Modulatory Influences on the Hippocampus and Entorhinal Cortex

Chapter

Abstract

The functional regulation of cortical circuits depends on neuromodulators such as acetylcholine, norepinephrine, serotonin, and dopamine to alter the information processing mediated by fast transmitters such as glutamate and GABA. The primary mechanisms shared by the neuromodulators include altering the dynamics of excitatory and inhibitory synaptic transmission, altering synaptic modification properties, and changing the resting membrane potential. Aside from synaptic modulation, the same neuromodulators can also affect spike frequency with prominent examples including pyramidal cell spike frequency adaptation. Though the cellular effects of neuromodulators may be similar, a diversity of upstream systems regulates the influence of competing neuromodulators both in the spatial distribution and temporal dynamics of release. The diversity of neuromodulator receptor subtypes also influences the nature of the cellular effects of neuromodulation. The purpose of this chapter is not to differentiate between competing neuromodulatory systems, but to survey evidence for how different neuromodulators affect change in information transmission in the hippocampal system. This chapter also highlights physiological examples of acetylcholine effects in active research areas of entorhinal persistent spiking, subthreshold properties of stellate cells, and theta modulation of hippocampal and entorhinal networks.

References

  1. Acquas E, Wilson C, Fibiger HC (1996) Conditioned and unconditioned stimuli increase frontal cortical and hippocampal acetylcholine release: effects of novelty, habituation, and fear. J Neurosci 16:3089–3096PubMedGoogle Scholar
  2. Alkondon M, Albuquerque EX (2001) Nicotinic acetylcholine receptor alpha7 and alpha4beta2 subtypes differentially control GABAergic input to CA1 neurons in rat hippocampus. J Neurophysiol 86:3043–3055PubMedGoogle Scholar
  3. Alonso A, Garcia-Austt E (1987a) Neuronal sources of theta rhythm in the entorhinal cortex of the rat. I. Laminar distribution of theta field potentials. Exp Brain Res 67:493–501PubMedGoogle Scholar
  4. Alonso A, Garcia-Austt E (1987b) Neuronal sources of theta rhythm in the entorhinal cortex of the rat. II. Phase relations between unit discharges and theta field potentials. Exp Brain Res 67:502–509PubMedGoogle Scholar
  5. Alonso A, Klink R (1993) Differential electroresponsiveness of stellate and pyramidal-like cells of medial entorhinal cortex layer II. J Neurophysiol 70:128–143PubMedGoogle Scholar
  6. Andrade R, Nicoll RA (1987) Pharmacologically distinct actions of serotonin on single pyramidal neurons of the rat hippocampus recorded in vitro. J Physiol 394:99–124PubMedPubMedCentralGoogle Scholar
  7. Andrade R, Malenka RC, Nicoll RA (1986) A G protein couples serotonin and GABAB receptors to the same channels in hippocampus. Science 234:1261–1265PubMedGoogle Scholar
  8. Araneda R, Andrade R (1991) 5-hydroxytryptamine2 and 5-hydroxytryptamine1A receptors mediate opposing responses on membrane excitability in rat association cortex. Neuroscience 40:399–412PubMedGoogle Scholar
  9. Arbuthnott GW, Ingham CA, Wickens JR (2000) Dopamine and synaptic plasticity in the neostriatum. J Anat 196(4):587–596PubMedPubMedCentralGoogle Scholar
  10. Atri A, Sherman S, Norman KA, Kirchhoff BA, Nicolas MM, Greicius MD, Cramer SC, Breiter HC, Hasselmo ME, Stern CE (2004) Blockade of central cholinergic receptors impairs new learning and increases proactive interference in a word paired-associate memory task. Behav Neurosci 118:223–236PubMedGoogle Scholar
  11. Ault B, Nadler JV (1982) Baclofen selectively inhibits transmission at synapses made by axons of CA3 pyramidal cells in the hippocampal slice. J Pharmacol Exp Ther 223:291–297PubMedGoogle Scholar
  12. Ayala JE, Niswender CM, Luo Q, Banko JL, Conn PJ (2008) Group III mGluR regulation of synaptic transmission at the SC-CA1 synapse is developmentally regulated. Neuropharmacology 54:804–814PubMedPubMedCentralGoogle Scholar
  13. Ballyk BA, Goth JW (1992) Elevation of extracellular potassium facilitates the induction of hippocampal long-term potentiation. J Neuroscience Res 33:598–604Google Scholar
  14. Bang SJ, Brown TH (2009) Muscarinic receptors in perirhinal cortex control trace conditioning. J Neurosci 29:4346–4350PubMedPubMedCentralGoogle Scholar
  15. Barkai E, Hasselmo ME (1994) Modulation of the input/output function of rat piriform cortex pyramidal cells. J Neurophysiol 72:644–658PubMedGoogle Scholar
  16. Barkai E, Horwitz G, Bergman RE, Hasselmo ME (1993) Long-term potentiation and associative memory function in a biophysical simulation of piriform cortex. Soc Neurosci Abstr 19:376.3Google Scholar
  17. Barry C, Lin L, Keefe JO, Burgess N (2012) Grid cell firing patterns signal environmental novelty by expansion. Proc Natl Acad Sci USA 109:17687–17692PubMedPubMedCentralGoogle Scholar
  18. Baxter MG, Bucci DJ, Gorman LK, Wiley RG, Gallagher M (1995) Selective immunotoxic lesions of basal forebrain cholinergic cells: effects on learning and memory in rats. Behav Neurosci 109:714–722PubMedGoogle Scholar
  19. Benardo LS, Prince DA (1982a) Dopamine modulates a Ca2-activated potassium conductance in mammalian hippocampal pyramidal cells. Nature 297:76–79PubMedGoogle Scholar
  20. Benardo LS, Prince DA (1982b) Dopamine action on hippocampal pyramidal cells. J Neurosci 2:415–423PubMedGoogle Scholar
  21. Benardo LS, Prince DA (1982c) Cholinergic excitation of mammalian hippocampal pyramidal cells. Brain Res 249:315–331PubMedGoogle Scholar
  22. Bergles DE, Doze VA, Madison DV, Smith SJ (1996) Excitatory actions of norepinephrine on multiple classes of hippocampal CA1 interneurons. J Neurosci 16:572–585PubMedGoogle Scholar
  23. Berretta N, Berton F, Bianchi R, Capogna M, Francesconi W, Brunelli M (1990) Effects of dopamine, D-1-dopaminergic and D-2-dopaminergic agonists on the excitability of hippocampal CA1 pyramidal cells in guinea-pig. Exp Brain Res 83:124–130PubMedGoogle Scholar
  24. Bi GQ, Poo MM (1998) Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type. J Neurosci 18:10464–10472PubMedGoogle Scholar
  25. Bland BH, Oddie SD (2001) Theta band oscillation and synchrony in the hippocampal formation and associated structures: the case for its role in sensorimotor integration. Behav Brain Res 127:119–136PubMedGoogle Scholar
  26. Blitzer RD, Gil O, Landau EM (1990) Cholinergic stimulation enhances long-term potentiation in the CA1 region of rat hippocampus. Neurosci Lett 119:207–210PubMedGoogle Scholar
  27. Blokland A, Honig W, Raaijmakers WGM (1992) Effects of intra-hippocampal scopolamine injections in a repeated spatial acquisition task in the rat. Psychopharmacology (Berl) 109:373–376Google Scholar
  28. Boehlen A, Heinemann U, Erchova I (2010) The range of intrinsic frequencies represented by medial entorhinal cortex stellate cells extends with age. J Neurosci 30:4585–4589PubMedGoogle Scholar
  29. Bombardi C (2012) Neuronal localization of 5-HT2A receptor immunoreactivity in the rat hippocampal region. Brain Res Bull 87:259–273PubMedGoogle Scholar
  30. Brandon MP, Bogaard AR, Libby CP, Connerney MA, Gupta K, Hasselmo ME (2011) Reduction of theta rhythm dissociates grid cell spatial periodicity from directional tuning. Science (New York, NY) 332:595–599Google Scholar
  31. Brandon MP, Bogaard AR, Schultheiss NW, Hasselmo ME (2013) Segregation of cortical head direction cell assemblies on alternating theta cycles. Nat Neurosci 16:739–748PubMedPubMedCentralGoogle Scholar
  32. Brazhnik ES, Fox SE (1999) Action potentials and relations to the theta rhythm of medial septal neurons in vivo. Exp Brain Res 127:244–258PubMedGoogle Scholar
  33. Brocher S, Artola A, Singer W (1992) Agonists of cholinergic and noradrenergic receptors facilitate synergistically the induction of long-term potentiation in slices of rat visual cortex. Brain Res 573:27–36PubMedGoogle Scholar
  34. Broks P, Preston GC, Traub M, Poppleton P, Ward C, Stahl SM (1988) Modelling dementia: Effects of scopolamine on memory and attention. Neuropsychologia 26:685–700PubMedGoogle Scholar
  35. Brun VH, Solstad T, Kjelstrup KB, Fyhn M, Witter MP, Moser EI, Moser MB (2008) Progressive increase in grid scale from dorsal to ventral medial entorhinal cortex. Hippocampus 18:1200–1212PubMedGoogle Scholar
  36. Burgard EC, Sarvey JM (1990) Muscarinic receptor activation facilitates the induction of long-term potentiation (LTP) in the rat dentate gyrus. Neurosci Lett 116:34–39PubMedGoogle Scholar
  37. Burgard EC, Sarvey JM (1991) Long-lasting potential and epileptiform activity produced by GABAb receptor in the dentate gyrus of rat hippocampal slice. J Neurosci 11:1198–1209PubMedGoogle Scholar
  38. Burgess N (2008) Grid cells and theta as oscillatory interference: theory and predictions. Hippocampus 18:1157–1174PubMedPubMedCentralGoogle Scholar
  39. Burgess N, Barry C, Jeffery KJ, O’Keefe J (2005) A grid and place cell model of path integration utilizing phase precession versus theta. In: Computational Cognitive Neuroscience Meeting. Computational Cognitive Neuroscience Meeting, Washington, D.C.: http://posters.f1000.com/PosterList?posterID=225.
