Advertisement

Grüne und nachhaltige nanotribologische Systeme im Rahmen der globalen Herausforderungen

  • I. C. Gebeshuber
Chapter

Zusammenfassung

Grüne und nachhaltige Konzepte finden zusehends Eingang in die Nanotechnologie, und Chancen und Risiken für die Umwelt werden vielfältig sorgfältig abgewogen. Dieses Kapitel befasst sich mit der Erstellung eines Regelwerks für grüne und nachhaltige nanotribologische Systeme. Tribologie ist die Lehre von Reibung, Schmierung und Verschleiß, und ein Tribosystem ist ein System, in dem es Teile in relativer Bewegung gibt. Tribosysteme gibt es also sehr viele in unserer heutigen technischen Welt: Motoren, die Interaktion Autoreifen und Straße, Eislaufen, etc. Die Nanotribologie untersucht tribologisch interessante Materialien, Strukturen und Systeme mit Methoden der Nanotechnologie (z. B. hochauflösender Mikroskopie). Nanotribologische Systeme sind Tribosysteme mit funktionalen Teilen im Nanobereich (1–100 nm). Grüne nanotribologische Systeme zeichnen sich dadurch aus, dass sie entweder für grüne Technologien wichtig sind oder dass sie zum Schutz der Umwelt sowie zur Wiederherstellung bereits geschädigter Ökosysteme beitragen. Die Produzenten nachhaltiger nanotribologischer Systeme stellen sicher, dass zukünftige Generationen dieselben Chancen auf ein erfülltes Leben haben wie wir selbst, durch die Anwendung nachhaltiger Methoden, aber auch durch Minimierung der Auswirkungen auf Mensch und Umwelt. Herausforderungen, Entwicklungen und Chancen dieses neuen Wissenschaftsbereichs werden aufgezeigt und im Rahmen der gravierendsten Probleme, mit denen wir uns derzeit als Menschheit auseinandersetzen müssen, eingebettet. Fünfzehn globale Herausforderungen werden seit 1996 jährlich vom Millennium Project identifiziert. Das Millennium Projekt beinhaltet Organisationen der Vereinten Nationen, Regierungen, Unternehmen, Nichtregierungsorganisationen, Universitäten und Einzelpersonen aus mehr als 50 Ländern. Grüne nanotribologische Systeme ist von besonderer Bedeutung für die Globale Herausforderung 13 (Energie) und die Globale Herausforderung 14 (Wissenschaft und Technik). Diese beiden Herausforderungen werden im vorliegenden Kapitel ausführlicher vorgestellt und potentielle Beiträge grüner nanotribologischer Systeme zur erfolgreichen Adressierung dieser beiden Herausforderungen skizziert. Anschließend wird das Konzept nachhaltiger nanotribologischer Systeme eingeführt. Dies geschieht durch Korrelation nanotribologischer Entwicklungen mit Prinzipien der Nachhaltigkeit, die von der US-amerikanischen Biomimicry Guild eingeführt wurden. Fazit und Ausblick sowie Empfehlungen runden das Kapitel ab.

Schlüsselwörter

Grüne technologie Nachhaltige technologie Nanotribologie Nanotribologische systeme Tribologie 

Notes

Danksagung

Teile dieses Buchkapitel sind Übersetzungen aus englischsprachigen tribologischen Fachartikeln der Autorin (Gebeshuber 2012a, b). Die Nationale Universität von Malaysia hat einen Teil dieser Arbeit im Rahmen des Arus Perdana Forschungsprojektes finanziert (Projektnummer UKM-AP-NBT-16–2010).

