Advertisement

Sphingolipid Metabolism and Neutral Sphingomyelinases

  • Michael V. Airola
  • Yusuf A. Hannun
Chapter
Part of the Handbook of Experimental Pharmacology book series (HEP, volume 215)

Abstract

Sphingolipids are an important class of lipid molecules that play fundamental roles in our cells and body. Beyond a structural role, it is now clearly established that sphingolipids serve as bioactive signaling molecules to regulate diverse processes including inflammatory signaling, cell death, proliferation, and pain sensing. Sphingolipid metabolites have been implicated in the onset and progression of various diseases including cancer, lung disease, diabetes, and lysosomal storage disorders. Here we review sphingolipid metabolism to introduce basic concepts as well as emerging complexities in sphingolipid function gained from modern technological advances and detailed cell and animal studies. Furthermore, we discuss the family of neutral sphingomyelinases (N-SMases), which generate ceramide through the hydrolysis of sphingomyelin and are key enzymes in sphingolipid metabolism. Four mammalian N-SMase enzymes have now been identified. Most prominent is nSMase2 with established roles in bone mineralization, exosome formation, and cellular stress responses. Function for the other N-SMases has been more enigmatic and is an area of active investigation. The known properties and potential role(s) of each enzyme are discussed to help guide future studies.

Keywords

Sphingolipid metabolism Sphingomyelin Ceramide Sphingosine-1-phosphate Neutral sphingomyelinase 

Notes

Acknowledgments

This work was supported by the NIH grant R37GM43825 (Y.A.H.) and NIH NIGMS 1F32GM100679 (MVA). We thank Chris J. Clarke, Bill X. Wu, and David M. Perry for helpful review of this manuscript.

References

  1. Adam-Klages S, Adam D, Wiegmann K, Struve S, Kolanus W, Schneider-Mergener J, Kronke M (1996) FAN, a novel WD-repeat protein, couples the p55 TNF-receptor to neutral sphingomyelinase. Cell 86(6):937–947, S0092-8674(00)80169-5 [pii]PubMedCrossRefGoogle Scholar
  2. Ago H, Oda M, Takahashi M, Tsuge H, Ochi S, Katunuma N, Miyano M, Sakurai J (2006) Structural basis of the sphingomyelin phosphodiesterase activity in neutral sphingomyelinase from Bacillus cereus. J Biol Chem 281(23):16157–16167. doi: 10.1074/jbc.M601089200, M601089200 [pii]PubMedCrossRefGoogle Scholar
  3. Arana L, Gangoiti P, Ouro A, Trueba M, Gómez-Muñoz A (2010) Ceramide and ceramide 1-phosphate in health and disease. Lipids Health Dis 9:15PubMedCrossRefGoogle Scholar
  4. Aubin I, Adams CP, Opsahl S, Septier D, Bishop CE, Auge N, Salvayre R, Negre-Salvayre A, Goldberg M, Guenet JL, Poirier C (2005) A deletion in the gene encoding sphingomyelin phosphodiesterase 3 (Smpd3) results in osteogenesis and dentinogenesis imperfecta in the mouse. Nat Genet 37(8):803–805. doi: 10.1038/ng1603, ng1603 [pii]PubMedCrossRefGoogle Scholar
  5. Bartke N, Hannun YA (2009) Bioactive sphingolipids: metabolism and function. J Lipid Res 50(Suppl):S91–S96. doi: 10.1194/jlr.R800080-JLR200, R800080-JLR200 [pii]PubMedCrossRefGoogle Scholar
