Advertisement

Cancer Stem Cells and Glioblastoma

  • Petra Hamerlik
Chapter

Abstract

Gliomas are tumors of astroglial origin and the World health Organization (WHO) classifies them based on histological criteria into four grades of ascending malignancy. Glioblastoma multiforme (GBM, WHO grade IV) is among the most lethal of human cancers with conventional therapy offering only palliation. GBM accounts for the most frequent type of primary brain tumors in Europe and the USA, comprising more than a half of all gliomas, with a 5-year survival of patients of no more than 5 %. Despite concerted efforts and advances in currently available therapies, the expected survival of GBM patients remains dismal. Highly infiltrative character renders complete surgical resection impossible and together with notoriously known radio- and chemoresistance accounts for high recurrence rates and mortality of nearly 95 %. Traditionally, the approach to cancer treatment has been to eradicate all of the cancerous cells to achieve “cure” and was based on the idea that the vast majority of cells have tumorigenic potential. One reason for the lack of clinical advances is the lack of understanding of the GBM biology in general and the cellular origin of this disease in particular. The cancer stem cell hypothesis postulates that cancers contain a subset of highly aggressive cells that propagate and maintain the tumors through unlimited self-renewal and potent tumorigenicity. Within GBM, a distinct population of CD133+ cells has been documented to display stem cell properties in vitro, in particular self-renewal, unlimited proliferative potential, capacity for multi-lineage differentiation, and recapitulation of patient’s phenotype upon orthotopic implantation in immunocompromized host. The investigation and study of cancer stem cells received enormous attention over the past decade, yet it’s relevance to therapeutic resistance remains controversial. Although the cancer stem cell hypothesis may have multiple implications in therapeutic management of glioblastoma, as well as other brain tumor malignancies, caution must be exercised as targeting a rare population of tumorigenic cells without consideration of the largely heterogeneous tumor bulk comprised of proliferative cells may not change overall patient survival.

Keywords

Heterogeneity Self-renewal Therapeutic resistance GBM Microenvironment 

Abbreviations

ABC

ATP-binding cassette

bFGF

Basic fibroblast growth factor

Bmi1

B lymphoma Mo-MLV insertion region 1 homolog

CSC

Cancer stem cell

DDR

DNA damage response

EGF

Epidermal growth factor

GBM

Glioblastoma multiforme

IR

Ionizing radiation

NSC

Neural stem cell

PTC1

Patched-1

RTK

Receptor tyrosine kinase

Shh

Sonic hedgehog

Smo

Smoothened

TCGA

The cancer genome atlas

TIC

Tissue-initiating cell

TMZ

Temozolomide

VEGF

Vascular endothelial cell growth factor

WHO

World Health Organization

Notes

Acknowledgments

The Danish Council for Independent Research/Medical Sciences ID4765/11-105457; Czech Ministry of Health (NT11065-5); Danish Cancer Research Society; NovoNordisk Foundation; Lundbeckfonden.

