Pixel-Oriented Network Visualization: Static Visualization of Change in Social Networks

Chapter
Part of the Lecture Notes in Social Networks book series (LNSN, volume 6)

Abstract

Most common network visualizations rely on graph drawing. While without doubt useful, graphs suffer from limitations like cluttering and important patterns may not be realized especially when networks change over time. We propose a novel approach for the visualization of user interactions in social networks: a pixel-oriented visualization of a graphical network matrix where activity timelines are folded to inner glyphs within each matrix cell. Users are ordered by similarity which allows to uncover interesting patterns. The visualization is exemplified using social networks based on corporate wikis.

Keywords

Social Network Network Visualization Hilbert Curve Layout Algorithm Social Network Data 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

Part of this work was supported by the Volkswagenstiftung through Grant No. II/82 509.

We thank the reviewers for their helpful comments.

References

  1. 1.
    Aigner, W., Miksch, S., Müller, W., Schumann, H., Tominski, C.: Visualizing time-oriented data, a systematic view. Comput. Graph. 31(3), 401–409 (2007)CrossRefGoogle Scholar
  2. 2.
    Ankerst, M., Berchtold, S., Keim, D.A.: Similarity clustering of dimensions for an enhanced visualization of multidimensional data. In: INFOVIS ’98: Proceedings of the 1998 IEEE Symposium on Information Visualization. IEEE Computer Society, Washington, DC (1998)Google Scholar
  3. 3.
    Balzer, M., Deussen, O.: Level-of-detail visualization of clustered graph layouts. In: APVIS’07, pp. 133–140. IEEE, Piscataway (2007)Google Scholar
  4. 4.
    Bender-deMoll, S., McFarland, D.A.: The art and science of dynamic network visualization. J. Soc. Struct. 7(2), 1–46 (2006). http://www.cmu.edu/joss/content/articles/volume7/deMollMcFarland Google Scholar
  5. 5.
    Beyer, K., Goldstein, J., Ramakrishnan, R., Shaft, U.: When is “nearest neighbor” meaningful? In: Database Theory—ICDT’99, pp. 217–235. Springer, Berlin/New York (1999)Google Scholar
  6. 6.
    Brandes, U., Kenis, P., Raab, J.: Explanation through network visualization. Methodology 2(1), 16–23 (2006)Google Scholar
  7. 7.
    Chen, C.: Information Visualization: Beyond the Horizon, 2nd edn. Springer, London (2006)Google Scholar
  8. 8.
    Chen, I.X., Yang, C.Z.: Visualization of social networks. In: Furht, B. (ed.) Handbook of Social Network Technologies and Applications, pp. 585–610. Springer, New York (2010)CrossRefGoogle Scholar
  9. 9.
    Chen, W., Ji, M., Tang, X., Zhang, B., Shi, B.: Visualization tools for exploring social networks and travel behavior. In: 2010 International Conference on Environmental Science and Information Application Technology (ESIAT), vol. 3, pp. 239–243. IEEE, Piscataway (2010)Google Scholar
  10. 10.
    Cox, M.A.A., Cox, T.F.: Multidimensional scaling. In: Chen, C.h., Härdle, W., Unwin, A. (eds.) Handbook of Data Visualization. Springer Handbooks Computational Statistics, pp. 315–347. Springer, Berlin/Heidelberg (2008). doi:http://dx.doi.org/10.1007/978-3-540-33037-0_14
  11. 11.
    Eppstein, D., Gansner, E.R. (eds.): Graph Drawing: 17th International Symposium, GD 2009. LNCS, vol. 5849. Springer, Berlin/New York (2010)Google Scholar
  12. 12.
    Everitt, B.S., Landau, S., Leese, M.: Cluster Analysis, 4th edn. Wiley, Chichester (2009)Google Scholar
  13. 13.
    Ghoniem, M., Fekete, J.D., Castagliola, P.: A comparison of the readability of graphs using node-link and matrix-based representations. In: INFOVIS ’04: Proceedings of the IEEE Symposium on Information Visualization, pp. 17–24. IEEE, Washington, DC (2004). doi:http://dx.doi.org/10.1109/INFOVIS.2004.1
  14. 14.
    Guo, Y., Chen, C., Zhou, S.: Fingerprint for network topologies. In: Zhou, J. (ed.) Complex Sciences, pp. 1666–1677. Springer, Berlin/Heidelberg (2009)CrossRefGoogle Scholar
  15. 15.
    Henry, N., Fekete, J.D., McGuffin, M.J.: Nodetrix: a hybrid visualization of social networks. IEEE Trans. Vis. Comput. Graph. 13(6), 1302–1309 (2007). doi:http://dx.doi.org/10.1109/TVCG.2007.70582 Google Scholar
  16. 16.