  40. Burgess N, Barry C, O’Keefe J (2007) An oscillatory interference model of grid cell firing. Hippocampus 17:801–812PubMedPubMedCentralGoogle Scholar
  41. Buzsaki G (1989) Two-stage model of memory trace formation: a role for “noisy” brain states. Neuroscience 31:551–570PubMedGoogle Scholar
  42. Buzsaki G (2002) Theta oscillations in the hippocampus. Neuron 33:325–340PubMedGoogle Scholar
  43. Buzsáki G, Leung LW, Vanderwolf CH (1983) Cellular bases of hippocampal EEG in the behaving rat. Brain Res 287:139–171PubMedGoogle Scholar
  44. Cai X, Kallarackal AJ, Kvarta MD, Goluskin S, Gaylor K, Bailey AM, Lee H-K, Huganir RL, Thompson SM (2013) Local potentiation of excitatory synapses by serotonin and its alteration in rodent models of depression. Nat Neurosci 16:464–472PubMedPubMedCentralGoogle Scholar
  45. Cea-del Rio CA, Lawrence JJ, Erdelyi F, Szabo G, McBain CJ (2011) Cholinergic modulation amplifies the intrinsic oscillatory properties of CA1 hippocampal cholecystokinin-positive interneurons. J Physiol 589:609–627PubMedPubMedCentralGoogle Scholar
  46. Chapman CA, Lacaille JC (1999) Cholinergic induction of theta-frequency oscillations in hippocampal inhibitory interneurons and pacing of pyramidal cell firing. J Neurosci 19:8637–8645PubMedGoogle Scholar
  47. Colbert CM, Levy WB (1992) GABA-A inhibition opposes monosynaptic perforant-path excitation of CA1 pyramids. Soc Neurosci Abstr 18:628.13Google Scholar
  48. Cole AE, Nicoll RA (1984) The pharmacology of cholinergic excitatory responses in hippocampal pyramidal cells. Brain Res 305:283–290PubMedGoogle Scholar
  49. Colino A, Halliwell JV (1987) Differential modulation of three separate K-conductances in hippocampal CA1 neurons by serotonin. Nature 328:73–77PubMedGoogle Scholar
  50. Collins GG, Anson J, Kelly EP (1982) Baclofen: effects on evoked field potentials and amino acid neurotransmitter release in the rat olfactory cortex slice. Brain Res 238:371–383PubMedGoogle Scholar
  51. Connors BW, Gutnick MJ (1990) Intrinsic firing patterns of diverse neocortical neurons. Trends Neurosci 13:99–104PubMedGoogle Scholar
  52. Connors BW, Gutnick MJ, Prince DA (1982) Electrophysiological properties of neocortical neurons in vitro. J Neurophysiol 48:1302–1320PubMedGoogle Scholar
  53. Connors BW, Malenka RC, Silva LR (1988) Two inhibitory postsynaptic potentials and GABAa and GABAb receptor-mediated responses in neocortex of rat and cat. J Physiol 406:443–468PubMedPubMedCentralGoogle Scholar
  54. Constanti A, Galvan M (1983) M-current in voltage clamped olfactory cortex neurons. Neurosci Lett 39:65–70PubMedGoogle Scholar
  55. Constanti A, Sim JA (1987) Calcium-dependent potassium conductance in guinea-pig olfactory cortex neurons in vitro. J Physiol 387:173–194PubMedPubMedCentralGoogle Scholar
  56. Coulter DA, Loturco JJ, Kubota M, Disterhoft JF, Moore JW, Alkon DL (1989) Classical-conditioning reduces amplitude and duration of calcium-dependent afterhyperpolarization in rabbit hippocampal pyramidal cells. J Neurophysiol 61:971–981PubMedGoogle Scholar
  57. Curet O, de Montigny C (1988a) Electrophysiological characterization of adrenoceptors in the rat dorsal hippocampus. I. Receptors mediating the effect of microintophoretically applied norepinephrine. Brain Res 475:35–46PubMedGoogle Scholar
  58. Curet O, de Montigny C (1988b) Electrophysiological characterization of adrenoceptors in the rat dorsal hippocampus. II. Receptors mediating the effect of synaptic released norepinephrine. Brain Res 475:47–57PubMedGoogle Scholar
  59. Cutsuridis V, Hasselmo M (2012) GABAergic contributions to gating, timing, and phase precession of hippocampal neuronal activity during theta oscillations. Hippocampus 22:1597–1621PubMedGoogle Scholar
  60. Cutsuridis V, Cobb S, Graham BP (2010) Encoding and retrieval in a model of the hippocampal CA1 microcircuit. Hippocampus 20:423–446PubMedGoogle Scholar
  61. Dasari S, Gulledge AT (2011) M1 and M4 receptors modulate hippocampal pyramidal neurons. J Neurophysiol 105:779–792PubMedPubMedCentralGoogle Scholar
  62. Degroot A, Wolff MC, Nomikos GG (2005) Acute exposure to a novel object during consolidation enhances cognition. Neuroreport 16:63–67PubMedGoogle Scholar
  63. Deng P-Y, Lei S (2008) Serotonin increases GABA release in rat entorhinal cortex by inhibiting interneuron TASK-3 K + channels. Mol Cell Neurosci 39:273–284PubMedPubMedCentralGoogle Scholar
  64. Deng P-Y, Poudel SKS, Rojanathammanee L, Porter JE, Lei S (2007) Serotonin inhibits neuronal excitability by activating two-pore domain k + channels in the entorhinal cortex. Mol Pharmacol 72:208–218PubMedGoogle Scholar
  65. Derdikman D, Moser EI (2014) Spatial maps in the entorhinal cortex and adjacent structures. In: Derdikman D, Knierim JJ (eds) Space, time and memory in the hippocampal formation. Springer, HeidelbergGoogle Scholar
  66. Deshmukh SS, Yoganarasimha D, Voicu H, Knierim JJ (2010) Theta modulation in the medial and the lateral entorhinal cortices. J Neurophysiol 104:994–1006PubMedPubMedCentralGoogle Scholar
  67. Dickson CT, Magistretti J, Shalinsky MH, Fransen E, Hasselmo ME, Alonso A (2000) Properties and role of I(h) in the pacing of subthreshold oscillations in entorhinal cortex layer II neurons. J Neurophysiol 83:2562–2579PubMedGoogle Scholar
  68. Dinan TG, Crunelli V, Kelly JS (1987) Neuroleptics decrease calcium-activated potassium conductance in hippocampal pyramidal cells. Brain Res 407:159–162PubMedGoogle Scholar
  69. Dodt H-U, Pawelzik H, Zieglgansberger W (1991) Actions of noradrenaline on neocortical neurons in vitro. Brain Res 545:307–311PubMedGoogle Scholar
  70. Douchamps V, Jeewajee A, Blundell P, Burgess N, Lever C (2013) Evidence for encoding versus retrieval scheduling in the hippocampus by theta phase and acetylcholine. J Neurosci 33:8689–8704PubMedPubMedCentralGoogle Scholar
  71. Dowling JE (1991) Retinal neuromodulation: The role of dopamine. Visual Neurosci 7:87–97Google Scholar
  72. Doze VA, Cohen GA, Madison DV (1991) Synaptic localization of adrenergic disinhibition in the rat hippocampus. Neuron 6:889–900PubMedGoogle Scholar
  73. Dudman JT, Nolan MF (2009) Stochastically gating ion channels enable patterned spike firing through activity-dependent modulation of spike probability. PLoS Comput Biol 5:e1000290PubMedPubMedCentralGoogle Scholar
  74. Durstewitz D, Seamans JK, Sejnowski TJ (2000) Neurocomputational models of working memory. Nat Neurosci 3:1184–1191PubMedGoogle Scholar
  75. Dutar P, Nicoll RA (1988) Classification of muscarinic responses in hippocampus in terms of receptor subtypes and second-messenger systems: electrophysiological studies in vitro. J Neurosci 8:4214–4224PubMedGoogle Scholar
  76. Easton A, Fitchett AE, Eacott MJ, Baxter MG (2010) Medial septal cholinergic neurons are necessary for context-place memory but not episodic-like memory. Hippocampus 21:1021–1027PubMedGoogle Scholar
  77. Egorov AV et al (2002) Graded persistent activity in entorhinal cortex neurons. Nature 420:173–178PubMedGoogle Scholar
  78. Erchova I, Kreck G, Heinemann U, Herz AV (2004) Dynamics of rat entorhinal cortex layer II and III cells: characteristics of membrane potential resonance at rest predict oscillation properties near threshold. J Physiol 560:89–110PubMedPubMedCentralGoogle Scholar