References

  1. Acquati S, Greco A, Licastro D, Bhagat H, Ceric D, Rossini Z, Grieve J, Shaked-Rabi M, Henriquez NV, Brandner S et al (2013) Epigenetic regulation of survivin by Bmi1 is cell type specific during corticogenesis and in gliomas. Stem Cells 31:190–202PubMedGoogle Scholar
  2. Altman J, Chorover SL (1963) Autoradiographic investigation of the distribution and utilization of intraventricularly injected adenine-3h, uracil-3h and thymidine-3h in the brains of cats. J Physiol 169:770–779PubMedCentralPubMedGoogle Scholar
  3. Altman J, Das GD (1965) Autoradiographic and histological evidence of postnatal hippocampal neurogenesis in rats. J Comp Neurol 124:319–335PubMedGoogle Scholar
  4. Angelastro JM, Lame MW (2010) Overexpression of CD133 promotes drug resistance in C6 glioma cells. Mol Cancer Res 8:1105–1115PubMedCentralPubMedGoogle Scholar
  5. Anido J, Saez-Borderias A, Gonzalez-Junca A, Rodon L, Folch G, Carmona MA, Prieto-Sanchez RM, Barba I, Martinez-Saez E, Prudkin L et al (2010) TGF-beta receptor inhibitors target the CD44(high)/Id1(high) glioma-initiating cell population in human glioblastoma. Cancer Cell 18:655–668PubMedGoogle Scholar
  6. Bao S, Wu Q, Sathornsumetee S, Hao Y, Li Z, Hjelmeland AB, Shi Q, McLendon RE, Bigner DD, Rich JN (2006) Stem cell-like glioma cells promote tumor angiogenesis through vascular endothelial growth factor. Cancer Res 66:7843–7848PubMedGoogle Scholar
  7. Bar EE (2011) Glioblastoma, cancer stem cells and hypoxia. Brain Pathol 21:119–129PubMedGoogle Scholar
  8. Barraud P, Stott S, Mollgard K, Parmar M, Bjorklund A (2007) In vitro characterization of a human neural progenitor cell coexpressing SSEA4 and CD133. J Neurosci Res 85:250–259PubMedGoogle Scholar
  9. Beier D, Hau P, Proescholdt M, Lohmeier A, Wischhusen J, Oefner PJ, Aigner L, Brawanski A, Bogdahn U, Beier CP (2007) CD133(+) and CD133(−) glioblastoma-derived cancer stem cells show differential growth characteristics and molecular profiles. Cancer Res 67:4010–4015PubMedGoogle Scholar
  10. Beier D, Schulz JB, Beier CP (2011) Chemoresistance of glioblastoma cancer stem cells–much more complex than expected. Mol Cancer 10:128PubMedCentralPubMedGoogle Scholar
  11. Beier D, Wischhusen J, Dietmaier W, Hau P, Proescholdt M, Brawanski A, Bogdahn U, Beier CP (2008) CD133 expression and cancer stem cells predict prognosis in high-grade oligodendroglial tumors. Brain Pathol 18:370–377PubMedGoogle Scholar
  12. Bhat KP, Balasubramaniyan V, Vaillant B, Ezhilarasan R, Hummelink K, Hollingsworth F, Wani K, Heathcock L, James JD, Goodman LD et al (2013) Mesenchymal differentiation mediated by NF-kappaB promotes radiation resistance in glioblastoma. Cancer Cell 24:331–346PubMedGoogle Scholar
  13. Binello E, Germano IM (2011) Targeting glioma stem cells: a novel framework for brain tumors. Cancer Sci 102:1958–1966PubMedCentralPubMedGoogle Scholar
  14. Blanpain C, Fuchs E (2006) Epidermal stem cells of the skin. Annu Rev Cell Dev Biol 22:339–373PubMedCentralPubMedGoogle Scholar
  15. Bleau AM, Hambardzumyan D, Ozawa T, Fomchenko EI, Huse JT, Brennan CW, Holland EC (2009a) PTEN/PI3K/Akt pathway regulates the side population phenotype and ABCG2 activity in glioma tumor stem-like cells. Cell Stem Cell 4:226–235PubMedCentralPubMedGoogle Scholar
  16. Bleau AM, Huse JT, Holland EC (2009b) The ABCG2 resistance network of glioblastoma. Cell Cycle 8:2936–2944PubMedGoogle Scholar
  17. Bourguignon LY, Peyrollier K, Xia W, Gilad E (2008) Hyaluronan-CD44 interaction activates stem cell marker Nanog, Stat-3-mediated MDR1 gene expression, and ankyrin-regulated multidrug efflux in breast and ovarian tumor cells. J Biol Chem 283:17635–17651PubMedCentralPubMedGoogle Scholar
  18. Bruce WR, Van Der Gaag H (1963) A quantitative assay for the number of murine lymphoma cells capable of proliferation in vivo. Nature 199:79–80PubMedGoogle Scholar
  19. Brunschwig A, Southam CM, Levin AG (1965) Host resistance to cancer. Clinical experiments by homotransplants, autotransplants and admixture of autologous leucocytes. Ann Surgery 162:416–425Google Scholar