Literatur

  1. Al-Solaiman S (2012) Proceedings of the sustainability through biomimicry conference, sustainability through biomimicry 2012. College of Design, Dammam, Kingdom of Saudi Arabia, Nov. 27–28, 274 pGoogle Scholar
  2. Andreeva DV, Fix D, Moehwald H, Shchukin DG (2008) Self-healing anticorrosion coatings based on pH-sensitive polyelectrolyte/inhibitor sandwichlike nanostructures. Adv Mater 20:2789–2794CrossRefGoogle Scholar
  3. Anonymous (2010) Summary: world tribology congress 2009 (WTC IV) international tribology council information 191. . Zugegriffen: 18. Mär 2014Google Scholar
  4. Autumn K, Liang YA, Hsieh ST, Zesch W, Chan WP, Kenny TW, Fearing R, Full RJ (2000) Adhesive force of a single gecko foot-hair. Nature 405:681–685CrossRefGoogle Scholar
  5. Auty RM (1993) Sustaining development in mineral economies: the resource curse thesis. Routledge, LondonCrossRefGoogle Scholar
  6. Balshaw DM, Philbert M, Suk WA (2005) Research strategies for safety evaluation of nanomaterials, part III: nanoscale technologies for assessing risk and improving public health. Toxicol Sci 88:298–306CrossRefGoogle Scholar
  7. Bar-Cohen Y (2005) Biomimetics: biologically inspired technologies. CRC Press, Boca RatonCrossRefGoogle Scholar
  8. Barnosky AD, Matzke N, Tomiya S, Wogan GOU, Swartz B, Quental TB, Marshall C, McGuire JL, Lindsey EL, Maguire KC, Mersey B, Ferrer EA (2011) Has the earth’s sixth mass extinction already arrived? Nature 471:51–57CrossRefGoogle Scholar
  9. Barnosky AD, Hadly EA, Bascompte J, Berlow EL, Brown JH, Fortelius M, Getz WM, Harte J, Hastings A, Marquet PA, Martinez ND, Mooers A, Roopnarine P, Vermeij G, Williams JW, Gillespie R, Kitzes J, Marshall C, Matzke N, Mindell DP, Revilla E, Smith AB (2012) Approaching a state shift in Earth’s biosphere. Nature 486:52–58CrossRefGoogle Scholar
  10. Barthlott W, Neinhuis C (1997) The purity of sacred lotus or escape from contamination in biological surfaces. Planta 202:1–8CrossRefGoogle Scholar
  11. Baumgartner W, Saxe F, Weth A, Hajas D, Sigumonrong D, Emmerlich J, Singheiser M, Böhme W, Schneider JM (2007) The sandfish’s skin: morphology, chemistry and reconstruction. J Bionic Eng 4:1–9CrossRefGoogle Scholar
  12. Behrens P, Baeuerlein E (2009) Handbook of biomineralization: biomimetic and bioinspired chemistry. Wiley VCH, WeinheimGoogle Scholar
  13. Berthier S (2006) Iridescences: the physical colors of insects. Springer, New YorkGoogle Scholar
  14. Bhushan B (Hrsg) (2010) Springer handbook of nanotechnology, 3 Aufl. Springer, HeidelbergCrossRefGoogle Scholar
  15. Bidlingmaier W (Hrsg) (2000) Biologische Abfallverwertung. Ulmer Verlag, StuttgartGoogle Scholar
  16. Bilitewski B, Härdtle G, Marek K (2000) Abfallwirtschaft – Handbuch für Praxis und Lehre, 3. Aufl. Springer, BerlinGoogle Scholar
  17. Biomimicry G (2009) . Zugegriffen: 23. Dez 2012Google Scholar
  18. Biomimicry G (2012) . Zugegriffen: 18. Mär 2014Google Scholar
  19. Borm P, Klaessig FC, Landry TD, Moudgil B, Pauluhn J, Thomas K, Trottier R, Wood S (2006) Research strategies for safety evaluation of nanomaterials, part V: role of dissolution in biological fate and effects of nanoscale particles. Toxicol Sci 90:23–32CrossRefGoogle Scholar
  20. Daniel TL (1981) Fish mucus: in situ measurements of polymer drag reduction. Biol Bull 160:376–382CrossRefGoogle Scholar
