Endosymbiosis pp 135-148 | Cite as

Analysis of the Genome of Cyanophora paradoxa: An Algal Model for Understanding Primary Endosymbiosis

  • Debashish Bhattacharya
  • Dana C. Price
  • Cheong Xin Chan
  • Jeferson Gross
  • Jürgen M. Steiner
  • Wolfgang Löffelhardt


Algae and plants rely on the plastid (e.g., chloroplast) to carry out photosynthesis. This organelle traces its origin to a cyanobacterium that was captured over a billion years ago by a single-celled protist. Three major photosynthetic lineages (the green algae and plants [Viridiplantae], red algae [Rhodophyta], and Glaucophyta) arose from this primary endosymbiotic event and are putatively united as the Plantae (also known as Archaeplastida). Glaucophytes comprise a handful of poorly studied species that retain ancestral features of the cyanobacterial endosymbiont such as a peptidoglycan cell wall. Testing the Plantae hypothesis and elucidating glaucophyte evolution has in the past been thwarted by the absence of complete genome data from these taxa. Furthermore, multigene phylogenetics has fueled controversy about the frequency of primary plastid acquisitions during eukaryote evolution because these approaches have generally failed to recover Plantae monophyly and often provide conflicting results. Here, we review some of the key insights about Plantae evolution that were gleaned from a recent analysis of a draft genome assembly from Cyanophora paradoxa (Glaucophyta). We present results that conclusively demonstrate Plantae monophyly. We also describe new insights that were gained into peptidoglycan biosynthesis in glaucophytes and the carbon concentrating mechanism (CCM) in C. paradoxa plastids.


