholar
  7. Hoadley RB 2000, Understanding wood: A craftsman’s guide to wood technology, Taunton Press, Newtown.Google Scholar
  8. Kirby I 1999, The Complete Dovetail: Handmade Furniture’s Signature Joint, Cambium Press, Plano.Google Scholar
  9. Knippers, J and Speck, T 2012, “Design and construction principles in nature and architecture”, Bioinspiration & Biomimetics, vol. 7, no. 1.Google Scholar
  10. Krieg OD, Dierichs K, Reichert S, Schwinn T and Menges A 2011, “Performative Architectural Morphology”, Proceedings of the 29th eCAADe Conference 2011, Ljubljana, Slovenia, pp. 573–580.Google Scholar
  11. La Magna R, Waimer F and Knippers J 2012, “Natureinspired generation sheme for shell structures”, IASS Conference 2012 Proceedings.Google Scholar
  12. Menges A and Schwinn T 2012, “Manufacturing Reciprocities”, Architectural Design, 82(2), pp. 118–125.CrossRefGoogle Scholar
  13. Menges A 2011, “Integrative Design Computation: Integrating Material Behaviour and Robotic Manufacturing Processes in Computational Design for Performative Wood Constructions”, Proceedings of the 31th ACADIA Conference 2011, Calgary/Banff, Canada, pp. 72–81.Google Scholar
  14. Moro JL, Rottner M, Alihodzic B, and Weißbach M 2009, Holzprodukte, Baukonstruktion — vom Prinzip zum Detail: Band 1 Grundlagen, Spinger, Berlin, Heidelberg, pp. 267–284.CrossRefGoogle Scholar
  15. Nachtigall W 2004, Bau-Bionik: Natur, Analogien, Technik, Springer-Verlag, Berlin.Google Scholar
  16. NASA 1984, MOD-5A Wind Turbine Generator Program Design Report, General Electric Company, U.S. Department of Energy, Washington, D.C.Google Scholar
  17. Spera A, Esgar J, Gougeon M and Zuteck M 1990, Structural Properties of Laminated Douglas Fir/ Epoxy Composite Material. U.S. Department of Energy, Washington, D.C.CrossRefGoogle Scholar
  18. Scheer D, Feil A and Zerwer C 2006, Nachhaltigkeit im Bereich Bauen und Wohnen — ökologische Bewertung der Bauholz-Kette, Institut für ökologische Wirtschaftsforschung, Heidelberg.Google Scholar
  19. Schindler C and Scheurer F 2007, „Architektonische Anwendungen des fünfachsigen Flankenfräsens“, Milling Technology in Architecture, Art and Design., 16.7.2012.Google Scholar
  20. Schindler C 2007, “Information-Tool-Technology: Contemporary digital fabrication as part of a continuous development of process technology as illustrated with the example of timber construction”, Proceedings of the 27th ACADIA Conference 2007, Halifax, Canada.Google Scholar
  21. Schindler C 2009, Ein architektonisches Periodisierungsmodell anhand fertigungstechnischer Kriterien, dargestellt am Beispiel des Holzbaus, Eidgenössische Technische Hochschule, Zürich.Google Scholar
  22. Schindler C 2010, “Die Standards des Nonstandards”, GAM — Graz Architecture Magazine 06, Graz, pp. 181–193.Google Scholar
  23. Schwinn T, Krieg O, Mihaylov B, Reichert S and Menges A 2012, “Machinic Morphospaces: Biomimetic Design Strategies for the Computational Exploration of Robot Constraint Spaces for Wood Fabrication”, Proceedings of 32nd ACADIA Conference 2012, San Francisco, USA.Google Scholar
  24. Wester, T 2002, “Nature Teaching Structures”, International Journal of Space Structures, 17(2), pp. 135–147.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag/Wien 2013

Authors and Affiliations

  • Tobias Schwinn
  • Oliver David Krieg
  • Achim Menges

There are no affiliations available

Personalised recommendations