  21. Davim JP (Hrsg) (2013) Biomaterials and medical tribology: research and development. Woodhead Publishing, Cambridge (Rev Mech Eng Series 4)Google Scholar
  22. de Tommasi E, Rea I, Mocella V, Moretti L, De Stefano M, Rendina I, de Stefano L (2010) Multi-wavelength study of light transmitted through a single marine centric diatom. Opt Express 18(12):12203–12212CrossRefGoogle Scholar
  23. del Pobil AP, Mira J, Moonis A (Hrsg) (1998) Methodology and tools in knowledge-based systems. 11th Int Conf Indust Eng App Artif Intell Exp Syst. Notes in Artificial Intelligence, vol I. Springer, BerlinGoogle Scholar
  24. Demirbas A (2008) Biodiesel: A realistic fuel alternative for diesel engines. Springer, LondonGoogle Scholar
  25. Diamond J (2005) Collapse: how societies choose to fail or succeed. Viking Books, New YorkGoogle Scholar
  26. Drack M, Gebeshuber IC (2013) Comment on „innovation through imitation: biomimetic, bioinspired and biokleptic research“ by A. E. Rawlings, J. P. Bramble and S. S. Staniland, Soft Matter, 2012, 8, 6675. Soft Matter, in press. doi:10.1039/c2sm26722eGoogle Scholar
  27. Fan H, Lu Y, Stump A, Reed ST, Baer T, Schunk R, Perez-Luna V, López GP, Brinker CJ (2000) Rapid prototyping of patterned functional nanostructures. Nature 405:56–60CrossRefGoogle Scholar
  28. Fischer-Kowalski M, Haberl H, Payer H, Steurer A, Winiwarter V (1996) Gesellschaftlicher Stoffwechsel und Kolonisierung von Natur – Ein Versuch in Sozialer Ökologie. Gordon und Breach – Fakultas, AmsterdamGoogle Scholar
  29. Fratzl P, Weinkamer R (2007) Natures hierarchical materials. Progress Mater Sci 52:1263–1334CrossRefGoogle Scholar
  30. Gazsó A (2008) The Austrian experience – project NANOTRUST, OECD Database, . Zugegriffen: 18. Mär 2014Google Scholar
  31. Gebeshuber IC (2007) Biotribology inspires new technologies. Nano Today 2:30–37CrossRefGoogle Scholar
  32. Gebeshuber IC (2012a) Green nanotribology. Proceedings IMechE part C. J Mech Eng Sci 226:374–386Google Scholar
  33. Gebeshuber IC (2012b) Green nanotribology and sustainable nanotribology in the frame of the global challenges for humankind. In: Nosonovsky M, Bhushan B (Hrsg) Green energy and technology series Ch 5. Springer, Berlin, S. 105–125. (Green Tribology – Biomimetics, Energy Conservation, and Sustainability)Google Scholar
  34. Gebeshuber IC (2013a) We have to establish a common language. What is the architect doing in the jungle? Biornametics. In: Imhof B, Gruber P (Hrsg) Edition angewandte. Springer, WienGoogle Scholar
  35. Gebeshuber IC (2013b) Biomimetic inspiration regarding nano-tribology and materials issues in MEMS. In: Kumar SS, Satyanarayana N et al (Hrsg) Nano-tribology and materials issues in MEMS, Ch. 2. SpringerGoogle Scholar
  36. Gebeshuber IC, Crawford RM (2006) Micromechanics in biogenic hydrated silica: hinges and interlocking devices in diatoms. Proc IMechE Part J: J Eng Tribol 220:787–796CrossRefGoogle Scholar
  37. Gebeshuber IC, Drack M (2008) An attempt to reveal synergies between biology and engineering mechanics. Proc IMechE Part C: J Mech Eng Sci 222:1281–1287CrossRefGoogle Scholar
  38. Gebeshuber IC, Lee DW (2012) Nanostructures for coloration organisms other than animals. In: Bhushan B, Nosonovsky M (Hrsg) Springer encyclopedia of nanotechnology. Springer, 1790–1803. 3200 pages. ISBN 978-9048197507Google Scholar