  20. Calabrese C, Poppleton H, Kocak M, Hogg TL, Fuller C, Hamner B, Oh EY, Gaber MW, Finklestein D, Allen M et al (2007) A perivascular niche for brain tumor stem cells. Cancer Cell 11:69–82PubMedGoogle Scholar
  21. Calvi LM, Adams GB, Weibrecht KW, Weber JM, Olson DP, Knight MC, Martin RP, Schipani E, Divieti P, Bringhurst FR et al (2003) Osteoblastic cells regulate the haematopoietic stem cell niche. Nature 425:841–846PubMedGoogle Scholar
  22. Capper D, Gaiser T, Hartmann C, Habel A, Mueller W, Herold-Mende C, von Deimling A, Siegelin MD (2009) Stem-cell-like glioma cells are resistant to TRAIL/Apo2L and exhibit down-regulation of caspase-8 by promoter methylation. Acta Neuropathol 117:445–456PubMedGoogle Scholar
  23. Chen MS, Woodward WA, Behbod F, Peddibhotla S, Alfaro MP, Buchholz TA, Rosen JM (2007) Wnt/beta-catenin mediates radiation resistance of Sca1+ progenitors in an immortalized mammary gland cell line. J Cell Sci 120:468–477PubMedGoogle Scholar
  24. Chen R, Nishimura MC, Bumbaca SM, Kharbanda S, Forrest WF, Kasman IM, Greve JM, Soriano RH, Gilmour LL, Rivers CS et al (2010) A hierarchy of self-renewing tumor-initiating cell types in glioblastoma. Cancer Cell 17:362–375PubMedGoogle Scholar
  25. Cheng L, Bao S, Rich JN (2010) Potential therapeutic implications of cancer stem cells in glioblastoma. Biochem Pharmacol 80:654–665PubMedCentralPubMedGoogle Scholar
  26. Cheng L, Huang Z, Zhou W, Wu Q, Donnola S, Liu JK, Fang X, Sloan AE, Mao Y, Lathia JD et al (2013) Glioblastoma stem cells generate vascular pericytes to support vessel function and tumor growth. Cell 153:139–152PubMedCentralPubMedGoogle Scholar
  27. Cheng L, Wu Q, Huang Z, Guryanova OA, Huang Q, Shou W, Rich JN, Bao S (2011) L1CAM regulates DNA damage checkpoint response of glioblastoma stem cells through NBS1. EMBO J 30:800–813PubMedCentralPubMedGoogle Scholar
  28. Clement V, Sanchez P, de Tribolet N, Radovanovic I, Ruiz i Altaba A (2007) HEDGEHOG-GLI1 signaling regulates human glioma growth, cancer stem cell self-renewal, and tumorigenicity. Curr Biol 17:165–172PubMedCentralPubMedGoogle Scholar
  29. Dietrich J, Diamond EL, Kesari S (2010) Glioma stem cell signaling: therapeutic opportunities and challenges. Expert Rev Anticancer Ther 10:709–722PubMedGoogle Scholar
  30. Dietrich J, Imitola J, Kesari S (2008) Mechanisms of disease: the role of stem cells in the biology and treatment of gliomas. Nat Clin Pract Oncol 5:393–404PubMedGoogle Scholar
  31. Dimou L, Simon C, Kirchhoff F, Takebayashi H, Gotz M (2008) Progeny of Olig2-expressing progenitors in the gray and white matter of the adult mouse cerebral cortex. J Neurosci 28:10434–10442PubMedGoogle Scholar
  32. Doetsch F, Garcia-Verdugo JM, Alvarez-Buylla A (1997) Cellular composition and three-dimensional organization of the subventricular germinal zone in the adult mammalian brain. J Neurosci 17:5046–5061PubMedGoogle Scholar
  33. Doetsch F, Garcia-Verdugo JM, Alvarez-Buylla A (1999) Regeneration of a germinal layer in the adult mammalian brain. Proc Natl Acad Sci U S A 96:11619–11624PubMedCentralPubMedGoogle Scholar
  34. Evans SM, Jenkins KW, Jenkins WT, Dilling T, Judy KD, Schrlau A, Judkins A, Hahn SM, Koch CJ (2008) Imaging and analytical methods as applied to the evaluation of vasculature and hypoxia in human brain tumors. Radiat Res 170:677–690PubMedCentralPubMedGoogle Scholar
  35. Evans SM, Judy KD, Dunphy I, Jenkins WT, Nelson PT, Collins R, Wileyto EP, Jenkins K, Hahn SM, Stevens CW et al (2004) Comparative measurements of hypoxia in human brain tumors using needle electrodes and EF5 binding. Cancer Res 64:1886–1892PubMedGoogle Scholar
  36. Eyler CE, Foo WC, LaFiura KM, McLendon RE, Hjelmeland AB, Rich JN (2008) Brain cancer stem cells display preferential sensitivity to Akt inhibition. Stem Cells 26:3027–3036PubMedCentralPubMedGoogle Scholar
  37. Eyler CE, Rich JN (2008) Survival of the fittest: cancer stem cells in therapeutic resistance and angiogenesis. J Clin Oncol 26:2839–2845PubMedCentralPubMedGoogle Scholar