  6. Ben-David O, Futerman AH (2010) The role of the ceramide acyl chain length in neurodegeneration: involvement of ceramide synthases. Neuromolecular Med 12(4):341–350PubMedCrossRefGoogle Scholar
  7. Bernardo K, Krut O, Wiegmann K, Kreder D, Micheli M, Schafer R, Sickman A, Schmidt WE, Schroder JM, Meyer HE, Sandhoff K, Kronke M (2000) Purification and characterization of a magnesium-dependent neutral sphingomyelinase from bovine brain. J Biol Chem 275(11):7641–7647PubMedCrossRefGoogle Scholar
  8. Canals D, Perry DM, Jenkins RW, Hannun YA (2011) Drug targeting of sphingolipid metabolism: sphingomyelinases and ceramidases. Br J Pharmacol 163(4):694–712. doi: 10.1111/j.1476-5381.2011.01279.x PubMedCrossRefGoogle Scholar
  9. Chen X, Liang H, Zhang J, Zen K, Zhang CY (2012) Secreted microRNAs: a new form of intercellular communication. Trends Cell Biol 22:125–132PubMedCrossRefGoogle Scholar
  10. Clarke CJ, Snook CF, Tani M, Matmati N, Marchesini N, Hannun YA (2006) The extended family of neutral sphingomyelinases. Biochemistry 45(38):11247–11256. doi: 10.1021/bi061307z PubMedCrossRefGoogle Scholar
  11. Clarke CJ, Truong TG, Hannun YA (2007) Role for neutral sphingomyelinase-2 in tumor necrosis factor alpha-stimulated expression of vascular cell adhesion molecule-1 (VCAM) and intercellular adhesion molecule-1 (ICAM) in lung epithelial cells: p38 MAPK is an upstream regulator of nSMase2. J Biol Chem 282(2):1384–1396. doi: 10.1074/jbc.M609216200, M609216200 [pii]PubMedCrossRefGoogle Scholar
  12. Clarke CJ, Guthrie JM, Hannun YA (2008) Regulation of neutral sphingomyelinase-2 (nSMase2) by tumor necrosis factor-alpha involves protein kinase C-delta in lung epithelial cells. Mol Pharmacol 74(4):1022–1032. doi: 10.1124/mol.108.046250, mol.108.046250 [pii]PubMedCrossRefGoogle Scholar
  13. Clarke CJ, Wu BX, Hannun YA (2011a) The neutral sphingomyelinase family: identifying biochemical connections. Adv Enzyme Regul 51(1):51–58. doi: 10.1016/j.advenzreg.2010.09.016, S0065-2571(10)00075-0 [pii]PubMedCrossRefGoogle Scholar
  14. Clarke CJ, Mediwala K, Jenkins RW, Sutton CA, Tholanikunnel BG, Hannun YA (2011b) Neutral sphingomyelinase-2 mediates growth arrest by retinoic acid through modulation of ribosomal S6 kinase. J Biol Chem 286(24):21565–21576. doi: 10.1074/jbc.M110.193375, M110.193375 [pii]PubMedCrossRefGoogle Scholar
  15. Clarke CJ, Cloessner EA, Roddy PL, Hannun YA (2011c) Neutral sphingomyelinase 2 (nSMase2) is the primary neutral sphingomyelinase isoform activated by tumour necrosis factor-alpha in MCF-7 cells. Biochem J 435(2):381–390. doi: 10.1042/BJ20101752, BJ20101752 [pii]PubMedCrossRefGoogle Scholar
  16. Corcoran CA, He Q, Ponnusamy S, Ogretmen B, Huang Y, Sheikh MS (2008) Neutral sphingomyelinase-3 is a DNA damage and nongenotoxic stress-regulated gene that is deregulated in human malignancies. Mol Cancer Res 6(5):795–807. doi: 10.1158/1541-7786.MCR-07-2097, 6/5/795 [pii]PubMedCrossRefGoogle Scholar
  17. Devillard R, Galvani S, Thiers JC, Guenet JL, Hannun Y, Bielawski J, Negre-Salvayre A, Salvayre R, Auge N (2010) Stress-induced sphingolipid signaling: role of type-2 neutral sphingomyelinase in murine cell apoptosis and proliferation. PLoS One 5(3):e9826. doi: 10.1371/journal.pone.0009826 PubMedCrossRefGoogle Scholar