  39. Gebeshuber IC, Majlis BY (2010) New ways of scientific publishing and accessing human knowledge inspired by transdisciplinary approaches. Tribol Mater Surf Interf 4:143–151CrossRefGoogle Scholar
  40. Gebeshuber IC, Majlis BY (2011) 3D corporate tourism: A concept for innovation in nanomaterials engineering. Int J Mater Eng Innov 2:38–48CrossRefGoogle Scholar
  41. Gebeshuber IC, Thompson JB, Del Amo Y, Stachelberger H, Kindt JH (2002) In vivo nanoscale atomic force microscopy investigation of diatom adhesion properties. Mater Sci Technol 18:763–766CrossRefGoogle Scholar
  42. Gebeshuber IC, Stachelberger H, Drack M (2005) Diatom bionanotribology – Biological surfaces in relative motion: their design, friction, adhesion, lubrication and wear. J Nanosci Nanotechnol 5:79–87CrossRefGoogle Scholar
  43. Gebeshuber IC, Drack M, Scherge M (2008) Tribology in biology. Tribol Surf Mater Interf 2:200–212CrossRefGoogle Scholar
  44. Gebeshuber IC, Gruber P, Drack M (2009a) A gaze into the crystal ball – biomimetics in the year 2059. Proc IMechE Part C: J Mech Eng Sci 223:2899–2918CrossRefGoogle Scholar
  45. Gebeshuber IC, Majlis BY, Stachelberger H (2009b) Tribology in biology: biomimetic studies across dimensions and across fields. Int J Mech Mater Eng 4:321–327Google Scholar
  46. Gebeshuber IC, Stachelberger H, Ganji BA, Fu DC, Yunas J, Majlis BY (2009c) Exploring the innovational potential of biomimetics for novel 3D MEMS. Adv Mat Res 74:265–268CrossRefGoogle Scholar
  47. Gebeshuber IC, Drack M, Aumayr F, Winter HP, Franek F (2010) Scanning probe microscopy: from living cells to the subatomic range. In: Fuchs H, Bhushan B (Hrsg) Biosystems investigated by scanning probe microscopy, 1 Aufl. Springer, New York, S 834Google Scholar
  48. Gebeshuber IC, Majlis BY, Stachelberger H (2012) Biomimetics in tribology. Biomimetics – materials, structures and processes. In: Bruckner D, Gruber P, Hellmich C, Schmiedmayer H-B, Stachelberger H, Gebeshuber IC (Hrsg) Ideas and case studies. Biological and medical physics series, biomedical engineering. Springer, BerlinGoogle Scholar
  49. Ghosh SK (2009) Self-healing materials: fundamentals, design strategies, and applications. Wiley-VCH, WeinheimGoogle Scholar
  50. Glenn JC, Gordon TJ, Florescu E (2012) 2012 state of the future. The Millennium Project. MP Publications, WashingtonGoogle Scholar
  51. Haikonen PO (2007) Robot brains: circuits and systems for conscious machines. Wiley-Interscience, ChichesterCrossRefGoogle Scholar
  52. Hamm CE, Merkel R, Springer O, Jurkojc P, Maier C, Prechtel K, Smetacek V (2003) Architecture and material properties of diatom shells provide effective mechanical protection. Nature 421:841–843CrossRefGoogle Scholar
  53. Haugstad G (2012) Atomic force microscopy: understanding basic modes and advanced applications. Wiley, HobokenCrossRefGoogle Scholar
  54. Hazel J, Stone M, Grace MS, Tsukruk VV (1999) Nanoscale design of snake skin for reptation locomotions via friction anisotropy. J Biomech 32:477–484CrossRefGoogle Scholar
  55. Holsapple MP, Lehman-McKeeman LD (2005) Forum series: research strategies for safety evaluation of nanomaterials. Toxicol Sci 87:315CrossRefGoogle Scholar
  56. Holsapple MP, Farland WH, Landry TD, Monteiro-Riviere NA, Carter JM, Walker NJ, Thomas KV (2005) Research strategies for safety evaluation of nanomaterials, part II: toxicological and safety evaluation of nanomaterials, current challenges and data needs. Toxicol Sci 88:12–17CrossRefGoogle Scholar