  79. Esclassan F, Coutureau E, Di Scala G, Marchand AR (2009) A cholinergic-dependent role for the entorhinal cortex in trace fear conditioning. J Neurosci 29:8087–8093PubMedGoogle Scholar
  80. ffrench-Mullen JMH, Hori N, Nakanishi H, Slater NT, Carpenter DO (1983) Asymmetric distribution of acetylcholine receptors and M channels on prepyriform neurons. Cell Mol Neurobiol 3:163–182PubMedGoogle Scholar
  81. Forsythe ID, Clements JD (1990) Presynaptic glutamate receptors depress excitatory monosynaptic transmission between mouse hippocampal neurons. J Physiol 429:1–16PubMedPubMedCentralGoogle Scholar
  82. Fransén E, Alonso AA, Dickson CT, Magistretti J, Hasselmo ME (2004) Ionic mechanisms in the generation of subthreshold oscillations and action potential clustering in entorhinal layer II stellate neurons. Hippocampus 14:368–384PubMedGoogle Scholar
  83. Fransén E, Tahvildari B, Egorov AV, Hasselmo ME, Alonso AA (2006) Mechanism of graded persistent cellular activity of entorhinal cortex layer v neurons. Neuron 49:735–746PubMedGoogle Scholar
  84. Frey U, Huang YY, Kandel ER (1993) Effects of cAMP simulate a late stage of LTP in hippocampal CA1 neurons. Science (New York, NY) 260:1661–1664.Google Scholar
  85. Fyhn M, Molden S, Witter MP, Moser EI, Moser MB (2004) Spatial representation in the entorhinal cortex. Science 305:1258–1264PubMedGoogle Scholar
  86. Gellman RL, Aghajanian GK (1993) Pyramidal cells in piriform cortex receive a convergence of inputs from monoamine activated gabaergic interneurons. Brain Res 600:63–73PubMedGoogle Scholar
  87. Gereau RW, Conn PJ (1995a) Multiple presynaptic metabotropic glutamate receptors modulate excitatory and inhibitory synaptic transmission in hippocampal area CA1. J Neurosci 15:6879–6889PubMedGoogle Scholar
  88. Gereau RW, Conn PJ (1995b) Roles of specific metabotropic glutamate receptor subtypes in regulation of hippocampal CA1 pyramidal cell excitability. J Neurophysiol 74:122–129PubMedGoogle Scholar
  89. Ghoneim MM, Mewaldt SP (1975) Effects of diazepam and scopolamine on storage, retrieval and organizational processes in memory. Psychopharmacologia 44:257–262PubMedGoogle Scholar
  90. Giocomo LM, Hasselmo ME (2006) Difference in time course of modulation of synaptic transmission by group II versus group III metabotropic glutamate receptors in region CA1 of the hippocampus. Hippocampus 16:1004–1016PubMedGoogle Scholar
  91. Giocomo LM, Hasselmo ME (2008a) Computation by oscillations: implications of experimental data for theoretical models of grid cells. Hippocampus 18:1186–1199PubMedPubMedCentralGoogle Scholar
  92. Giocomo LM, Hasselmo ME (2008b) Time constants of h current in layer II stellate cells differ along the dorsal to ventral axis of medial entorhinal cortex. J Neurosci 28:9414–9425PubMedPubMedCentralGoogle Scholar
  93. Giocomo LM, Hasselmo ME (2009) Knock-out of HCN1 subunit flattens dorsal-ventral frequency gradient of medial entorhinal neurons in adult mice. J Neurosci 29:7625–7630PubMedPubMedCentralGoogle Scholar
  94. Giocomo LM, Zilli EA, Fransen E, Hasselmo ME (2007) Temporal frequency of subthreshold oscillations scales with entorhinal grid cell field spacing. Science 315:1719–1722PubMedPubMedCentralGoogle Scholar
  95. Giocomo LM, Hussaini SA, Zheng F, Kandel ER, Moser MB, Moser EI (2011) Grid cells use HCN1 channels for spatial scaling. Cell 147:1159–1170PubMedGoogle Scholar
  96. Givens B, Olton DS (1994) Local modulation of basal forebrain: effects on working and reference memory. J Neurosci 14:3578–3587PubMedGoogle Scholar
  97. Givens B, Olton DS (1995) Bidirectional modulation of scopolamine-induced working memory impairments by muscarinic activation of the medial septal area. Neurobiol Learn Mem 63:269–276PubMedGoogle Scholar
  98. Goldsmith SK, Joyce JN (1994) Dopamine D2 receptor expression in hippocampus and parahippocampal cortex of rat, cat, and human in relation to tyrosine hydroxylase-immunoreactive fibers. Hippocampus 4:354–373PubMedGoogle Scholar
  99. Green JD, Arduini AA (1954) Hippocampal electrical activity and arousal. J Neurophysiol 17:533–557PubMedGoogle Scholar
  100. Green EJ, Mcnaughton BL, Barnes CA (1990) Role of the medial septum and hippocampal theta rhythm in exploration-related synaptic efficacy changes in rat fascia-dentata. Brain Res 529:102–108PubMedGoogle Scholar
  101. Green A, Ellis KA, Ellis J, Bartholomeusz CF, Ilic S, Croft RJ, Luan Phan K, Nathan PJ (2005) Muscarinic and nicotinic receptor modulation of object and spatial n-back working memory in humans. Pharmacol Biochem Behav 81:575–584PubMedGoogle Scholar
  102. Griffin AL, Asaka Y, Darling RD, Berry SD (2004) Theta-contingent trial presentation accelerates learning rate and enhances hippocampal plasticity during trace eyeblink conditioning. Behav Neurosci 118:403–411PubMedGoogle Scholar
  103. Grünschlag CR, Haas HL, Stevens DR (1997) 5-HT inhibits lateral entorhinal cortical neurons of the rat in vitro by activation of potassium channel-coupled 5-HT1A receptors. Brain Res 770:10–17PubMedGoogle Scholar
  104. Gulledge AT, Kawaguchi Y (2007) Phasic Cholinergic Signaling in the Hippocampus : Functional Homology With the Neocortex ? Hippocampus 332:327–332Google Scholar
  105. Haas JS, White JA (2002) Frequency selectivity of layer II stellate cells in the medial entorhinal cortex. J Neurophysiol 88:2422–2429PubMedGoogle Scholar
  106. Haberly LB (1985) Neuronal circuitry in olfactory cortex: Anatomy and functional implications. Chem Senses 10:219–238Google Scholar
  107. Hafting T, Fyhn M, Molden S, Moser MB, Moser EI (2005) Microstructure of a spatial map in the entorhinal cortex. Nature 436:801–806PubMedGoogle Scholar
  108. Haj-Dahmane S, Andrade R (1996) Muscarinic activation of a voltage-dependent cation nonselective current in rat association cortex. J Neurosci 16:3848–3861PubMedGoogle Scholar
  109. Haj-Dahmane S, Andrade R (1997) Calcium-activated cation nonselective current contributes to the fast afterdepolarization in rat prefrontal cortex neurons. J Neurophysiol 78:1983–1989PubMedGoogle Scholar
  110. Haj-Dahmane S, Andrade R (1998) Ionic mechanism of the slow afterdepolarization induced by muscarinic receptor activation in rat prefrontal cortex. J Neurophysiol 80:1197–1210PubMedGoogle Scholar
  111. Hamam BN, Meyler P, Hasselmo M, Alonso A (2001) Cholinergic bistability persistent activity and synaptic modulation in entorhinal cortex layer V neurons. Soc Neurosci Abstr 27Google Scholar
  112. Hamam BN, Sinai M, Poirier G, Chapman CA (2007) Cholinergic suppression of excitatory synaptic responses in layer II of the medial entorhinal cortex. Hippocampus 17:103–113PubMedGoogle Scholar
  113. Hasselmo ME (1993) Acetylcholine and learning in a cortical associative memory. Neural Comp 5:32–44Google Scholar
  114. Hasselmo ME (1999) Neuromodulation: acetylcholine and memory consolidation. Trends Cogn Sci 3:351–359PubMedGoogle Scholar
  115. Hasselmo ME (2006) The role of acetylcholine in learning and memory. Curr Opin Neurobiol 16:710–715PubMedPubMedCentralGoogle Scholar