  18. Filosto S, Fry W, Knowlton AA, Goldkorn T (2010) Neutral sphingomyelinase 2 (nSMase2) is a phosphoprotein regulated by calcineurin (PP2B). J Biol Chem 285(14):10213–10222. doi: 10.1074/jbc.M109.069963, M109.069963 [pii]PubMedCrossRefGoogle Scholar
  19. Filosto S, Castillo S, Danielson A, Franzi L, Khan E, Kenyon N, Last J, Pinkerton K, Tuder R, Goldkorn T (2011) Neutral sphingomyelinase 2: a novel target in cigarette smoke-induced apoptosis and lung injury. Am J Respir Cell Mol Biol 44(3):350–360. doi: 10.1165/rcmb.2009-0422OC, 2009-0422OC [pii]PubMedCrossRefGoogle Scholar
  20. Filosto S, Ashfaq M, Chung S, Fry W, Goldkorn T (2012) Neutral sphingomyelinase 2 activity and protein stability are modulated by phosphorylation of five conserved serines. J Biol Chem 287:514–522. doi: 10.1074/jbc.M111.315481, M111.315481 [pii]PubMedCrossRefGoogle Scholar
  21. Gault CR, Obeid LM, Hannun YA (2010) An overview of sphingolipid metabolism: from synthesis to breakdown. Adv Exp Med Biol 688:1–23PubMedCrossRefGoogle Scholar
  22. Glorieux FH, Ward LM, Rauch F, Lalic L, Roughley PJ, Travers R (2002) Osteogenesis imperfecta type VI: a form of brittle bone disease with a mineralization defect. J Bone Miner Res 17(1):30–38. doi: 10.1359/jbmr.2002.17.1.30 PubMedCrossRefGoogle Scholar
  23. Goldkorn T, Filosto S (2010) Lung injury and cancer: mechanistic insights into ceramide and EGFR signaling under cigarette smoke. Am J Respir Cell Mol Biol 43(3):259PubMedCrossRefGoogle Scholar
  24. Grosch S, Schiffmann S, Geisslinger G (2012) Chain length-specific properties of ceramides. Prog Lipid Res 51(1):50–62. doi: 10.1016/j.plipres.2011.11.001, S0163-7827(11)00042-7 [pii]PubMedCrossRefGoogle Scholar
  25. Hama H (2010) Fatty acid 2-hydroxylation in mammalian sphingolipid biology. Biochim Biophys Acta 1801(4):405–414PubMedCrossRefGoogle Scholar
  26. Han G, Gupta SD, Gable K, Niranjanakumari S, Moitra P, Eichler F, Brown RH, Harmon JM, Dunn TM (2009) Identification of small subunits of mammalian serine palmitoyltransferase that confer distinct acyl-CoA substrate specificities. Proc Natl Acad Sci 106(20):8186PubMedCrossRefGoogle Scholar
  27. Hannun YA, Obeid LM (2008) Principles of bioactive lipid signalling: lessons from sphingolipids. Nat Rev Mol Cell Biol 9(2):139–150. doi: 10.1038/nrm2329, nrm2329 [pii]PubMedCrossRefGoogle Scholar
  28. Hannun YA, Obeid LM (2011) Many ceramides. J Biol Chem 286(32):27855–27862. doi: 10.1074/jbc.R111.254359, R111.254359 [pii]PubMedCrossRefGoogle Scholar
  29. Hayashi Y, Kiyono T, Fujita M, Ishibashi M (1997) cca1 is required for formation of growth-arrested confluent monolayer of rat 3Y1 cells. J Biol Chem 272(29):18082–18086PubMedCrossRefGoogle Scholar
  30. Hofmann K, Tomiuk S, Wolff G, Stoffel W (2000) Cloning and characterization of the mammalian brain-specific, Mg2 + -dependent neutral sphingomyelinase. Proc Natl Acad Sci U S A 97(11):5895–5900, 97/11/5895 [pii]PubMedCrossRefGoogle Scholar