  57. Isenmann R (2001) Innovationsquelle Natur – Was wir von der Natur zur Ableitung von ökologischen Innovationen lernen können. In: Wisser A, Nachtigall W (Hrsg) Biona-Report 15, S 224–242Google Scholar
  58. Jakowska S (1963) Mucus secretion in fish – a note. Ann N Y Acad Sci 160:458–462Google Scholar
  59. Jones RAL (2009) Challenges in soft nanotechnology. Faraday Discuss 143:9–14CrossRefGoogle Scholar
  60. Kessel A, Ben-Tal N (2010) Introduction to proteins: structure, function, and motion. Chapman & Hall/CRC mathematical & computational biology. CRC Press, Boca RatonCrossRefGoogle Scholar
  61. Kinoshita S (2008) Structural colors in the realm of nature. World Scientific Publishing Company, SingaporeCrossRefGoogle Scholar
  62. Kobayashi A, Yamamoto I, Aoyama T (2004) Tribology of a snail (terrestrial gastropod). Tribol Series 41:429–436 (Proceedings 29th Leeds-Lyon Symp Tribology, Elsevier B.V.)Google Scholar
  63. Kumar CSSR (Hrsg) (2010) Biomimetic and bioinspired nanomaterials. Series nanomaterials for life sciences. Wiley VCH, WeinheimGoogle Scholar
  64. Kumar A, Stephenson LD, Murray JN (2006) Self-healing coatings for steel. Progr Org Coat 55:244–253CrossRefGoogle Scholar
  65. Lakes R (1993) Materials with structural hierarchy. Nature 361:511–515CrossRefGoogle Scholar
  66. Lee D (2007) Natures palette: the science of plant color. University of Chicago Press, ChicagoCrossRefGoogle Scholar
  67. Ling SC, Ling TYJ (1974) Anomalous drag-reducing phenomenon at a water/fish-mucus or polymer interface. J Fluid Mech 65:499–512CrossRefGoogle Scholar
  68. Liu Y, Kim E, Ghodssi R, Rubloff GW, Culver JN, Bentley WE, Payne GF (2010) Biofabrication to build the biology-device interface. Biofabrication 2:022002CrossRefGoogle Scholar
  69. Macqueen MO, Mueller J, Dee CF, Gebeshuber IC (2011) GEMS: A MEMS-based way for the innervation of materials. Adv Mater Res 254:34–37CrossRefGoogle Scholar
  70. Mansour JM (2003) Biomechanics of cartilage (Ch 5). In: Oatis CA (Hrsg) Kinesiology: the mechanics and pathomechanics of human movement. Lippincott Williams and Wilkins, PhiladelphiaGoogle Scholar
  71. Meadows D, Meadows D (1972) Die Grenzen des Wachstums. Bericht des Club of Rome zur Lage der Menschheit (Übers: E Zahn). DVA, MünchenGoogle Scholar
  72. Meadows DH, Meadows DL, Randers J, Behrens WW III (1972) Die Grenzen des Wachstums. Bericht des Club of Rome zur Lage der Menschheit. Deutsche Verlags-Anstalt, StuttgartCrossRefGoogle Scholar
  73. Morina A, Liskiewicz TW, Neville A (2007) Opportunities and challenges for obtaining effective lubricated engineering systems inspired by the lubrication of synovial joints. Comp Biochem Physiol A 146:135Google Scholar
  74. Nachtigall W (1997) Vorbild Natur: Bionik-Design für funktionelles Gestalten. Springer, BerlinGoogle Scholar
  75. Neville A, Morina A, Liskiewicz T, Yan Y (2007) Synovial joint lubrication – does nature teach more effective engineering lubrication strategies? Proc IMechE Eng Part C J Mech Eng Sci 221:1223–1230CrossRefGoogle Scholar
  76. Nosonovsky M, Bhushan B (2007) Multiscale friction mechanisms and hierarchical surfaces in nano- and bio-tribology. Mater Sci Eng R Rep 58:162–193CrossRefGoogle Scholar