  38. Facchino S, Abdouh M, Chatoo W, Bernier G (2010) BMI1 confers radioresistance to normal and cancerous neural stem cells through recruitment of the DNA damage response machinery. J Neurosci 30:10096–10111PubMedGoogle Scholar
  39. Fan X, Matsui W, Khaki L, Stearns D, Chun J, Li YM, Eberhart CG (2006) Notch pathway inhibition depletes stem-like cells and blocks engraftment in embryonal brain tumors. Cancer Res 66:7445–7452PubMedGoogle Scholar
  40. Fargeas CA, Corbeil D, Huttner WB (2003) AC133 antigen, CD133, prominin-1, prominin-2, etc.: prominin family gene products in need of a rational nomenclature. Stem Cells 21:506–508PubMedGoogle Scholar
  41. Folkins C, Shaked Y, Man S, Tang T, Lee CR, Zhu Z, Hoffman RM, Kerbel RS (2009) Glioma tumor stem-like cells promote tumor angiogenesis and vasculogenesis via vascular endothelial growth factor and stromal-derived factor 1. Cancer Res 69:7243–7251PubMedCentralPubMedGoogle Scholar
  42. Fuchs E, Tumbar T, Guasch G (2004) Socializing with the neighbors: stem cells and their niche. Cell 116:769–778PubMedGoogle Scholar
  43. Fukuda S, Kato F, Tozuka Y, Yamaguchi M, Miyamoto Y, Hisatsune T (2003) Two distinct subpopulations of nestin-positive cells in adult mouse dentate gyrus. J Neurosci 23:9357–9366PubMedGoogle Scholar
  44. Gage FH (2000) Mammalian neural stem cells. Science 287:1433–1438PubMedGoogle Scholar
  45. Gallia GL, Tyler BM, Hann CL, Siu IM, Giranda VL, Vescovi AL, Brem H, Riggins GJ (2009) Inhibition of Akt inhibits growth of glioblastoma and glioblastoma stem-like cells. Mol Cancer Ther 8:386–393PubMedGoogle Scholar
  46. Gilbertson RJ, Rich JN (2007) Making a tumour’s bed: glioblastoma stem cells and the vascular niche. Nat Rev Cancer 7:733–736PubMedGoogle Scholar
  47. Guo D, Ye J, Dai J, Li L, Chen F, Ma D, Ji C (2009) Notch-1 regulates Akt signaling pathway and the expression of cell cycle regulatory proteins cyclin D1, CDK2 and p21 in T-ALL cell lines. Leuk Res 33:678–685PubMedGoogle Scholar
  48. Hambardzumyan D, Becher OJ, Holland EC (2008) Cancer stem cells and survival pathways. Cell Cycle 7:1371–1378PubMedGoogle Scholar
  49. Hamerlik P, Lathia JD, Rasmussen R, Wu Q, Bartkova J, Lee M, Moudry P, Bartek J Jr, Fischer W, Lukas J et al (2012) Autocrine VEGF-VEGFR2-Neuropilin-1 signaling promotes glioma stem-like cell viability and tumor growth. J Exp Med 209:507–520PubMedCentralPubMedGoogle Scholar
  50. Heddleston JM, Li Z, McLendon RE, Hjelmeland AB, Rich JN (2009) The hypoxic microenvironment maintains glioblastoma stem cells and promotes reprogramming towards a cancer stem cell phenotype. Cell Cycle 8:3274–3284PubMedCentralPubMedGoogle Scholar
  51. Hermansen SK, Christensen KG, Jensen SS, Kristensen BW (2011) Inconsistent immunohistochemical expression patterns of four different CD133 antibody clones in glioblastoma. J Histochem Cytochem 59:391–407PubMedCentralPubMedGoogle Scholar
  52. Huse JT, Phillips HS, Brennan CW (2011) Molecular subclassification of diffuse gliomas: seeing order in the chaos. Glia 59:1190–1199PubMedGoogle Scholar
  53. Ignatova TN, Kukekov VG, Laywell ED, Suslov ON, Vrionis FD, Steindler DA (2002) Human cortical glial tumors contain neural stem-like cells expressing astroglial and neuronal markers in vitro. Glia 39:193–206PubMedGoogle Scholar
  54. Ikushima H, Todo T, Ino Y, Takahashi M, Saito N, Miyazawa K, Miyazono K (2011) Glioma-initiating cells retain their tumorigenicity through integration of the Sox axis and Oct4 protein. J Biol Chem 286:41434–41441PubMedCentralPubMedGoogle Scholar
  55. Ishimoto T, Oshima H, Oshima M, Kai K, Torii R, Masuko T, Baba H, Saya H, Nagano O (2010) CD44+ slow-cycling tumor cell expansion is triggered by cooperative actions of Wnt and prostaglandin E2 in gastric tumorigenesis. Cancer Sci 101:673–678PubMedGoogle Scholar
  56. Jaksch M, Munera J, Bajpai R, Terskikh A, Oshima RG (2008) Cell cycle-dependent variation of a CD133 epitope in human embryonic stem cell, colon cancer, and melanoma cell lines. Cancer Res 68:7882–7886PubMedCentralPubMedGoogle Scholar
  57. Jellinger K (1978) Glioblastoma multiforme: morphology and biology. Acta Neurochir 42:5–32PubMedGoogle Scholar