Envelope Membrane Shell Protein Draft Genome Assembly Carbon Concentrate Mechanism Peptidoglycan Biosynthesis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Adl SM, Simpson AG, Farmer MA, Andersen RA, Anderson OR, Barta JR, Bowser SS, Brugerolle G, Fensome RA, Fredericq S, James TY, Karpov S, Kugrens P, Krug J, Lane CE, Lewis LA, Lodge J, Lynn DH, Mann DG, McCourt RM, Mendoza L, Moestrup O, Mozley-Standridge SE, Nerad TA, Shearer CA, Smirnov AV, Spiegel FW, Taylor MF (2005) The new higher level classification of eukaryotes with emphasis on the taxonomy of protists. J Eukaryot Microbiol 52:399–451PubMedCrossRefGoogle Scholar
  2. Baurain D, Brinkmann H, Petersen J, Rodríguez-Ezpeleta N, Stechmann A, Demoulin V, Roger AJ, Burger G, Lang BF, Philippe H (2010) Phylogenomic evidence for separate acquisition of plastids in cryptophytes, haptophytes, and stramenopiles. Mol Biol Evol 27:1698–1709PubMedCrossRefGoogle Scholar
  3. Bhattacharya D, Yoon HS, Hackett JD (2004) Photosynthetic eukaryotes unite: endosymbiosis connects the dots. Bioessays 26:50–60PubMedCrossRefGoogle Scholar
  4. Burey SC, Poroyko V, Ozturk ZN, Fathi-Nejad S, Schüller C, Ohnishi N, Fukuzawa H, Bohnert HJ, Löffelhardt W (2007) Acclimation to low [CO2] by an inorganic carbon concentrating mechanism in Cyanophora paradoxa. Plant Cell Environ 30:1422–1435PubMedCrossRefGoogle Scholar
  5. Burki F, Shalchian-Tabrizi K, Pawlowski J (2007) Phylogenomics reshuffles the eukaryotic supergroups. PLoS ONE 2:e790PubMedCrossRefGoogle Scholar
  6. Cavalier-Smith T (1981) Eukaryote kingdoms: seven or nine? BioSystems 14:461–481PubMedCrossRefGoogle Scholar
  7. Cavalier-Smith T, Lee JJ (1985) Protozoa as hosts for endosymbioses and the conversion of symbionts into organelles. J Protozool 32:376–379CrossRefGoogle Scholar
  8. Chan CX, Yang EC, Banerjee T, Yoon HS, Martone PT, Estevez JM, Bhattacharya D (2011) Red-and-green algal monophyly and extensive gene sharing found in a rich repertoire of red algal genes. Curr Biol 21:328–333PubMedCrossRefGoogle Scholar
  9. Delwiche CF (1999) Tracing the thread of plastid diversity through the tapestry of life. Am Nat 154:S164–S177PubMedCrossRefGoogle Scholar
  10. Falkowski PG, Katz ME, Knoll AH, Quigg A, Raven JA, Schofield O, Taylor FJ (2004) The evolution of modern eukaryotic phytoplankton. Science 305:354–360PubMedCrossRefGoogle Scholar
  11. Fathinejad S, Steiner JM, Reipert S, Marchetti M, Allmaier G, Burey SC, Ohnishi N, Fukuzawa H, Löffelhardt W, Bohnert HJ (2008) A carboxysomal CCM in the cyanelles of the “coelacanth” of the algal world, Cyanophora paradoxa? Physiol Plant 133:27–32PubMedCrossRefGoogle Scholar
  12. Gray MW (1992) The endosymbiont hypothesis revisited. Int Rev Cytol 141:233–357PubMedCrossRefGoogle Scholar
  13. Gross J, Bhattacharya D (2008) Revaluating the evolution of the Toc/Tic protein translocons. Trends Plant Sci 14:13–20PubMedCrossRefGoogle Scholar
  14. Gross J, Bhattacharya D (2009) Mitochondrial and plastid evolution in eukaryotes: an outsider’s perspective. Nat Rev Genet 10:495–505PubMedCrossRefGoogle Scholar
  15. Harper JT, Keeling PJ (2003) Nucleus-encoded, plastid-targeted glyceraldehyde-3-phosphate dehydrogenase (GAPDH) indicates a single origin for chromalveolate plastids. Mol Biol Evol 20:1730–1735PubMedCrossRefGoogle Scholar
  16. Kinney JN, Axen SD, Kerfeld CA (2011) Comparative analysis of carboxysome shell proteins. Photosynth Res 109:21–32PubMedCrossRefGoogle Scholar
  17. Löffelhardt W, Bohnert HJ (2001) The cyanelle (muroplast) of Cyanophora paradoxa: a paradigm for endosymbiotic organelle evolution. In: Seckbach J (ed) Symbiosis. Kluwer, Dordrecht, pp 111–130Google Scholar
  18. Löffelhardt W, Bohnert HJ, Bryant DA (1997) The complete sequence of the Cyanophora paradoxa cyanelle genome (Glaucocystophyceae). Plant Syst Evol 11(Suppl):149–162CrossRefGoogle Scholar
  19. Marbouty M, Mazouni K, Saguez C, Cassier-Chauvat C, Chauvat F (2009) Characterization of the Synechocystis strain PCC 6803 penicillin-binding proteins and cytokinetic proteins FtsQ and FtsW and their network of interactions with ZipN. J Bacteriol 191:5123–5133PubMedCrossRefGoogle Scholar
  20. Margulis L (1970) Origin of eukaryotic cells. Yale University Press, New Haven, CT, p 349Google Scholar
  21. Marin B, Nowack ECM, Glöckner G, Melkonian M (2007) The ancestor of the Paulinella chromatophore obtained a carboxysomal operon by horizontal gene transfer from a Nitrococcus-like gamma-proteobacterium. BMC Evol Biol 7:85PubMedCrossRefGoogle Scholar
  22. McFadden GI, van Dooren GG (2004) Evolution: red algal genome affirms a common origin of all plastids. Curr Biol 14:R514–R516PubMedCrossRefGoogle Scholar