  31. Hu W, Xu R, Sun W, Szulc ZM, Bielawski J, Obeid LM, Mao C (2010) Alkaline ceramidase 3 (ACER3) hydrolyzes unsaturated long-chain ceramides, and its down-regulation inhibits both cell proliferation and apoptosis. J Biol Chem 285(11):7964–7976. doi: 10.1074/jbc.M109.063586, M109.063586 [pii]PubMedCrossRefGoogle Scholar
  32. Ito H, Murakami M, Furuhata A, Gao S, Yoshida K, Sobue S, Hagiwara K, Takagi A, Kojima T, Suzuki M, Banno Y, Tanaka K, Tamiya-Koizumi K, Kyogashima M, Nozawa Y, Murate T (2009) Transcriptional regulation of neutral sphingomyelinase 2 gene expression of a human breast cancer cell line, MCF-7, induced by the anti-cancer drug, daunorubicin. Biochim Biophys Acta 1789(11–12):681–690. doi: 10.1016/j.bbagrm.2009.08.006, S1874-9399(09)00100-X [pii]PubMedGoogle Scholar
  33. Jenkins RW, Canals D, Hannun YA (2009) Roles and regulation of secretory and lysosomal acid sphingomyelinase. Cell Signal 21(6):836–846PubMedCrossRefGoogle Scholar
  34. Khavandgar Z, Poirier C, Clarke CJ, Li J, Wang N, McKee MD, Hannun YA, Murshed M (2011) A cell-autonomous requirement for neutral sphingomyelinase 2 in bone mineralization. J Cell Biol 194(2):277–289. doi: 10.1083/jcb.201102051, jcb.201102051 [pii]PubMedCrossRefGoogle Scholar
  35. Kim WJ, Okimoto RA, Purton LE, Goodwin M, Haserlat SM, Dayyani F, Sweetser DA, McClatchey AI, Bernard OA, Look AT, Bell DW, Scadden DT, Haber DA (2008) Mutations in the neutral sphingomyelinase gene SMPD3 implicate the ceramide pathway in human leukemias. Blood 111(9):4716–4722. doi: 10.1182/blood-2007-10-113068, blood-2007-10-113068 [pii]PubMedCrossRefGoogle Scholar
  36. Krut O, Wiegmann K, Kashkar H, Yazdanpanah B, Kronke M (2006) Novel tumor necrosis factor-responsive mammalian neutral sphingomyelinase-3 is a C-tail-anchored protein. J Biol Chem 281(19):13784–13793. doi: 10.1074/jbc.M511306200, M511306200 [pii]PubMedCrossRefGoogle Scholar
  37. Leventis PA, Grinstein S (2010) The distribution and function of phosphatidylserine in cellular membranes. Annu Rev Biophys 39:407–427. doi: 10.1146/annurev.biophys.093008.131234 PubMedCrossRefGoogle Scholar
  38. Levy M, Castillo SS, Goldkorn T (2006) nSMase2 activation and trafficking are modulated by oxidative stress to induce apoptosis. Biochem Biophys Res Commun 344(3):900–905. doi: 10.1016/j.bbrc.2006.04.013, S0006-291X(06)00788-1 [pii]PubMedCrossRefGoogle Scholar
  39. Levy M, Khan E, Careaga M, Goldkorn T (2009) Neutral sphingomyelinase 2 is activated by cigarette smoke to augment ceramide-induced apoptosis in lung cell death. Am J Physiol Lung Cell Mol Physiol 297(1):L125–L133. doi: 10.1152/ajplung.00031.2009, 00031.2009 [pii]PubMedCrossRefGoogle Scholar
  40. Long JZ, Cisar JS, Milliken D, Niessen S, Wang C, Trauger SA, Siuzdak G, Cravatt BF (2011) Metabolomics annotates ABHD3 as a physiologic regulator of medium-chain phospholipids. Nat Chem Biol 7(11):763–765. doi: 10.1038/nchembio.659, nchembio.659 [pii]PubMedCrossRefGoogle Scholar
  41. Luberto C, Hassler DF, Signorelli P, Okamoto Y, Sawai H, Boros E, Hazen-Martin DJ, Obeid LM, Hannun YA, Smith GK (2002) Inhibition of tumor necrosis factor-induced cell death in MCF7 by a novel inhibitor of neutral sphingomyelinase. J Biol Chem 277(43):41128–41139. doi: 10.1074/jbc.M206747200, M206747200 [pii]PubMedCrossRefGoogle Scholar