  77. Nosonovsky M, Bhushan B (2010a) Green tribology: principles, research areas and challenges. Phil Trans R Soc A 368:4677–4694CrossRefGoogle Scholar
  78. Nosonovsky M, Bhushan B (2010b) Theme issue green tribology. Phil Trans Roy Soc A 368:4675–4890CrossRefGoogle Scholar
  79. Nosonovsky M, Bhushan B (2011) Green tribology: biomimetics, energy conservation, and sustainability. Springer, HeidelbergGoogle Scholar
  80. Odum HT (1951) Notes on the strontium content of seawater, celestite radiolaria and strontianite snail shells. Science 114:211–213CrossRefGoogle Scholar
  81. Okada T, Kaneko M (Hrsg) (2010) Molecular catalysts for energy conversion. Springer series in materials science. Springer, BerlinGoogle Scholar
  82. Orsello CE, Lauffenburger DA, Hammer DA (2001) Molecular properties in cell adhesion: a physical and engineering perspective. Trends Biotechnol 19:310–316CrossRefGoogle Scholar
  83. Pennisi E (1999) Microbes, immunity, and disease: Is it time to uproot the tree of life? Science 284:1305–1307CrossRefGoogle Scholar
  84. Powers KW, Brown SC, Krishna VB, Wasdo SC, Moudgil BM, Roberts SM (2006) Research strategies for safety evaluation of nanomaterials. Part VI. Characterization of nanoscale particles for toxicological evaluation. Toxicol Sci 90:296–303CrossRefGoogle Scholar
  85. Priya S, Inman DJ (Hrsg) (2010) Energy harvesting technologies. Springer, New YorkGoogle Scholar
  86. Ramshaw JAM, Werkmeister JA, Glattauer V (1996) Collagen-based biomaterials. Biotechnol Genet Eng Rev 13:335–382CrossRefGoogle Scholar
  87. Richert L, Vetrone F, Yi J-H, Zalzal SF, Wuest JD, Rosei F, Nanci A (2008) Surface nanopatterning to control cell growth. Adv Mater 15:1–5Google Scholar
  88. Round FE, Crawford RM, Mann DG (1990) The diatoms: biology and morphology of the genera. Cambridge University Press, CambridgeGoogle Scholar
  89. Rymuza Z (1989) Tribology of miniature systems. Tribology series. Elsevier Science Ltd, Amsterdam. ISBN 978-0444874016 576 ppGoogle Scholar
  90. Sanchez C, Arribart H, Giraud-Guille MM (2005) Biomimetism and bioinspiration as tools for the design of innovative materials and systems. Nat Mater 4:277–288CrossRefGoogle Scholar
  91. Scherge M, Dienwiebel M (2010) Book of synopses 17th int coll tribology: solving friction and wear problems, Technische Akademie Esslingen TAE. In: Bartz WJ (Hrsg) Levers of tribological optimization. Ostfildern, S 13Google Scholar
  92. Schmitt OH (1982) Biomimetics in solving engineering problems. Talk given on April 26, 1982. .  Zugegriffen: 18. Mär 2014Google Scholar
  93. Shapira P, Youtie J (2012) The economic contributions of nanotechnology to green and sustainable growth. OECD/NNI international symposium on assessing the economic impact of nanotechnology, Background paper 3. . Zugegriffen: 19. Mär 2014Google Scholar
  94. Sigel A, Sigel H, Sigel RKO (Hrsg) (2008) Biomineralization: from nature to application. Metal ions in life sciences, Bd 2. Wiley, ChichesterCrossRefGoogle Scholar
  95. Starr C, Taggart R (2008a) Animal structure and function, (Biology: the unity and diversity of life), Bd 5. Brooks Cole, StamfordGoogle Scholar
  96. Starr C, Taggart R (2008b) Plant structure and function Vol. 4, biology: the unity and diversity of life. Brooks Cole, StamfordGoogle Scholar