  116. Hasselmo ME (2008) Grid cell mechanisms and function: contributions of entorhinal persistent spiking and phase resetting. Hippocampus 18:1213–1229PubMedPubMedCentralGoogle Scholar
  117. Hasselmo ME, Bower JM (1991a) Selective suppression of afferent but not intrinsic fiber synaptic transmission by 2-amino-4-phosphonobutyric acid (AP4) in piriform cortex. Brain Res 548:248–255PubMedGoogle Scholar
  118. Hasselmo ME, Bower JM (1991b) Selective suppression of afferent but not intrinsic fiber synaptic transmission by 2-amino-4-phosphonobutyric acid (AP4) in piriform cortex. Brain Res 548:248–255PubMedGoogle Scholar
  119. Hasselmo ME, Bower JM (1992) Cholinergic suppression specific to intrinsic not afferent fiber synapses in rat piriform (olfactory) cortex. J Neurophysiol 67:1222–1229PubMedGoogle Scholar
  120. Hasselmo ME, Bower JM (1993) Acetylcholine and memory. Trends Neurosci 16:218–222PubMedGoogle Scholar
  121. Hasselmo ME, Brandon MP (2008) Linking cellular mechanisms to behavior: entorhinal persistent spiking and membrane potential oscillations may underlie path integration, grid cell firing, and episodic memory. Neural Plast 2008:658323PubMedPubMedCentralGoogle Scholar
  122. Hasselmo ME, Cekic M (1996) Suppression of synaptic transmission may allow combination of associative feedback and self-organizing feedforward connections in the neocortex. Behav Brain Res 79:153–161PubMedGoogle Scholar
  123. Hasselmo ME, Sarter M (2011) Modes and models of forebrain cholinergic neuromodulation of cognition. Neuropsychopharmacology 36:52–73PubMedPubMedCentralGoogle Scholar
  124. Hasselmo ME, Schnell E (1994) Laminar selectivity of the cholinergic suppression of synaptic transmission in rat hippocampal region CA1: computational modeling and brain slice physiology. J Neurosci 14:3898–3914PubMedGoogle Scholar
  125. Hasselmo ME, Stern CE (2006) Mechanisms underlying working memory for novel information. Trends Cogn Sci 10:487–493PubMedPubMedCentralGoogle Scholar
  126. Hasselmo ME, Wyble BP (1997) Free recall and recognition in a network model of the hippocampus: simulating effects of scopolamine on human memory function. Behav Brain Res 89:1–34PubMedGoogle Scholar
  127. Hasselmo ME, Schnell E, Barkai E (1995) Dynamics of learning and recall at excitatory recurrent synapses and cholinergic modulation in rat hippocampal region CA3. J Neurosci 15:5249–5262PubMedGoogle Scholar
  128. Hasselmo ME, Wyble BP, Wallenstein GV (1996) Encoding and retrieval of episodic memories: role of cholinergic and GABAergic modulation in the hippocampus. Hippocampus 6:693–708PubMedGoogle Scholar
  129. Hasselmo ME, Bodelon C, Wyble BP (2002) A proposed function for hippocampal theta rhythm: separate phases of encoding and retrieval enhance reversal of prior learning. Neural Comput 14:793–817PubMedGoogle Scholar
  130. Heys JG, Hasselmo ME (2012) Neuromodulation of I(h) in layer II medial entorhinal cortex stellate cells: a voltage-clamp study. J Neurosci 32:9066–9072PubMedPubMedCentralGoogle Scholar
  131. Heys JG, Giocomo LM, Hasselmo ME (2010) Cholinergic modulation of the resonance properties of stellate cells in layer II of medial entorhinal cortex. J Neurophysiol 104:258–270PubMedPubMedCentralGoogle Scholar
  132. Heys JG, Schultheiss NW, Shay CF, Tsuno Y, Hasselmo ME (2012) Effects of acetylcholine on neuronal properties in entorhinal cortex. Front Behav Neurosci 6:32PubMedPubMedCentralGoogle Scholar
  133. Hillman KL, Knudson CA, Carr PA, Doze VA, Porter JE (2005) Adrenergic receptor characterization of CA1 hippocampal neurons using real time single cell RT-PCR. Brain Res Mol Res 139:267–276Google Scholar
  134. Hillman KL, Doze VA, Porter JE (2007) Alpha1A-adrenergic receptors are functionally expressed by a subpopulation of cornu ammonis 1 interneurons in rat hippocampus. J Pharmacol Exp Therap 321:1062–1068Google Scholar
  135. Hillman KL, Lei S, Doze VA, Porter JE (2009) Alpha-1A adrenergic receptor activation increases inhibitory tone in CA1 hippocampus. Epilepsy Res 84:97–109PubMedPubMedCentralGoogle Scholar
  136. Holscher C, Anwyl R, Rowan MJ (1997) Stimulation on the positive phase of hippocampal theta rhythm induces long-term potentiation that can Be depotentiated by stimulation on the negative phase in area CA1 in vivo. J Neurosci 17:6470–6477PubMedGoogle Scholar
  137. Hopkins WF, Johnston D (1988) Noradrenergic enhancement of long-term potentiation at mossy fiber synapses in the hippocampus. J Neurophysiol 59:667–687PubMedGoogle Scholar
  138. Hori N, Akaike N, Carpenter DO (1988) Piriform cortex brain slices: techniques for isolation of synaptic inputs. J Neurosci Meth 25:197–208Google Scholar
  139. Hounsgaard J (1978) Presynaptic inhibitory action of acetylcholine in area CA1 of the hippocampus. Exp Neurol 62:787–797PubMedGoogle Scholar
  140. Howe JR, Sutor B, Zheglgansberger W (1987) Baclofen reduces post-synaptic potentials of rat cortical neurons by an action other than its hyperpolarizing action. J Physiol:539–569Google Scholar
  141. Huerta PT, Lisman JE (1993) Heightened synaptic plasticity of hippocampal CA1 neurons during a cholinergically induced rhythmic state. Nature 364:723–725PubMedGoogle Scholar
  142. Huerta PT, Lisman JE (1995) Bidirectional synaptic plasticity induced by a single burst during cholinergic theta oscillation in CA1 in vitro. Neuron 15:1053–1063PubMedGoogle Scholar
  143. Huerta PT, Lisman JE (1996) Low-frequency stimulation at the troughs of theta-oscillation induces long-term depression of previously potentiated CA1 synapses. J Neurophysiol 75:877–884PubMedGoogle Scholar
  144. Hyman JM, Wyble BP, Goyal V, Rossi CA, Hasselmo ME (2003) Stimulation in hippocampal region CA1 in behaving rats yields long-term potentiation when delivered to the peak of theta and long-term depression when delivered to the trough. J Neurosci 23:11725–11731PubMedGoogle Scholar
  145. Ikonen S, McMahan R, Gallagher M, Eichenbaum H, Tanila H (2002) Cholinergic system regulation of spatial representation by the hippocampus. Hippocampus 12:386–397PubMedGoogle Scholar
  146. Ito HT, Schuman EM (2007) Frequency-dependent gating of synaptic transmission and plasticity by dopamine. Front Neural Circ 1:1Google Scholar
  147. Ito HT, Schuman EM (2012) Functional division of hippocampal area CA1 via modulatory gating of entorhinal cortical inputs. Hippocampus 22:372–387PubMedPubMedCentralGoogle Scholar
  148. Ito HT, Smith SEP, Hsiao E, Patterson PH (2010) Maternal immune activation alters nonspatial information processing in the hippocampus of the adult offspring. Brain, Behav Immun 24:930–941Google Scholar
  149. Jahr CE, Nicoll RA (1982) Noradrenergic modulation of dendrodendritic inhibition in the olfactory bulb. Nature 297:227–229PubMedGoogle Scholar
  150. Jeewajee A, Lever C, Burton S, O’Keefe J, Burgess N (2008) Environmental novelty is signaled by reduction of the hippocampal theta frequency. Hippocampus 18:340–348PubMedPubMedCentralGoogle Scholar
  151. Kahle JS, Cotman CW (1989) Carbachol depresses synaptic responses in the medial but not the lateral perforant path. Brain Res 482:159–163PubMedGoogle Scholar