  42. Mao C, Obeid LM (2008) Ceramidases: regulators of cellular responses mediated by ceramide, sphingosine, and sphingosine-1-phosphate. Biochim Biophys Acta 1781(9):424–434PubMedCrossRefGoogle Scholar
  43. Marchesini N, Osta W, Bielawski J, Luberto C, Obeid LM, Hannun YA (2004) Role for mammalian neutral sphingomyelinase 2 in confluence-induced growth arrest of MCF7 cells. J Biol Chem 279(24):25101–25111. doi: 10.1074/jbc.M313662200, M313662200 [pii]PubMedCrossRefGoogle Scholar
  44. Matmati N, Hannun YA (2008) Thematic review series: sphingolipids. ISC1 (inositol phosphosphingolipid-phospholipase C), the yeast homologue of neutral sphingomyelinases. J Lipid Res 49(5):922–928. doi: 10.1194/jlr.R800004-JLR200, R800004-JLR200 [pii]PubMedCrossRefGoogle Scholar
  45. Merrill AH Jr (2011) Sphingolipid and glycosphingolipid metabolic pathways in the era of sphingolipidomics. Chem Rev 111(10):6387PubMedCrossRefGoogle Scholar
  46. Mesicek J, Lee H, Feldman T, Jiang X, Skobeleva A, Berdyshev EV, Haimovitz-Friedman A, Fuks Z, Kolesnick R (2010) Ceramide synthases 2, 5, and 6 confer distinct roles in radiation-induced apoptosis in HeLa cells. Cell Signal 22(9):1300–1307PubMedCrossRefGoogle Scholar
  47. Milhas D, Clarke CJ, Hannun YA (2010a) Sphingomyelin metabolism at the plasma membrane: implications for bioactive sphingolipids. FEBS Lett 584(9):1887–1894. doi: 10.1016/j.febslet.2009.10.058, S0014-5793(09)00846-1 [pii]PubMedCrossRefGoogle Scholar
  48. Milhas D, Clarke CJ, Idkowiak-Baldys J, Canals D, Hannun YA (2010b) Anterograde and retrograde transport of neutral sphingomyelinase-2 between the Golgi and the plasma membrane. Biochim Biophys Acta 1801(12):1361–1374. doi: 10.1016/j.bbalip.2010.08.001, S1388-1981(10)00179-4 [pii]PubMedCrossRefGoogle Scholar
  49. Mizutani Y, Tamiya-Koizumi K, Nakamura N, Kobayashi M, Hirabayashi Y, Yoshida S (2001) Nuclear localization of neutral sphingomyelinase 1: biochemical and immunocytochemical analyses. J Cell Sci 114(Pt 20):3727–3736PubMedGoogle Scholar
  50. Mullen TD, Obeid LM (2012) Ceramide and apoptosis: exploring the enigmatic connections between sphingolipid metabolism and programmed cell death. Anticancer Agents Med Chem 12:340–363, BSP/ACAMC/E-Pub/00187 [pii]PubMedCrossRefGoogle Scholar
  51. Mullen TD, Jenkins RW, Clarke CJ, Bielawski J, Hannun YA, Obeid LM (2011) Ceramide synthase-dependent ceramide generation and programmed cell death. J Biol Chem 286(18):15929PubMedCrossRefGoogle Scholar
  52. Mullen TD, Hannun YA, Obeid LM (2012) Ceramide synthases at the centre of sphingolipid metabolism and biology. Biochem J 441(3):789–802. doi: 10.1042/BJ20111626, BJ20111626 [pii]PubMedCrossRefGoogle Scholar
  53. Nikolova-Karakashian M, Karakashian A, Rutkute K (2008) Role of neutral sphingomyelinases in aging and inflammation. Subcell Biochem 49:469–486. doi: 10.1007/978-1-4020-8831-5_18 PubMedCrossRefGoogle Scholar
  54. Okamoto Y, Vaena de Avalos S, Hannun YA (2003) Functional analysis of ISC1 by site-directed mutagenesis. Biochemistry 42(25):7855–7862. doi: 10.1021/bi0341354 PubMedCrossRefGoogle Scholar