  23. Moustafa A, Beszteri B, Maier UG, Bowler C, Valentin K, Bhattacharya D (2009) Genomic footprints of a cryptic plastid endosymbiosis in diatoms. Science 324:1724–1726PubMedCrossRefGoogle Scholar
  24. Nowack EC et al (2011) Endosymbiotic gene transfer and transcriptional regulation of transferred genes in Paulinella chromatophora. Mol Biol Evol 28:407–422PubMedCrossRefGoogle Scholar
  25. Nozaki H, Maruyama S, Matsuzaki M, Nakada T, Kato S, Misawa K (2009) Phylogenetic positions of Glaucophyta, green plants (Archaeplastida) and Haptophyta (Chromalveolata) as deduced from slowly evolving nuclear genes. Mol Phylogenet Evol 53:872–880PubMedCrossRefGoogle Scholar
  26. Palmer JD (2003) The symbiotic birth of plastids: how many times and whodunit? J Phycol 39:4–11CrossRefGoogle Scholar
  27. Parfrey LW, Grant J, Tekle YI, Lasek-Nesselquist E, Morrison HG, Sogin ML, Patterson DJ, Katz LA (2010) Broadly sampled multigene analyses yield a well-resolved eukaryotic tree of life. Syst Biol 59:518–533PubMedCrossRefGoogle Scholar
  28. Patron NJ, Inagaki Y, Keeling PJ (2007) Multiple gene phylogenies support the monophyly of cryptomonad and haptophyte host lineages. Curr Biol 17:887–891PubMedCrossRefGoogle Scholar
  29. Pfanzagl B, Zenker A, Pittenauer E, Allmaier G, Martinez-Torrecuadrada J, Schmid ER, De Pedro MA, Löffelhardt W (1996) Primary structure of cyanelle peptidoglycan of Cyanophora paradoxa: a prokaryotic cell wall as part of an organelle envelope. J Bacteriol 178:332–339PubMedGoogle Scholar
  30. Price DC, Chan CX, Yoon HS, Yang EC, Qiu H, Weber APM, Schwacke R, Gross J, Blouin NA, Lane C, Reyes-Prieto A, Durnford DG, Neilson JAD, Lang BF, Burger G, Steiner JM, Löffelhardt W, Meuser JE, Posewitz MC, Ball S, Arias MC, Henrissat B, Coutinho PM, Rensing SA, Symeonidi A, Doddapaneni H, Green BR, Rajah VD, Boore J, Bhattacharya D (2012) Cyanophora paradoxa genome elucidates origin of photosynthesis in algae and plants. Science 335:843–847PubMedCrossRefGoogle Scholar
  31. Raven JA (2003) Carboxysomes and peptidoglycan walls of cyanelles: possible physiological functions. Eur J Phycol 38:47–53CrossRefGoogle Scholar
  32. Reumann S, Inoue K, Keegstra K (2005) Evolution of the general protein import pathway of plastids (review). Mol Membr Biol 22:73–86PubMedCrossRefGoogle Scholar
  33. Rodriguez-Ezpeleta N, Brinkmann H, Burey SC, Roure B, Burger G, Löffelhardt W, Bohnert HJ, Philippe H, Lang BF (2005) Monophyly of primary photosynthetic eukaryotes: green plants, red algae, and glaucophytes. Curr Biol 15:1325–1330PubMedCrossRefGoogle Scholar
  34. Steiner JM, Yusa F, Pompe JA, Löffelhardt W (2005) Homologous protein import machineries in chloroplasts and cyanelles. Plant J 44:646–652PubMedCrossRefGoogle Scholar
  35. Tachibana M, Allen AE, Kikutani S, Endo Y, Bowler C, Matsuda Y (2011) Localization of putative carbonic anhydrases in two marine diatoms, Phaeodactylum tricornutum and Thalassiosira pseudonana. Photosynth Res 109:205–221PubMedCrossRefGoogle Scholar
  36. Takano H, Takechi K (2010) Plastid peptidoglycan. Biochim Biophys Acta 1800:144–151PubMedCrossRefGoogle Scholar
  37. Wang Y, Duanmu D, Spalding MH (2011) Carbon dioxide concentrating mechanism in Chlamydomonas reinhardtii: inorganic carbon transport and CO2 recapture. Photosynth Res 109:115–122PubMedCrossRefGoogle Scholar
  38. Yamano T, Tsujikawa T, Hatano K, Ozawa S, Takahashi Y, Fukuzawa H (2010) Light and low-CO2 -dependent LCIB–LCIC complex localization in the chloroplast supports the carbon-concentrating mechanism in Chlamydomonas reinhardtii. Plant Cell Physiol 51:1453–1468PubMedCrossRefGoogle Scholar
  39. Yoon HS, Reyes-Prieto A, Melkonian M, Bhattacharya D (2006) Minimal plastid genome evolution in the Paulinella endosymbiont. Curr Biol 16:R670–R672PubMedCrossRefGoogle Scholar
  40. Yusa F, Steiner JM, Löffelhardt W (2008) Evolutionary conservation of dual Sec translocases in the cyanelles of Cyanophora paradoxa. BMC Evol Biol 8:304PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2014

Authors and Affiliations

  • Debashish Bhattacharya
    • 1
  • Dana C. Price
    • 2
  • Cheong Xin Chan
    • 2
    • 3
  • Jeferson Gross
    • 2
  • Jürgen M. Steiner
    • 4
  • Wolfgang Löffelhardt
    • 5
  1. 1.Rutgers University, Department of Ecology, Evolution and Natural Resources, Institute of Marine and Coastal ScienceRutgers UniversityNew BrunswickUSA
  2. 2.Department of Ecology, Evolution and Natural ResourcesRutgers UniversityNew BrunswickUSA
  3. 3.Institute for Molecular Bioscience and ARC Centre of Excellence in BioinformaticsThe University of QueenslandBrisbaneAustralia
  4. 4.Department of Plant PhysiologyMartin-Luther-University Halle-WittenbergHalle (Saale)Germany
  5. 5.Max F. Perutz Laboratories, Department of Biochemistry and Cell BiologyUniversity of ViennaViennaAustria

Personalised recommendations