  58. Jijiwa M, Demir H, Gupta S, Leung C, Joshi K, Orozco N, Huang T, Yildiz VO, Shibahara I, de Jesus JA et al (2011) CD44v6 regulates growth of brain tumor stem cells partially through the AKT-mediated pathway. PLoS One 6:e24217PubMedCentralPubMedGoogle Scholar
  59. Jin L, Hope KJ, Zhai Q, Smadja-Joffe F, Dick JE (2006) Targeting of CD44 eradicates human acute myeloid leukemic stem cells. Nat Med 12:1167–1174PubMedGoogle Scholar
  60. Joo KM, Kim SY, Jin X, Song SY, Kong DS, Lee JI, Jeon JW, Kim MH, Kang BG, Jung Y et al (2008) Clinical and biological implications of CD133-positive and CD133-negative cells in glioblastomas. Lab Invest 88:808–815PubMedGoogle Scholar
  61. Kalani MY, Cheshier SH, Cord BJ, Bababeygy SR, Vogel H, Weissman IL, Palmer TD, Nusse R (2008) Wnt-mediated self-renewal of neural stem/progenitor cells. Proc Natl Acad Sci U S A 105:16970–16975PubMedCentralPubMedGoogle Scholar
  62. Kim M, Morshead CM (2003) Distinct populations of forebrain neural stem and progenitor cells can be isolated using side-population analysis. J Neurosci 23:10703–10709PubMedGoogle Scholar
  63. Knizetova P, Ehrmann J, Hlobilkova A, Vancova I, Kalita O, Kolar Z, Bartek J (2008) Autocrine regulation of glioblastoma cell cycle progression, viability and radioresistance through the VEGF-VEGFR2 (KDR) interplay. Cell Cycle 7:2553–2561PubMedGoogle Scholar
  64. Lapidot T, Sirard C, Vormoor J, Murdoch B, Hoang T, Caceres-Cortes J, Minden M, Paterson B, Caligiuri MA, Dick JE (1994) A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature 367:645–648PubMedGoogle Scholar
  65. Lee J, Kotliarova S, Kotliarov Y, Li A, Su Q, Donin NM, Pastorino S, Purow BW, Christopher N, Zhang W et al (2006) Tumor stem cells derived from glioblastomas cultured in bFGF and EGF more closely mirror the phenotype and genotype of primary tumors than do serum-cultured cell lines. Cancer Cell 9:391–403PubMedGoogle Scholar
  66. Li F, Tiede B, Massague J, Kang Y (2007a) Beyond tumorigenesis: cancer stem cells in metastasis. Cell Res 17:3–14PubMedGoogle Scholar
  67. Li JL, Sainson RC, Shi W, Leek R, Harrington LS, Preusser M, Biswas S, Turley H, Heikamp E, Hainfellner JA, Harris AL (2007b) Delta-like 4 Notch ligand regulates tumor angiogenesis, improves tumor vascular function, and promotes tumor growth in vivo. Cancer Res 67:11244–11253PubMedGoogle Scholar
  68. Li Z, Bao S, Wu Q, Wang H, Eyler C, Sathornsumetee S, Shi Q, Cao Y, Lathia J, McLendon RE et al (2009a) Hypoxia-inducible factors regulate tumorigenic capacity of glioma stem cells. Cancer Cell 15:501–513PubMedCentralPubMedGoogle Scholar
  69. Li Z, Wang H, Eyler CE, Hjelmeland AB, Rich JN (2009b) Turning cancer stem cells inside out: an exploration of glioma stem cell signaling pathways. J Biol Chem 284:16705–16709PubMedCentralPubMedGoogle Scholar
  70. Ligon KL, Huillard E, Mehta S, Kesari S, Liu H, Alberta JA, Bachoo RM, Kane M, Louis DN, Depinho RA et al (2007) Olig2-regulated lineage-restricted pathway controls replication competence in neural stem cells and malignant glioma. Neuron 53:503–517PubMedCentralPubMedGoogle Scholar
  71. Liu G, Yuan X, Zeng Z, Tunici P, Ng H, Abdulkadir IR, Lu L, Irvin D, Black KL, Yu JS (2006) Analysis of gene expression and chemoresistance of CD133+ cancer stem cells in glioblastoma. Mol Cancer 5:67PubMedCentralPubMedGoogle Scholar
  72. Lottaz C, Beier D, Meyer K, Kumar P, Hermann A, Schwarz J, Junker M, Oefner PJ, Bogdahn U, Wischhusen J et al (2010) Transcriptional profiles of CD133+ and CD133− glioblastoma-derived cancer stem cell lines suggest different cells of origin. Cancer Res 70:2030–2040PubMedGoogle Scholar
  73. Mak AB, Blakely KM, Williams RA, Penttila PA, Shukalyuk AI, Osman KT, Kasimer D, Ketela T, Moffat J (2011) CD133 protein N-glycosylation processing contributes to cell surface recognition of the primitive cell marker AC133 epitope. J Biol Chem 286:41046–41056PubMedCentralPubMedGoogle Scholar