  152. Kamiya H (1991) Some pharmacological differences between hippocampal excitatory and inhibitory synapses in transmitter release: an in vitro study. Synapse 8:229–235PubMedGoogle Scholar
  153. Kawaguchi Y (1997) Selective cholinergic modulation of cortical GABAergic cell subtypes. J Neurophysiol 78:1743–1747PubMedGoogle Scholar
  154. Kesner RP, Adelstein TB, Crutcher KA (1989) Equivalent spatial location memory deficits in rats with medial septum or hippocampal-formation lesions and patients with dementia of the Alzheimer’s type. Brain Cogn 9:289–300PubMedGoogle Scholar
  155. Klausberger T, Magill PJ, Marton LF, Roberts JD, Cobden PM, Buzsaki G, Somogyi P (2003) Brain-state- and cell-type-specific firing of hippocampal interneurons in vivo. Nature 421:844–848PubMedGoogle Scholar
  156. Klink R, Alonso A (1997) Muscarinic modulation of the oscillatory and repetitive firing properties of entorhinal cortex layer II neurons. J Neurophysiol 77:1813–1828PubMedGoogle Scholar
  157. Koenig J, Linder AN, Leutgeb JK, Leutgeb S (2011) The spatial periodicity of grid cells is not sustained during reduced theta oscillations. Science 332:592–595PubMedGoogle Scholar
  158. Koerner JF, Cotman CW (1982) Response of Schaffer collateral-CA1 pyramidal cell synapses of the hippocampus to analogues of acidic amino acids. Brain Res 251:105–115PubMedGoogle Scholar
  159. Koller G, Satzger W, Adam M, Wagner M, Kathmann N, Soyka M, Engel R (2003) Effects of scopolamine on matching to sample paradigm and related tests in human subjects. Neuropsychobiology 48:87–94PubMedGoogle Scholar
  160. Kramis R, Vanderwolf CH, Bland BH (1975) Two types of hippocampal rhythmical slow activity in both the rabbit and the rat: relations to behavior and effects of atropine, diethyl ether, urethane, and pentobarbital. Exp Neurol 49:58–85PubMedGoogle Scholar
  161. Kraus BJ, Robinson RJ, White JA, Eichenbaum H, Hasselmo ME (2013) Hippocampal “Time Cells”: Time versus Path Integration. Neuron 78:1090–1101PubMedGoogle Scholar
  162. Kremin T, Hasselmo ME (2007) Cholinergic suppression of glutamatergic synaptic transmission in hippocampal region CA3 exhibits laminar selectivity: Implication for hippocampal network dynamics. Neuroscience 149:760–767PubMedPubMedCentralGoogle Scholar
  163. Kremin T, Gerber D, Giocomo LM, Huang SY, Tonegawa S, Hasselmo ME (2006) Muscarinic suppression in stratum radiatum of CA1 shows dependence on presynaptic M1 receptors and is not dependent on effects at GABA(B) receptors. Neurobiol Learn Mem 85:153–163PubMedGoogle Scholar
  164. Krnjevic K (1984) Neurotransmitters in cerebral cortex: A general account. In: Jones EG, Peters A (eds) Cerebral Cortex. Plenum, New York, pp 39–61Google Scholar
  165. Krnjevic K, Phillis JW (1963) Acetylcholine-sensitive cells in the cerebral cortex. J Physiol 166:296–327PubMedPubMedCentralGoogle Scholar
  166. Krnjevic K, Pumain R, Renaud L (1971) The mechanism of excitation by acetylcholine in the cerebral cortex. J Physiol 215:247–268PubMedPubMedCentralGoogle Scholar
  167. Kruglikov I, Rudy B (2008) Perisomatic GABA release and thalamocortical integration onto neocortical excitatory cells are regulated by neuromodulators. Neuron 58:911–924PubMedPubMedCentralGoogle Scholar
  168. Kunec S, Hasselmo ME, Kopell N (2005) Encoding and retrieval in the CA3 region of the hippocampus: a model of theta-phase separation. J Neurophysiol 94:70–82PubMedGoogle Scholar
  169. Kunitake A, Kunitake T, Stewart M (2004) Differential modulation by carbachol of four separate excitatory afferent systems to the rat subiculum in vitro. Hippocampus 14:986–999PubMedGoogle Scholar
  170. Lacaille JC, Schwartzkroin PA (1988) Stratum lacunosum-moleculare interneurons of hippocampal CA1 region. II. Intrasomatic and intradendritic recordings of local circuit synaptic interactions. J Neurosci 8:1411–1424PubMedGoogle Scholar
  171. Lancaster B, Nicoll RA (1987) Properties of two calcium-activated hyperpolarizations in rat hippocampal neurons. J Physiol 389:187–203PubMedPubMedCentralGoogle Scholar
  172. Lanthorn TH, Cotman CW (1981) Baclofen selectively inhibits excitatory synaptic transmission in the hippocampus. Brain Res 225:171–178PubMedGoogle Scholar
  173. Lawrence JJ, Statland JM, Grinspan ZM, McBain CJ (2006) Cell type-specific dependence of muscarinic signalling in mouse hippocampal stratum oriens interneurons. J Physiol 570:595–610PubMedPubMedCentralGoogle Scholar
  174. Leão RN, Mikulovic S, Leão KE, Munguba H, Gezelius H, Enjin A, Patra K, Eriksson A, Loew LM, Tort ABL, Kullander K (2012) OLM interneurons differentially modulate CA3 and entorhinal inputs to hippocampal CA1 neurons. Nat Neurosci 15:1524–1530PubMedPubMedCentralGoogle Scholar
  175. Lee MG, Chrobak JJ, Sik A, Wiley RG, Buzsaki G (1994) Hippocampal theta activity following selective lesion of the septal cholinergic system. Neuroscience 62:1033–1047PubMedGoogle Scholar
  176. Lerma J, Garcia-Austt E (1985) Hippocampal theta rhythm during paradoxical sleep. Effects of afferent stimuli and phase relationships with phasic events. Electroencephalogr Clin Neurophysiol 60:46–54PubMedGoogle Scholar
  177. Leung LS, Péloquin P (2010) Cholinergic modulation differs between basal and apical dendritic excitation of hippocampal CA1 pyramidal cells. Cerebral cortex (New York, NY: 1991) 20:1865–1877.Google Scholar
  178. Leung VL, Zhao Y, Brown TH (2006) Graded persistent firing in neurons of rat perirhinal cortex. Soc Neurosci Abstr 32:636.18Google Scholar
  179. Lever C, Burton S, Jeewajee A, Wills TJ, Cacucci F, Burgess N, O’Keefe J (2010) Environmental novelty elicits a later theta phase of firing in CA1 but not subiculum. Hippocampus 20(2):229–234PubMedPubMedCentralGoogle Scholar
  180. Lever C, Kaplan R, Burgess N (2014) The function of oscillations in the hippocampal formation. In: Derdikman D, Knierim JJ (eds) Space, time and memory in the hippocampal formation. Springer, HeidelbergGoogle Scholar
  181. Lin Y, Phillis JW (1991) Muscarinic agonist-mediated induction of long-term potentiation in rat. Brain Res 551:342–345PubMedGoogle Scholar
  182. Ma L, Shalinsky MH, Alonso A, Dickson CT (2007) Effects of serotonin on the intrinsic membrane properties of layer II medial entorhinal cortex neurons. Hippocampus 17:114–129PubMedGoogle Scholar
  183. MacDonald CJ, Lepage KQ, Eden UT, Eichenbaum H (2011) Hippocampal “time cells” bridge the gap in memory for discontiguous events. Neuron 71:737–749PubMedPubMedCentralGoogle Scholar
  184. Madison DV, Nicoll RA (1982) Noradrenaline blocks accumulation of pyramidal cell discharge in the hippocampus. Nature 299:636–638PubMedGoogle Scholar
  185. Madison DV, Nicoll RA (1984) Control of the repetitive discharge of rat CA 1 pyramidal neurons in vitro. J Physiol 354:319–331PubMedPubMedCentralGoogle Scholar
  186. Madison DV, Nicoll RA (1986) Actions of noradrenaline recorded intracellularly in rat hippocampal CA1 pyramidal cells, in vitro. J Physiol 372:221–244PubMedPubMedCentralGoogle Scholar
  187. Madison DV, Nicoll RA (1988) Norepinephrine decreases synaptic inhibition in the rat hippocampus. Brain Res 442:131–138PubMedGoogle Scholar
  188. Madison DV, Lancaster B, Nicoll RA (1987) Voltage clamp analysis of cholinergic action in the hippocampus. J Neurosci 7:733–741PubMedGoogle Scholar