  55. Openshaw AE, Race PR, Monzo HJ, Vazquez-Boland JA, Banfield MJ (2005) Crystal structure of SmcL, a bacterial neutral sphingomyelinase C from Listeria. J Biol Chem 280(41):35011–35017. doi: 10.1074/jbc.M506800200, M506800200 [pii]PubMedCrossRefGoogle Scholar
  56. Patti GJ, Yanes O, Shriver LP, Courade JP, Tautenhahn R, Manchester M, Siuzdak G (2012) Metabolomics implicates altered sphingolipids in chronic pain of neuropathic origin. Nat Chem Biol 8(3):232–234. doi: 10.1038/nchembio.767, nchembio.767 [pii]PubMedCrossRefGoogle Scholar
  57. Petcoff DW, Holland WL, Stith BJ (2008) Lipid levels in sperm, eggs, and during fertilization in Xenopus laevis. J Lipid Res 49(11):2365–2378. doi: 10.1194/jlr.M800159-JLR200, M800159-JLR200 [pii]PubMedCrossRefGoogle Scholar
  58. Pewzner-Jung Y, Ben-Dor S, Futerman AH (2006) When do Lasses (longevity assurance genes) become CerS (ceramide synthases)?: insights into the regulation of ceramide synthesis. J Biol Chem 281(35):25001–25005. doi: 10.1074/jbc.R600010200, R600010200 [pii]PubMedCrossRefGoogle Scholar
  59. Philipp S, Puchert M, Adam-Klages S, Tchikov V, Winoto-Morbach S, Mathieu S, Deerberg A, Kolker L, Marchesini N, Kabelitz D, Hannun YA, Schutze S, Adam D (2010) The Polycomb group protein EED couples TNF receptor 1 to neutral sphingomyelinase. Proc Natl Acad Sci U S A 107(3):1112–1117. doi: 10.1073/pnas.0908486107, 0908486107 [pii]PubMedCrossRefGoogle Scholar
  60. Pitson SM (2011) Regulation of sphingosine kinase and sphingolipid signaling. Trends Biochem Sci 36(2):97–107PubMedCrossRefGoogle Scholar
  61. Pruett ST, Bushnev A, Hagedorn K, Adiga M, Haynes CA, Sullards MC, Liotta DC, Merrill AH Jr (2008) Biodiversity of sphingoid bases (“sphingosines”) and related amino alcohols. J Lipid Res 49(8):1621–1639. doi: 10.1194/jlr.R800012-JLR200, R800012-JLR200 [pii]PubMedCrossRefGoogle Scholar
  62. Qin J, Berdyshev E, Poirier C, Schwartz NB, Dawson G (2012) Neutral sphingomyelinase 2 deficiency increases hyaluronan synthesis by up-regulation of hyaluronan Synthase 2 through decreased ceramide production and activation of Akt. J Biol Chem 287:13620–13632. doi: 10.1074/jbc.M111.304857, M111.304857 [pii]PubMedCrossRefGoogle Scholar
  63. Sawai H, Domae N, Nagan N, Hannun YA (1999) Function of the cloned putative neutral sphingomyelinase as lyso-platelet activating factor-phospholipase C. J Biol Chem 274(53):38131–38139PubMedCrossRefGoogle Scholar
  64. Schiffmann S, Ziebell S, Sandner J, Birod K, Deckmann K, Hartmann D, Rode S, Schmidt H, Angioni C, Geisslinger G (2010) Activation of ceramide synthase 6 by celecoxib leads to a selective induction of C16: 0-ceramide. Biochem Pharmacol 80(11):1632–1640PubMedCrossRefGoogle Scholar
  65. Schneider PB, Kennedy EP (1967) Sphingomyelinase in normal human spleens and in spleens from subjects with Niemann-Pick disease. J Lipid Res 8(3):202–209PubMedGoogle Scholar
  66. Serra M, Saba JD (2010) Sphingosine 1-phosphate lyase, a key regulator of sphingosine 1-phosphate signaling and function. Adv Enzyme Regul 50(1):349PubMedCrossRefGoogle Scholar
  67. Stace CL, Ktistakis NT (2006) Phosphatidic acid- and phosphatidylserine-binding proteins. Biochim Biophys Acta 1761(8):913–926. doi: 10.1016/j.bbalip.2006.03.006, S1388-1981(06)00067-9 [pii]PubMedCrossRefGoogle Scholar