  74. Mao P, Joshi K, Li J, Kim SH, Li P, Santana-Santos L, Luthra S, Chandran UR, Benos PV, Smith L et al (2013) Mesenchymal glioma stem cells are maintained by activated glycolytic metabolism involving aldehyde dehydrogenase 1A3. Proc Natl Acad Sci U S A 110:8644–8649PubMedCentralPubMedGoogle Scholar
  75. Mazumdar J, O’Brien WT, Johnson RS, LaManna JC, Chavez JC, Klein PS, Simon MC (2010) O2 regulates stem cells through Wnt/beta-catenin signalling. Nat Cell Biol 12:1007–1013PubMedCentralPubMedGoogle Scholar
  76. McCord AM, Jamal M, Shankavaram UT, Lang FF, Camphausen K, Tofilon PJ (2009a) Physiologic oxygen concentration enhances the stem-like properties of CD133+ human glioblastoma cells in vitro. Mol Cancer Res 7:489–497PubMedGoogle Scholar
  77. McCord AM, Jamal M, Williams ES, Camphausen K, Tofilon PJ (2009b) CD133+ glioblastoma stem-like cells are radiosensitive with a defective DNA damage response compared with established cell lines. Clin Cancer Res 15:5145–5153PubMedGoogle Scholar
  78. Miraglia S, Godfrey W, Yin AH, Atkins K, Warnke R, Holden JT, Bray RA, Waller EK, Buck DW (1997) Novel five-transmembrane hematopoietic stem cell antigen: isolation characterization, and molecular cloning. Blood 90:5013–21PubMedGoogle Scholar
  79. Noble M, Dietrich J (2002) Intersections between neurobiology and oncology: tumor origin, treatment and repair of treatment-associated damage. Trends Neurosci 25:103–107PubMedGoogle Scholar
  80. Nusse R, Fuerer C, Ching W, Harnish K, Logan C, Zeng A, ten Berge D, Kalani Y (2008) Wnt signaling and stem cell control. Cold Spring Harb Symp Quant Biol 73:59–66PubMedGoogle Scholar
  81. Ohishi K, Varnum-Finney B, Bernstein ID (2002) The notch pathway: modulation of cell fate decisions in hematopoiesis. Int J Hematol 75:449–459PubMedGoogle Scholar
  82. Pardal R, Clarke MF, Morrison SJ (2003) Applying the principles of stem-cell biology to cancer. Nat Rev Cancer 3:895–902PubMedGoogle Scholar
  83. Patrawala L, Calhoun T, Schneider-Broussard R, Zhou J, Claypool K, Tang DG (2005) Side population is enriched in tumorigenic, stem-like cancer cells, whereas ABCG2+ and ABCG2− cancer cells are similarly tumorigenic. Cancer Res 65:6207–6219PubMedGoogle Scholar
  84. Persano L, Rampazzo E, Basso G, Viola G (2013) Glioblastoma cancer stem cells: role of the microenvironment and therapeutic targeting. Biochem Pharmacol 85:612–622PubMedGoogle Scholar
  85. Phillips HS, Kharbanda S, Chen R, Forrest WF, Soriano RH, Wu TD, Misra A, Nigro JM, Colman H, Soroceanu L et al (2006) Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis. Cancer Cell 9:157–173PubMedGoogle Scholar
  86. Pruszak J, Sonntag KC, Aung MH, Sanchez-Pernaute R, Isacson O (2007) Markers and methods for cell sorting of human embryonic stem cell-derived neural cell populations. Stem Cells 25:2257–2268PubMedCentralPubMedGoogle Scholar
  87. Pu P, Zhang Z, Kang C, Jiang R, Jia Z, Wang G, Jiang H (2009) Downregulation of Wnt2 and beta-catenin by siRNA suppresses malignant glioma cell growth. Cancer Gene Ther 16:351–361PubMedGoogle Scholar
  88. Purow BW, Haque RM, Noel MW, Su Q, Burdick MJ, Lee J, Sundaresan T, Pastorino S, Park JK, Mikolaenko I et al (2005) Expression of Notch-1 and its ligands, Delta-like-1 and Jagged-1, is critical for glioma cell survival and proliferation. Cancer Res 65:2353–2363PubMedGoogle Scholar
  89. Quintana E, Shackleton M, Sabel MS, Fullen DR, Johnson TM, Morrison SJ (2008) Efficient tumour formation by single human melanoma cells. Nature 456:593–598PubMedCentralPubMedGoogle Scholar
  90. Radtke F, Raj K (2003) The role of Notch in tumorigenesis: oncogene or tumour suppressor? Nat Rev Cancer 3:756–767PubMedGoogle Scholar
  91. Rahman M, Deleyrolle L, Vedam-Mai V, Azari H, Abd-El-Barr M, Reynolds BA (2011) The cancer stem cell hypothesis: failures and pitfalls. Neurosurgery 68:531–545, discussion 545PubMedGoogle Scholar
  92. Reya T, Morrison SJ, Clarke MF, Weissman IL (2001) Stem cells, cancer, and cancer stem cells. Nature 414:105–111PubMedGoogle Scholar
  93. Ricci-Vitiani L, Pallini R, Biffoni M, Todaro M, Invernici G, Cenci T, Maira G, Parati EA, Stassi G, Larocca LM, De Maria R (2010) Tumour vascularization via endothelial differentiation of glioblastoma stem-like cells. Nature 468:824–828PubMedGoogle Scholar