  189. Malenka RC, Nicoll RA (1986) Dopamine decreases the calcium-activated afterhyperpolarization in hippocampal ca1 pyramidal cells. Brain Res 379:210–215PubMedGoogle Scholar
  190. Mannaioni G, Marino MJ, Valenti O, Traynelis SF, Conn PJ (2001) Metabotropic glutamate receptors 1 and 5 differentially regulate CA1 pyramidal cell function. J Neurosci 21:5925–5934PubMedGoogle Scholar
  191. Markowska AL, Olton DS, Givens B (1995) Cholinergic manipulations in the medial septal area: age-related effects on working memory and hippocampal electrophysiology. J Neurosci 15:2063–2073PubMedGoogle Scholar
  192. Markram H, Segal M (1990a) Long-lasting facilitation of excitatory postsynaptic potentials in the rat hippocampus by acetylcholine. J Physiol 427:381–393PubMedPubMedCentralGoogle Scholar
  193. Markram H, Segal M (1990b) Electrophysiological characteristics of cholinergic and non-cholinergic neurons in the rat medial septum-diagonal band complex. Brain Res 513:171–174PubMedGoogle Scholar
  194. McCormick DA, Prince DA (1986) Mechanisms of action of acetylcholine in the guinea-pig cerebral cortex in vitro. J Physiol 375:169–194PubMedPubMedCentralGoogle Scholar
  195. McCormick DA, Connors BW, Lighthall JW, Prince DA (1985) Comparative electrophysiology of pyramidal and sparsely spiny stellate neurons of the neocortex. J Neurophysiol 54:782–806PubMedGoogle Scholar
  196. McGaughy J, Koene RA, Eichenbaum H, Hasselmo ME (2005) Cholinergic deafferentation of the entorhinal cortex in rats impairs encoding of novel but not familiar stimuli in a delayed nonmatch-to-sample task. J Neurosci 25:10273–10281PubMedGoogle Scholar
  197. McQuiston AR, Madison DV (1999a) Muscarinic receptor activity induces an afterdepolarization in a subpopulation of hippocampal CA1 interneurons. J Neurosci 19:5703–5710PubMedGoogle Scholar
  198. McQuiston AR, Madison DV (1999b) Muscarinic receptor activity has multiple effects on the resting membrane potentials of CA1 hippocampal interneurons. J Neurosci 19:5693–5702PubMedGoogle Scholar
  199. Meeter M, Murre JMJ, Talamini LM (2004) Mode shifting between storage and recall based on novelty detection in oscillating hippocampal circuits. Hippocampus 14:722–741PubMedGoogle Scholar
  200. Mizuseki K, Sirota A, Pastalkova E, Buzsáki G (2009) Theta oscillations provide temporal windows for local circuit computation in the entorhinal-hippocampal loop. Neuron 64:267–280PubMedPubMedCentralGoogle Scholar
  201. Mizuseki K, Diba K, Pastalkova E, Buzsáki G (2011) Hippocampal CA1 pyramidal cells form functionally distinct sublayers. Nat Neurosci 14:1174–1181PubMedPubMedCentralGoogle Scholar
  202. Mody I, Leung P, Miller JJ (1983) Role of norepinephrine in seizure-like activity of hippocampal pyramidal cells maintained in vitro: alteration by 6-hydroxydopamine lesions of norepinephrine-containing systems. Can J Physiol Pharmacol 61:841–846PubMedGoogle Scholar
  203. Monmaur P, Collet A, Puma C, Frankel-Kohn L, Sharif A (1997) Relations between acetylcholine release and electrophysiological characteristics of theta rhythm: a microdialysis study in the urethane-anesthetized rat hippocampus. Brain Res Bull 42:141–146PubMedGoogle Scholar
  204. Morrison JH, Foote SL, Molliver ME, Bloom FE, Lidov HGD (1982) Noradrenergic and serotonergic fibers innervate complementary layers in monkey primary cortex: An immuno-histochemical study. Proc Natl Acad Sci U S A 79:2401–2405PubMedPubMedCentralGoogle Scholar
  205. Mott DD, Lewis DV (1991) Facilitation of the induction of long-term potentiation by GABAb receptors. Science 252:1718–1720PubMedGoogle Scholar
  206. Mueller AL, Dunwiddie TV (1983) Anticonvulsant and proconvulsant actions of alpha- and beta-noradrenergic agonists on epileptiform activity in rat hippocampus in vitro. Epilepsia 24:57–64PubMedGoogle Scholar
  207. Mueller AJ, Hoffer BJ, Dunwiddie TV (1981) Noradrenergic responses in rat hippocampus: evidence for mediation by a and b receptors in the in vitro slice. Brain Res 214:113–126PubMedGoogle Scholar
  208. Mynlieff M, Dunwiddie TV (1988) Noradrenergic depression of synaptic responses in hippocampus of rat: evidence for mediation of alpha1-receptors. Neuropharmacol 27:391–398Google Scholar
  209. Navaroli VL, Zhao Y, Boguszewski P, Brown TH (2012) Muscarinic receptor activation enables persistent firing in pyramidal neurons from superficial layers of dorsal perirhinal cortex. Hippocampus 22:1392–1404PubMedPubMedCentralGoogle Scholar
  210. Newberry NR, Nicoll RA (1984) Direct hyperpolarizing action of baclofen on hippocampal pyramidal cells. Nature 308:450–452PubMedGoogle Scholar
  211. Newberry NR, Nicoll RA (1985) Comparison of the action of baclofen with g-aminobutyric acid on rat hippocampal pyramidal cells in vitro. J Physiol 360:161–185PubMedPubMedCentralGoogle Scholar
  212. Nicoll RA (1988) The coupling of neurotransmitter receptors to ion channels in the brain. Science 241:545–551PubMedGoogle Scholar
  213. Nolan MF, Dudman JT, Dodson PD, Santoro B (2007) HCN1 channels control resting and active integrative properties of stellate cells from layer II of the entorhinal cortex. J Neurosci 27:12440–12451PubMedGoogle Scholar
  214. O’Neill J, Pleydell-Bouverie B, Dupret D, Csicsvari J (2010) Play it again: reactivation of waking experience and memory. Trends Neurosci 33:220–229PubMedGoogle Scholar
  215. Olpe H-R, Karlsson G (1990) The effects of baclofen and two GABAb-receptor antagonists on long-term potentiation. Naunyn-Schmiedeberg’s Arch Pharmacol 342:194–197Google Scholar
  216. Otmakhova NA, Lisman JE (1996) D1/D5 dopamine receptor activation increases the magnitude of early long-term potentiation at CA1 hippocampal synapses. J Neurosci 16:7478–7486PubMedGoogle Scholar
  217. Otmakhova NA, Lisman JE (1998) D1/D5 dopamine receptors inhibit depotentiation at CA1 synapses via cAMP-dependent mechanism. J Neurosci 18:1270–1279PubMedGoogle Scholar
  218. Otmakhova NA, Lisman JE (1999) Dopamine selectively inhibits the direct cortical pathway to the CA1 hippocampal region. J Neurosci 19:1437–1445PubMedGoogle Scholar
  219. Otmakhova NA, Lisman JE (2000) Dopamine, serotonin, and noradrenaline strongly inhibit the direct perforant path-CA1 synaptic input, but have little effect on the Schaffer collateral input. Ann N Y Acad Sci 911:462–464PubMedGoogle Scholar
  220. Otmakhova NA, Lewey J, Asrican B, Lisman JE (2005) Inhibition of perforant path input to the CA1 region by serotonin and noradrenaline. J Neurophysiol 94:1413–1422PubMedGoogle Scholar
  221. Papay R, Gaivin R, Jha A, McCune DF, McGrath JC, Rodrigo MC, Simpson PC, Doze VA, Perez DM (2006) Localization of the mouse alpha1A-adrenergic receptor (AR) in the brain: alpha1AAR is expressed in neurons, GABAergic interneurons, and NG2 oligodendrocyte progenitors. J Compar Neurol 497:209–222Google Scholar
  222. Pastalkova E, Itskov V, Amarasingham A, Buzsaki G (2008) Internally generated cell assembly sequences in the rat hippocampus. Science 321:1322–1327PubMedPubMedCentralGoogle Scholar
  223. Patil MM, Hasselmo ME (1999) Modulation of inhibitory synaptic potentials in the piriform cortex. J Neurophysiol 81:2103–2118PubMedGoogle Scholar