    Kamada, T., Kawai, S.: An algorithm for drawing general undirected graphs. Inf. Process. Lett. 31(1), 7–15 (1989)MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Keim, D.A.: Designing pixel-oriented visualization techniques: theory and applications. IEEE Trans. Vis. Comput. Graph. 6(1), 59–78 (2000). doi:http://dx.doi.org/10.1109/2945.841121
  18. 18.
    Keim, D.A., Keim, D.A., Kriegel, H.P., Kriegel, H.P.: Visdb: database exploration using multidimensional visualization. IEEE Comput. Graph. Appl. 14, 40–49 (1994)CrossRefGoogle Scholar
  19. 19.
    Keim, D.A., Ankerst, M., Kriegel, H.P.: Recursive pattern: a technique for visualizing very large amounts of data. In: VIS ’95: Proceedings of the 6th Conference on Visualization ’95. IEEE Computer Society, Washington, DC (1995)Google Scholar
  20. 20.
    Krempel, L.: Network visualization. In: Scott, J., Carrington, P.J. (eds.) Sage Handbook of Social Network Analysis. SAGE, London/Thousand Oaks (2009)Google Scholar
  21. 21.
    Kruskal, J.B., Wish, M.: Multidimensional Scaling. Sage University Paper Series on Quantitative Application in the Social Sciences. Sage, Beverly Hills/London (1978)Google Scholar
  22. 22.
    Leung, C., Carmichael, C.: Exploring social networks: a frequent pattern visualization approach. In: IEEE International Conference on Social Computing/IEEE International Conference on Privacy, Security, Risk and Trust, pp. 419–424. IEEE, Los Alamitos (2010)Google Scholar
  23. 23.
    Leydesdorff, L.: On the normalization and visualization of author co-citation data: Salton’s cosine versus the jaccard index. J. Am. Soc. Inf. Sci. Technol. 59(1), 77–85 (2008)CrossRefGoogle Scholar
  24. 24.
    Moody, J., McFarland, D., Bender-deMoll, S.: Dynamic network visualization. Am. J. Sociol. 110(4), 1206–1241 (2005). doi:10.1086/421509CrossRefGoogle Scholar
  25. 25.
    Peng, W., SiKun, L.: Social network visualization via domain ontology. In: International Conference on Information Engineering and Computer Science, pp. 1–4. IEEE, Piscataway (2009)Google Scholar
  26. 26.
    Reeve, L., Han, H., Chen, C.: Information visualization and the semeantic web. In: Geroimenko, V., Chen, C. (eds.) Visualizing the Semantic Web: XML-Based Internet and Information Visualization. Springer, London (2006)Google Scholar
  27. 27.
    Riche, N.H., Fekete, J.D.: Novel visualizations and interactions for social networks exploration. In: Furht, B. (ed.) Handbook of Social Network Technologies and Applications, pp. 611–636. Springer, New York (2010). doi:http://dx.doi.org/10.1007/978-1-4419-7142-5_28
  28. 28.
    Shi, L., Cao, N., Liu, S., Qian, W., Tan, L., Wang, G., Sun, J., Lin, C.: HiMap: adaptive visualization of large-scale online social networks. In: Visualization Symposium, PacificVis ’09. IEEE, Piscataway (2009)Google Scholar
  29. 29.
    Shneiderman, B.: Extreme visualization: squeezing a billion records into a million pixels. In: Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data, pp. 3–12. ACM, New York (2008)Google Scholar
  30. 30.
    Shneiderman, B., Aris, A.: Network visualization by semantic substrates. IEEE Trans. Vis. Comput. Graph. 12(5), 733–740 (2006). doi:http://dx.doi.org/10.1109/TVCG.2006.166 Google Scholar
  31. 31.
    Stein, K., Blaschke, S.: Corporate wikis: comparative analysis of structures and dynamics. In: Hinkelmann, K., Wache, H. (eds.) Proceedings of the 5th Conference on Professional Knowledge Management. Lecture Notes in Informatics, pp. 77–86. Gesellschaft für Informatik, Bonn (2009)Google Scholar
  32. 32.
    Stein, K., Blaschke, S.: Interlocking communication, measuring collaborative intensity in social networks. In: Social Networks Analysis and Mining: Foundations and Applications. Springer, New York (2010)Google Scholar
  33. 33.
    Unwin, A., Theus, M., Hofmann, H.: Graphics of Large Datasets: Visualizing a Million. Springer, New York (2006)Google Scholar
  34. 34.
    Ware, C.: Visual Queries: The Foundation of Visual Thinking. Springer, Berlin/Heidelberg (2005)Google Scholar
  35. 35.
    Wegener, R.: Kollaborationsprozesse in Wikis: Entwurf und Umsetzung eines Analysewerkzeugs. Master’s thesis, University of Bamberg (2009)Google Scholar

Copyright information

© Springer-Verlag Wien 2013

Authors and Affiliations

  • Klaus Stein
    • 1
  • René Wegener
    • 2
  • Christoph Schlieder
    • 1
  1. 1.Computing in the Cultural SciencesUniversity of BambergBambergGermany
  2. 2.Information SystemsKassel UniversityKasselGermany

Personalised recommendations