  94. Rich JN (2008) The implications of the cancer stem cell hypothesis for neuro-oncology and neurology. Future Neurol 3:265–273PubMedCentralPubMedGoogle Scholar
  95. Rich JN, Eyler CE (2008) Cancer stem cells in brain tumor biology. Cold Spring Harb Symp Quant Biol 73:411–420PubMedCentralPubMedGoogle Scholar
  96. Roitbak T, Li L, Cunningham LA (2008) Neural stem/progenitor cells promote endothelial cell morphogenesis and protect endothelial cells against ischemia via HIF-1alpha-regulated VEGF signaling. J Cereb Blood Flow Metab 28:1530–1542PubMedCentralPubMedGoogle Scholar
  97. Ronchini C, Capobianco AJ (2001) Induction of cyclin D1 transcription and CDK2 activity by Notch(ic): implication for cell cycle disruption in transformation by Notch(ic). Mol Cell Biol 21:5925–5934PubMedCentralPubMedGoogle Scholar
  98. Ropolo M, Daga A, Griffero F, Foresta M, Casartelli G, Zunino A, Poggi A, Cappelli E, Zona G, Spaziante R et al (2009) Comparative analysis of DNA repair in stem and nonstem glioma cell cultures. Mol Cancer Res 7:383–392PubMedGoogle Scholar
  99. Sanai N, Alvarez-Buylla A, Berger MS (2005) Neural stem cells and the origin of gliomas. New Engl J Med 353:811–822PubMedGoogle Scholar
  100. Sathornsumetee S, Rich JN (2008) Designer therapies for glioblastoma multiforme. Ann NY Acad Sci 1142:108–132PubMedGoogle Scholar
  101. Schofield R (1978) The relationship between the spleen colony-forming cell and the haemopoietic stem cell. Blood Cells 4:7–25PubMedGoogle Scholar
  102. Schonberg DL, Lubelski D, Miller TE, Rich JN (2013) Brain tumor stem cells: molecular characteristics and their impact on therapy. Mol Aspects Med. doi: 10.1016/j.mam.2013.06.004
  103. Seidel S, Garvalov BK, Wirta V, von Stechow L, Schanzer A, Meletis K, Wolter M, Sommerlad D, Henze AT, Nister M et al (2010) A hypoxic niche regulates glioblastoma stem cells through hypoxia inducible factor 2 alpha. Brain 133:983–995PubMedGoogle Scholar
  104. Shackleton M, Quintana E, Fearon ER, Morrison SJ (2009) Heterogeneity in cancer: cancer stem cells versus clonal evolution. Cell 138:822–829PubMedGoogle Scholar
  105. Sheiness D, Fanshier L, Bishop JM (1978) Identification of nucleotide sequences which may encode the oncogenic capacity of avian retrovirus MC29. J Virol 28:600–610PubMedCentralPubMedGoogle Scholar
  106. Shih AH, Holland EC (2006) Notch signaling enhances nestin expression in gliomas. Neoplasia 8:1072–1082PubMedCentralPubMedGoogle Scholar
  107. Singh SK, Clarke ID, Terasaki M, Bonn VE, Hawkins C, Squire J, Dirks PB (2003) Identification of a cancer stem cell in human brain tumors. Cancer Res 63:5821–5828PubMedGoogle Scholar
  108. Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T, Henkelman RM, Cusimano MD, Dirks PB (2004) Identification of human brain tumour initiating cells. Nature 432:396–401PubMedGoogle Scholar
  109. Son MJ, Woolard K, Nam DH, Lee J, Fine HA (2009) SSEA-1 is an enrichment marker for tumor-initiating cells in human glioblastoma. Cell Stem Cell 4:440–452PubMedGoogle Scholar
  110. Stopschinski BE, Beier CP, Beier D (2013) Glioblastoma cancer stem cells–from concept to clinical application. Cancer Lett 338:32–40PubMedGoogle Scholar
  111. Strauss R, Hamerlik P, Lieber A, Bartek J (2012) Regulation of stem cell plasticity: mechanisms and relevance to tissue biology and cancer. Mol Ther 20:887–897PubMedCentralPubMedGoogle Scholar
  112. Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, Belanger K, Brandes AA, Marosi C, Bogdahn U et al (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. New Engl J Med 352:987–996PubMedGoogle Scholar
  113. Sun P, Xia S, Lal B, Eberhart CG, Quinones-Hinojosa A, Maciaczyk J, Matsui W, Dimeco F, Piccirillo SM, Vescovi AL, Laterra J (2009) DNER, an epigenetically modulated gene, regulates glioblastoma-derived neurosphere cell differentiation and tumor propagation. Stem Cells 27:1473–1486PubMedCentralPubMedGoogle Scholar