  224. Pawlak V, Wickens JR, Kirkwood A, Kerr JND (2010) Timing is not Everything: Neuromodulation Opens the STDP Gate. Front Synaptic Neurosci 2:146PubMedPubMedCentralGoogle Scholar
  225. Petersen RC (1977) Scopolamine induced learning failures in man. Psychopharmacology (Berl) 52:283–289Google Scholar
  226. Pian P, Bucchi A, Decostanzo A, Robinson RB, Siegelbaum SA (2007) Modulation of cyclic nucleotide-regulated HCN channels by PIP(2) and receptors coupled to phospholipase C. Pflügers Archiv 455:125–145PubMedGoogle Scholar
  227. Pitler TA, Alger BE (1992) Cholinergic excitation of GABAergic interneurons in the rat hippocampal slice. J Physiol 450:127–142PubMedPubMedCentralGoogle Scholar
  228. Richter M, Schilling T, Muller W (1999) Muscarinic control of intracortical connections to layer II in rat entorhinal cortex slice. Neurosci Lett 273:200–202PubMedGoogle Scholar
  229. Robbins TW, Semple J, Kumar R, Truman MI, Shorter J, Ferraro A, Fox B, McKay G, Matthews K (1997) Effects of scopolamine on delayed-matching-to-sample and paired associates tests of visual memory and learning in human subjects: comparison with diazepam and implications for dementia. Psychopharmacology (Berl) 134:95–106Google Scholar
  230. Rogers JL, Kesner RP (2003) Cholinergic modulation of the hippocampus during encoding and retrieval. Neurobiol Learn Mem 80:332–342PubMedGoogle Scholar
  231. Sainsbury RS, Heynen A, Montoya CP (1987) Behavioral correlates of hippocampal type 2 theta in the rat. Physiol Behav 39:513–519PubMedGoogle Scholar
  232. Sambeth A, Meeter M, Blokland A (2009) Hippocampal theta frequency and novelty. Hippocampus 19:407–410PubMedGoogle Scholar
  233. Sargolini F, Fyhn M, Hafting T, McNaughton BL, Witter MP, Moser MB, Moser EI (2006) Conjunctive representation of position, direction, and velocity in entorhinal cortex. Science 312:758–762PubMedGoogle Scholar
  234. Sarter M, Bruno JP, Givens B (2003) Attentional functions of cortical cholinergic inputs: what does it mean for learning and memory? Neurobiol Learn Mem 80:245–256PubMedGoogle Scholar
  235. Satou M, Mori K, Tazawa Y, Takagi SF (1982) Two types of postsynaptic inhibition in pyriform cortex of the rabbit: fast and slow inhibitory postsynaptic potentials. J Neurophysiol 48:1142–1156PubMedGoogle Scholar
  236. Scanziani M, Capogna M, Gahwiler BH, Thompson SM (1992) Presynaptic inhibition of miniature excitatory synaptic currents by baclofen and adenosine in the hippocampus. Neuron 9:919–927PubMedGoogle Scholar
  237. Scanziani M, Gähwiler BH, Thompson SM (1993) Presynaptic inhibition of excitatory synaptic transmission mediated by alpha adrenergic receptors in area CA3 of the rat hippocampus in vitro. J Neurosci 13:5393–5401PubMedGoogle Scholar
  238. Scheiderer CL, Dobrunz LE, McMahon LL (2004) Novel form of long-term synaptic depression in rat hippocampus induced by activation of alpha 1 adrenergic receptors. J Neurophysiol 91:1071–1077PubMedGoogle Scholar
  239. Schmitz D, Empson RM, Gloveli T, Heinemann U (1995) Serotonin reduces synaptic excitation of principal cells in the superficial layers of rat hippocampal-entorhinal cortex combined slices. Neurosci Lett 190:37–40PubMedGoogle Scholar
  240. Schmitz D, Gloveli T, Empson RM, Draguhn A, Heinemann U (1998a) Serotonin reduces synaptic excitation in the superficial medial entorhinal cortex of the rat via a presynaptic mechanism. J Physiol 508(1):119–129PubMedPubMedCentralGoogle Scholar
  241. Schmitz D, Gloveli T, Empson RM, Heinemann U (1998b) Serotonin reduces polysynaptic inhibition via 5-HT1A receptors in the superficial entorhinal cortex. J Neurophysiol 80:1116–1121PubMedGoogle Scholar
  242. Schmitz D, Gloveli T, Empson RM, Heinemann U (1999) Potent depression of stimulus evoked field potential responses in the medial entorhinal cortex by serotonin. Br J Pharmacol 128:248–254PubMedPubMedCentralGoogle Scholar
  243. Schon K, Hasselmo ME, Lopresti ML, Tricarico MD, Stern CE (2004) Persistence of parahippocampal representation in the absence of stimulus input enhances long-term encoding: a functional magnetic resonance imaging study of subsequent memory after a delayed match-to-sample task. J Neurosci 24:11088–11097PubMedGoogle Scholar
  244. Schon K, Atri A, Hasselmo ME, Tricarico MD, LoPresti ML, Stern CE (2005) Scopolamine reduces persistent activity related to long-term encoding in the parahippocampal gyrus during delayed matching in humans. J Neurosci 25:9112–9123PubMedGoogle Scholar
  245. Schwindt PC, Spain WJ, Foehring RC, Chubb MC, Crill WE (1988) Slow conductances in neurons from cat sensorimotor cortex in vitro and their role in slow excitability changes. J Neurophysiol 59:450–467PubMedGoogle Scholar
  246. Schwindt PC, Spain WJ, Crill WE (1992) Calcium-dependent potassium currents in neurons from cat sensorimotor cortex. J Neurophysiol 67:216–226PubMedGoogle Scholar
  247. Seamans JK, Gorelova N, Durstewitz D, Yang CR (2001) Bidirectional dopamine modulation of GABAergic inhibition in prefrontal cortical pyramidal neurons. J Neurosci 21:3628–3638PubMedGoogle Scholar
  248. Segal M, Bloom FE (1974) The action of norepinephrine in the rat hippocampus. II. Activation of the input pathway. Brain Res 72:99–114PubMedGoogle Scholar
  249. Sheldon PW, Aghajanian GK (1991) Excitatory responses to serotonin (5-ht) in neurons of the rat piriform cortex - evidence for mediation by 5-ht1c receptors in pyramidal cells and 5-ht2 receptors in interneurons. Synapse 9:208–218PubMedGoogle Scholar
  250. Sheridan RD, Sutor B (1990) Presynaptic M1 muscarinic cholinoceptors mediate inhibition of excitatory synaptic transmission in the hippocampus in vitro. Neurosci Lett 108:273–278PubMedGoogle Scholar
  251. Shinoe T, Matsui M, Taketo MM, Manabe T (2005) Modulation of synaptic plasticity by physiological activation of M1 muscarinic acetylcholine receptors in the mouse hippocampus. J Neurosci 25:11194–11200PubMedGoogle Scholar
  252. Shirey JK, Xiang Z, Orton D, Brady AE, Johnson KA, Williams R, Ayala JE, Rodriguez AL, Wess J, Weaver D, Niswender CM, Conn PJ (2008) An allosteric potentiator of M4 mAChR modulates hippocampal synaptic transmission. Nat Chem Biol 4:42–50PubMedGoogle Scholar
  253. Siok CJ, Rogers JA, Kocsis B, Hajos M (2006) Activation of alpha7 acetylcholine receptors augments stimulation-induced hippocampal theta oscillation. Eur J Neurosci 23:570–574PubMedGoogle Scholar
  254. Sizer AR, Kilpatrick GJ, Roberts MH (1992) A post-synaptic depressant modulatory action of 5-hydroxytryptamine on excitatory amino acid responses in rat entorhinal cortex in vitro. Neuropharmacology 31:531–539PubMedGoogle Scholar
  255. Stanley EM, Wilson MA, Fadel JR (2012) Hippocampal neurotransmitter efflux during one-trial novel object recognition in rats. Neurosci Lett 511:38–42PubMedPubMedCentralGoogle Scholar
  256. Stern CE, Sherman SJ, Kirchhoff BA, Hasselmo ME (2001) Medial temporal and prefrontal contributions to working memory tasks with novel and familiar stimuli. Hippocampus 11:337–346PubMedGoogle Scholar
  257. Stewart M, Fox SE (1990) Do septal neurons pace the hippocampal theta rhythm? Trends Neurosci 13:163–168PubMedGoogle Scholar