  97. Symes MD, Kitson PJ, Yan J, Richmond CJ, Cooper GJT, Bowman RW, Vilbrandt T, Cronin L (2012) Integrated 3D-printed reactionware for chemical synthesis and analysis. Nat Chem 4:349–354. (). Zugegriffen: 18. Mär 2014Google Scholar
  98. Szathmáry E, Maynard Smith J (1994) The major evolutionary transitions. Nature 374:227–232CrossRefGoogle Scholar
  99. Taleb NN (2012) Antifragile: Things that gain from disorder. Random House, New YorkGoogle Scholar
  100. Thomas R, d’Ari R (1990) Biological feedback. CRC, Boca RatonGoogle Scholar
  101. Thomas K, Sayre P (2005) Research strategies for safety evaluation of nanomaterials, Part I: evaluating the human health implications of exposure to nanoscale materials. Toxicol Sci 87:316–321CrossRefGoogle Scholar
  102. Thomas T, Thomas K, Sadrieh N, Savage N, Adair P, Bronaugh R (2006a) Research strategies for safety evaluation of nanomaterials, part VII: evaluating consumer exposure to nanoscale materials. Toxicol Sci 91:14–19CrossRefGoogle Scholar
  103. Thomas K, Aguar P, Kawasaki H, Morris J, Nakanishi J, Savage N (2006b) Research strategies for safety evaluation of nanomaterials, part VIII: international efforts to develop risk-based safety evaluations for nanomaterials. Toxicol Sci 92:23–32CrossRefGoogle Scholar
  104. Thompson DAW (1917) On growth and form. Cambridge University Press, CambridgeGoogle Scholar
  105. Tiffany MA, Gordon R, Gebeshuber IC (2010) Hyalodiscopsis plana, a sublittoral centric marine diatom, and its potential for nanotechnology as a natural zipper-like nanoclasp. Pol Bot J 55:27–41Google Scholar
  106. Tsuji JS, Maynard AD, Howard PC, James JT, Lam CW, Warheit DB, Santamaria AB (2006) Research strategies for safety evaluation of nanomaterials, part IV: risk assessment of nanoparticles. Toxicol Sci 89:42–50CrossRefGoogle Scholar
  107. United Nations (1987) Our common future. Report of the World Commission on Environment and Development. . Zugegriffen: 18. Mär 2014Google Scholar
  108. Urbakh M, Klafter J, Gourdon D, Israelachvili J (2004) The nonlinear nature of friction. Nature 430:525–528CrossRefGoogle Scholar
  109. van der Zwaag S (Hrsg) (2007) Self healing materials: An alternative approach to 20 centuries of materials science. Springer Series in Materials Science, Springer, DortrechtGoogle Scholar
  110. Vernes A, Böhm J, Vorlaufer G (2010) Ab initio optical properties of tribological/engineering surfaces. Tribol Lett 39:39–47CrossRefGoogle Scholar
  111. Vester F (1999) Die Kunst, vernetzt zu denken – Ideen und Werkzeuge für einen neuen Umgang mit Komplexität. DVA, Stuttgart, S 127 ffGoogle Scholar
  112. Vincent JFV (2005) Deconstructing the design of a biological material. J Theor Biol 236:73–78CrossRefGoogle Scholar
  113. Vincent JFV, Bogatyreva OA, Bogatyrev NR, Bowyer A, Pahl A (2006) Biomimetics – its practice and theory. J R Soc Interface 3:471–482CrossRefGoogle Scholar
  114. Vukusic P, Sambles JR (2003) Photonic structures in biology. Nature 424:852–855CrossRefGoogle Scholar
  115. Wen S, Huang P (2012) Principles of tribology. Wiley, SingaporeGoogle Scholar

Copyright information

© Springer-Verlag Wien 2014

Authors and Affiliations

  1. 1.Institute of Microengineering und NanoelectronicsUniversiti Kebangsaan Malaysia, UKM BangiBangiMalaysien
  2. 2.Österreichisches Kompetenzzentrum für TribologieWiener NeustadtÖsterreich
  3. 3.Institut für Angewandte PhysikTechnische Universität WienWienÖsterreich

Personalised recommendations