  114. Tanaka S, Louis DN, Curry WT, Batchelor TT, Dietrich J (2013) Diagnostic and therapeutic avenues for glioblastoma: no longer a dead end? Nat Rev Clin Oncol 10:14–26PubMedGoogle Scholar
  115. Uchida N, Buck DW, He D, Reitsma MJ, Masek M, Phan TV, Tsukamoto AS, Gage FH, Weissman IL (2000) Direct isolation of human central nervous system stem cells. Proc Natl Acad Sci U S A 97:14720–14725PubMedCentralPubMedGoogle Scholar
  116. Venere M, Hamerlik P, Wu Q, Rasmussen RD, Song LA, Vasanji A, Tenley N, Flavahan WA, Hjelmeland AB, Bartek J, Rich JN (2013) Therapeutic targeting of constitutive PARP activation compromises stem cell phenotype and survival of glioblastoma-initiating cells. Cell Death Differ 21(2):258–269PubMedGoogle Scholar
  117. Vennstrom B, Sheiness D, Zabielski J, Bishop JM (1982) Isolation and characterization of c-myc, a cellular homolog of the oncogene (v-myc) of avian myelocytomatosis virus strain 29. J Virol 42:773–779PubMedCentralPubMedGoogle Scholar
  118. Verhaak RG, Hoadley KA, Purdom E, Wang V, Qi Y, Wilkerson MD, Miller CR, Ding L, Golub T, Mesirov JP et al (2010) Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 17:98–110PubMedCentralPubMedGoogle Scholar
  119. Verhaak RG, Valk PJ (2010) Genes predictive of outcome and novel molecular classification schemes in adult acute myeloid leukemia. Cancer Treat Res 145:67–83PubMedGoogle Scholar
  120. Wang J, Sullenger BA, Rich JN (2012) Notch signaling in cancer stem cells. Adv Exp Med Biol 727:174–185PubMedGoogle Scholar
  121. Wang J, Wang H, Li Z, Wu Q, Lathia JD, McLendon RE, Hjelmeland AB, Rich JN (2008) c-Myc is required for maintenance of glioma cancer stem cells. PLoS One 3:e3769PubMedCentralPubMedGoogle Scholar
  122. Wang R, Chadalavada K, Wilshire J, Kowalik U, Hovinga KE, Geber A, Fligelman B, Leversha M, Brennan C, Tabar V (2010) Glioblastoma stem-like cells give rise to tumour endothelium. Nature 468:829–833PubMedGoogle Scholar
  123. Wei Y, Jiang Y, Zou F, Liu Y, Wang S, Xu N, Xu W, Cui C, Xing Y, Liu Y et al (2013) Activation of PI3K/Akt pathway by CD133-p85 interaction promotes tumorigenic capacity of glioma stem cells. Proc Natl Acad Sci U S A 110:6829–6834PubMedCentralPubMedGoogle Scholar
  124. Woodward WA, Chen MS, Behbod F, Alfaro MP, Buchholz TA, Rosen JM (2007) WNT/beta-catenin mediates radiation resistance of mouse mammary progenitor cells. Proc Natl Acad Sci U S A 104:618–623PubMedCentralPubMedGoogle Scholar
  125. Yamamoto A, Shofuda T, Islam MO, Nakamura Y, Yamasaki M, Okano H, Kanemura Y (2009) ABCB1 is predominantly expressed in human fetal neural stem/progenitor cells at an early development stage. J Neurosci Res 87:2615–2623PubMedGoogle Scholar
  126. Yan K, Yang K, Rich JN (2013) The evolving landscape of glioblastoma stem cells. Curr Opin Neurol 26(6):701–707PubMedGoogle Scholar
  127. Zacchigna S, Oh H, Wilsch-Brauninger M, Missol-Kolka E, Jaszai J, Jansen S, Tanimoto N, Tonagel F, Seeliger M, Huttner WB et al (2009) Loss of the cholesterol-binding protein prominin-1/CD133 causes disk dysmorphogenesis and photoreceptor degeneration. J Neurosci 29:2297–2308PubMedGoogle Scholar
  128. Zeppernick F, Ahmadi R, Campos B, Dictus C, Helmke BM, Becker N, Lichter P, Unterberg A, Radlwimmer B, Herold-Mende CC (2008) Stem cell marker CD133 affects clinical outcome in glioma patients. Clin Cancer Res 14:123–129PubMedGoogle Scholar
  129. Zhou BB, Zhang H, Damelin M, Geles KG, Grindley JC, Dirks PB (2009) Tumour-initiating cells: challenges and opportunities for anticancer drug discovery. Nat Rev Drug Discov 8:806–823PubMedGoogle Scholar
  130. Zhu X, Zuo H, Maher BJ, Serwanski DR, LoTurco JJ, Lu QR, Nishiyama A (2012) Olig2-dependent developmental fate switch of NG2 cells. Development 139:2299–2307PubMedCentralPubMedGoogle Scholar

Copyright information

© Springer-Verlag Wien 2014

Authors and Affiliations

  1. 1.Brain Tumor BiologyDanish Cancer Society Research CenterCopenhagenDenmark
  2. 2.Laboratory of Genome Integrity, Institute of Molecular and Translational MedicinePalacky UniversityOlomoucCzech Republic

Personalised recommendations