  258. Sutherland GR, McNaughton B (2000) Memory trace reactivation in hippocampal and neocortical neuronal ensembles. Curr Opin Neurobiol 10:180–186PubMedGoogle Scholar
  259. Suzuki WA, Miller EK, Desimone R (1997) Object and place memory in the macaque entorhinal cortex. J Neurophysiol 78:1062–1081PubMedGoogle Scholar
  260. Tahvildari B, Fransen E, Alonso AA, Hasselmo ME (2007) Switching between “On” and “Off” states of persistent activity in lateral entorhinal layer III neurons. Hippocampus 17:257–263PubMedGoogle Scholar
  261. Tang AC, Hasselmo ME (1994) Selective suppression of intrinsic but not afferent fiber synaptic transmission by baclofen in the piriform (olfactory) cortex. Brain Res 659:75–81PubMedGoogle Scholar
  262. Tang Y, Mishkin M, Aigner TG (1997) Effects of muscarinic blockade in perirhinal cortex during visual recognition. Proc Natl Acad Sci U S A 94:12667–12669PubMedPubMedCentralGoogle Scholar
  263. Taube JS, Muller RU, Ranck JB (1990a) Head-direction cells recorded from the postsubiculum in freely moving rats. I. Description and quantitative analysis. J Neurosci 10:420–435PubMedGoogle Scholar
  264. Taube JS, Muller RU, Ranck JB (1990b) Head-direction cells recorded from the postsubiculum in freely moving rats. II. Effects of environmental manipulations. J Neurosci 10:436–447PubMedGoogle Scholar
  265. Thiel CM, Huston JP, Schwarting RK (1998) Hippocampal acetylcholine and habituation learning. Neuroscience 85:1253–1262PubMedGoogle Scholar
  266. Thomas E, Snyder PJ, Pietrzak RH, Jackson CE, Bednar M, Maruff P (2008) Specific impairments in visuospatial working and short-term memory following low-dose scopolamine challenge in healthy older adults. Neuropsychologia 46:2476–2484PubMedGoogle Scholar
  267. Trombley PQ, Shepherd GM (1991) Noradrenergic inhibition of synaptic transmission between mitral and granule cells in mammalian olfactory bulb cultures. J Neurosci 12:3985–3991Google Scholar
  268. Tseng G-F, Haberly LB (1988) Characterization of synaptically mediated fast and slow inhibitory processes in piriform cortex in an in vitro slice preparation. J Neurophysiol 59:1352–1376PubMedGoogle Scholar
  269. Tseng GF, Haberly LB (1989) Deep neurons in piriform cortex. II. Membrane properties that underlie unusual synaptic responses. J Neurophysiol 62:386–400PubMedGoogle Scholar
  270. Valentino RJ, Dingledine R (1981) Presynaptic inhibitory effect of acetylcholine in the hippocampus. J Neurosci 1:784–792PubMedGoogle Scholar
  271. Vanderwolf CH (1969) Hippocampal electrical activity and voluntary movement in the rat. Electroencephalogr Clin Neurophysiol 26:407–418PubMedGoogle Scholar
  272. Vanier MC, Bower JM (1992) Noradrenergic suppression of synaptic transmission in rat piriform (olfactory) cortex. Soc Neurosci Abstr 18:1353Google Scholar
  273. Vertes RP, Kocsis B (1997) Brainstem-diencephalo-septohippocampal systems controlling the theta rhythm of the hippocampus. Neuroscience 81:893–926PubMedGoogle Scholar
  274. Vidal C, Changeux JP (1993) Nicotinic and muscarinic modulations of excitatory synaptic transmission in the rat prefrontal cortex in vitro. Neuroscience 56:23–32PubMedGoogle Scholar
  275. Vogt KE, Regehr WG (2001) Cholinergic modulation of excitatory synaptic transmission in the CA3 area of the hippocampus. J Neurosci 21:75–83PubMedGoogle Scholar
  276. Walter WG, Dovey VJ (1944) Electro-encephalography in cases of sub-cortical tumour. J Neurol Neurosurg Psychiatr 7:57–65PubMedPubMedCentralGoogle Scholar
  277. White JA, Chow CC, Ritt J, Soto-Trevino C, Kopell N (1998a) Synchronization and oscillatory dynamics in heterogeneous, mutually inhibited neurons. J Comput Neurosci 5:5–16PubMedGoogle Scholar
  278. White JA, Klink R, Alonso A, Kay AR (1998b) Noise from voltage-gated ion channels may influence neuronal dynamics in the entorhinal cortex. J Neurophysiol 80:262–269PubMedGoogle Scholar
  279. Widmer H, Ferrigan L, Davies CH, Cobb SR (2006) Evoked slow muscarinic acetylcholinergic synaptic potentials in rat hippocampal interneurons. Hippocampus 16:617–628PubMedGoogle Scholar
  280. Williams SH, Constanti A (1988) Quantitative effects of some muscarinic agonists on evoked surface-negative field potentials recorded from the guinea-pig olfactory cortex slice. Br J Pharmacol 93:846–854PubMedPubMedCentralGoogle Scholar
  281. Williams SH, Constanti A, Brown DA (1985) Muscarinic depression of evoked surface-negative field potentials recorded from guinea-pig olfactory cortex in vitro. Neurosci Lett 56:301–306PubMedGoogle Scholar
  282. Winters BD, Bussey TJ (2005) Removal of cholinergic input to perirhinal cortex disrupts object recognition but not spatial working memory in the rat. Eur J Neurosci 21:2263–2270PubMedGoogle Scholar
  283. Woody CD, Gruen E (1987) Acetylcholine reduces net outward currents measured in vivo with single electrode voltage clamp techniques in neurons of the motor cortex of cats. Brain Res 424:193–198PubMedGoogle Scholar
  284. Yamamoto C, Kawai N (1967) Presynaptic action of acetylcholine in thin sections from the guinea pig dentate gyrus in vitro. Exp Neurol 19:176–187PubMedGoogle Scholar
  285. Yoder RM, Pang KC (2005) Involvement of GABAergic and cholinergic medial septal neurons in hippocampal theta rhythm. Hippocampus 15:381–392PubMedGoogle Scholar
  286. Yoshida M, Alonso A (2007) Cell-type specific modulation of intrinsic firing properties and subthreshold membrane oscillations by the m(kv7)-current in neurons of the entorhinal cortex. J Neurophysiol 98:2779–2794PubMedGoogle Scholar
  287. Yoshida M, Hasselmo ME (2009) Persistent firing supported by an intrinsic cellular mechanism in a component of the head direction system. J Neurosci 29:4945–4952PubMedPubMedCentralGoogle Scholar
  288. Yoshida M, Fransen E, Hasselmo ME (2008) mGluR-dependent persistent firing in entorhinal cortex layer III neurons. Eur J Neurosci 28:1116–1126PubMedPubMedCentralGoogle Scholar
  289. Yoshida M, Giocomo LM, Boardman I, Hasselmo ME (2011) Frequency of subthreshold oscillations at different membrane potential voltages in neurons at different anatomical positions on the dorsoventral axis in the rat medial entorhinal cortex. J Neurosci 31:12683–12694PubMedPubMedCentralGoogle Scholar
  290. Young BJ, Otto T, Fox GD, Eichenbaum H (1997) Memory representation within the parahippocampal region. J Neurosci 17:5183–5195PubMedGoogle Scholar
  291. Zhang H, Lin S-C, Nicolelis MAL (2010) Spatiotemporal Coupling between Hippocampal Acetylcholine Release and Theta Oscillations In Vivo. J Neurosci 30:13431–13440PubMedPubMedCentralGoogle Scholar
  292. Zolles G, Wenzel D, Bildl W, Schulte U, Hofmann A, Müller CS, Thumfart J-O, Vlachos A, Deller T, Pfeifer A, Fleischmann BK, Roeper J, Fakler B, Klöcker N (2009) Association with the auxiliary subunit PEX5R/Trip8b controls responsiveness of HCN channels to cAMP and adrenergic stimulation. Neuron 62:814–825PubMedGoogle Scholar

Copyright information

© Springer-Verlag Wien 2014

Authors and Affiliations

  1. 1.Center for Memory and Brain, Department of Psychology, Graduate Program for NeuroscienceBoston UniversityBostonUSA

Personalised recommendations