  68. Stoffel W, Jenke B, Block B, Zumbansen M, Koebke J (2005) Neutral sphingomyelinase 2 (smpd3) in the control of postnatal growth and development. Proc Natl Acad Sci U S A 102(12):4554–4559. doi: 10.1073/pnas.0406380102, 0406380102 [pii]PubMedCrossRefGoogle Scholar
  69. Stoffel W, Jenke B, Holz B, Binczek E, Gunter RH, Knifka J, Koebke J, Niehoff A (2007) Neutral sphingomyelinase (SMPD3) deficiency causes a novel form of chondrodysplasia and dwarfism that is rescued by Col2A1-driven smpd3 transgene expression. Am J Pathol 171(1):153–161. doi: 10.2353/ajpath.2007.061285, S0002-9440(10)61951-7 [pii]PubMedCrossRefGoogle Scholar
  70. Sun W, Jin J, Xu R, Hu W, Szulc ZM, Bielawski J, Obeid LM, Mao C (2010) Substrate specificity, membrane topology, and activity regulation of human alkaline ceramidase 2 (ACER2). J Biol Chem 285(12):8995–9007. doi: 10.1074/jbc.M109.069203, M109.069203 [pii]PubMedCrossRefGoogle Scholar
  71. Tani M, Hannun YA (2007a) Analysis of membrane topology of neutral sphingomyelinase 2. FEBS Lett 581(7):1323–1328. doi: 10.1016/j.febslet.2007.02.046, S0014-5793(07)00214-1 [pii]PubMedCrossRefGoogle Scholar
  72. Tani M, Hannun YA (2007b) Neutral sphingomyelinase 2 is palmitoylated on multiple cysteine residues. Role of palmitoylation in subcellular localization. J Biol Chem 282(13):10047–10056. doi: 10.1074/jbc.M611249200, M611249200 [pii]PubMedCrossRefGoogle Scholar
  73. Tomiuk S, Hofmann K, Nix M, Zumbansen M, Stoffel W (1998) Cloned mammalian neutral sphingomyelinase: functions in sphingolipid signaling? Proc Natl Acad Sci U S A 95(7):3638–3643PubMedCrossRefGoogle Scholar
  74. Tomiuk S, Zumbansen M, Stoffel W (2000) Characterization and subcellular localization of murine and human magnesium-dependent neutral sphingomyelinase. J Biol Chem 275(8):5710–5717PubMedCrossRefGoogle Scholar
  75. Wu BX, Rajagopalan V, Roddy PL, Clarke CJ, Hannun YA (2010a) Identification and characterization of murine mitochondria-associated neutral sphingomyelinase (MA-nSMase), the mammalian sphingomyelin phosphodiesterase 5. J Biol Chem 285(23):17993–18002. doi: 10.1074/jbc.M110.102988, M110.102988 [pii]PubMedCrossRefGoogle Scholar
  76. Wu BX, Clarke CJ, Hannun YA (2010b) Mammalian neutral sphingomyelinases: regulation and roles in cell signaling responses. Neuromolecular Med 12(4):320–330. doi: 10.1007/s12017-010-8120-z PubMedCrossRefGoogle Scholar
  77. Wu BX, Clarke CJ, Matmati N, Montefusco D, Bartke N, Hannun YA (2011) Identification of novel anionic phospholipid binding domains in neutral sphingomyelinase 2 with selective binding preference. J Biol Chem 286(25):22362–22371. doi: 10.1074/jbc.M110.156471, M110.156471 [pii]PubMedCrossRefGoogle Scholar
  78. Yabu T, Shimuzu A, Yamashita M (2009) A novel mitochondrial sphingomyelinase in zebrafish cells. J Biol Chem 284(30):20349–20363. doi: 10.1074/jbc.M109.004580, M109.004580 [pii]PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of Medicine, Stony Brook University Cancer CenterStony Brook University, Health Science CenterStony BrookUSA

Personalised recommendations