The Posterior Parietal Cortex: Interface Between Maps of External Spaces and the Generation of Action Sequences

Abstract

In primates as well as rodents, the posterior parietal cortex maps spatial relationships having both egocentric and external frames of reference. In this chapter, the form in which rat posterior parietal cortex neuronal activity maps position within trajectories through the environment is considered in detail and compared to the forms of spatial mapping observed for neurons of the hippocampus and entorhinal cortex. Evidence is presented to indicate that posterior parietal neurons simultaneously map positions both within and across segments of paths through an environment. It is suggested that the specific nature of posterior parietal cortex mapping of space serves, in part, to transition knowledge of position in the environment, given by hippocampus and entorhinal cortex, into efficient path-running behavior via projections to primary and secondary sensory and motor cortices. Posterior parietal cortex activity is also hypothesized to play a role both in driving trajectory dependence of hippocampal place cells and in anchoring spatially specific hippocampal and entorhinal cortical activity to the boundaries of the observable environment.

References

  1. Addis DR, Knapp K, Roberts RP, Schacter DL (2012) Routes to the past: neural substrates of direct and generative autobiographical memory retrieval. Neuroimage 59(3):2908–2922PubMedCentralPubMedCrossRefGoogle Scholar
  2. Averbeck BB, Chafee MV, Crowe DA, Georgopoulos AP (2003) Neural activity in prefrontal cortex during copying geometrical shapes. I. Single cells encode shape, sequence, and metric parameters. Exp Brain Res 150(2):127–141PubMedGoogle Scholar
  3. Avillac M, Denève S, Olivier E, Pouget A, Duhamel JR (2005) Reference frames for representing visual and tactile locations in parietal cortex. Nat Neurosci 8(7):941–949PubMedCrossRefGoogle Scholar
  4. Bhattacharyya R, Musallam S, Andersen RA (2009) Parietal reach region encodes reach depth using retinal disparity and vergence angle signals. J Neurophysiol 102(2):805–816PubMedCentralPubMedCrossRefGoogle Scholar
  5. Bremmer F, Klam F, Duhamel JR, Ben Hamed S, Graf W (2002) Visual-vestibular interactive responses in the macaque ventral intraparietal area (VIP). Eur J Neurosci 16(8):1569–1586PubMedCrossRefGoogle Scholar
  6. Brotchie PR, Andersen RA, Snyder LH, Goodman SJ (1995) Head position signals used by parietal neurons to encode locations of visual stimuli. Nature 375:232–235PubMedCrossRefGoogle Scholar
  7. Bullmore E, Sporns O (2012) The economy of brain network organization. Nat Rev Neurosci 13(5):336–349PubMedGoogle Scholar
  8. Burke SN, Chawla MK, Penner MR, Crowell BE, Worley PF, Barnes CA, McNaughton BL (2005) Differential encoding of behavior and spatial context in deep and superficial layers of the neocortex. Neuron 45(5):667–674PubMedCrossRefGoogle Scholar
  9. Burwell RD, Amaral DG (1998a) Perirhinal and postrhinal cortices of the rat: interconnectivity and connections with the entorhinal cortex. J Comp Neurol 391(3):293–321PubMedCrossRefGoogle Scholar
  10. Burwell RD, Amaral DG (1998b) Cortical afferents of the perirhinal, postrhinal, and entorhinal cortices of the rat. J Comp Neurol 398(2):179–205PubMedCrossRefGoogle Scholar
  11. Chafee MV, Crowe DA, Averbeck BB, Georgopoulos AP (2005) Neural correlates of spatial judgement during object construction in parietal cortex. Cereb Cortex 15(9):1393–1413PubMedCrossRefGoogle Scholar
  12. Chen LL, Lin LH, Green EJ, Barnes CA, McNaughton BL (1994a) Head-direction cells in the rat posterior cortex. I. Anatomical distribution and behavioral modulation. Exp Brain Res 101(1):8–23PubMedCrossRefGoogle Scholar
  13. Chen LL, Lin LH, Barnes CA, McNaughton BL (1994b) Head-direction cells in the rat posterior cortex. II. Contributions of visual and ideothetic information to the directional firing. Exp Brain Res 101(1):24–34PubMedCrossRefGoogle Scholar
  14. Cho J, Sharp PE (2001) Head direction, place, and movement correlates for cells in the rat retrosplenial cortex. Behav Neurosci 115(1):3–25PubMedCrossRefGoogle Scholar
  15. Cohen YE, Andersen RA (2002) A common reference frame for movement plans in the posterior parietal cortex. Nat Rev Neurosci 3(7):553–562PubMedCrossRefGoogle Scholar
  16. Colby CL, Duhamel JR (1996) Spatial representations for action in parietal cortex. Cogn Brain Res 5:105–115CrossRefGoogle Scholar
  17. Colby CL, Goldberg ME (1999) Space and attention in parietal cortex. Annu Rev Neurosci 22:319–349PubMedCrossRefGoogle Scholar
  18. Cooper BG, Miya DY, Mizumori SJ (1998) Superior colliculus and active navigation: role of visual and non-visual cues in controlling cellular representations of space. Hippocampus 8(4):340–372PubMedCrossRefGoogle Scholar
  19. Crowe DA, Averbeck BB, Chafee MV, Georgopoulos AP (2005) Dynamics of parietal neural activity during spatial cognitive processing. Neuron 47(6):885–891PubMedCrossRefGoogle Scholar
  20. Crowe DA, Averbeck BB, Chafee MV (2008) Neural ensemble decoding reveals a correlate of viewer- to object-centered spatial transformation in monkey parietal cortex. J Neurosci 28(20):5218–5228PubMedCentralPubMedCrossRefGoogle Scholar
  21. Crowe DA, Averbeck BB, Chafee MV (2010) Rapid sequences of population activity patterns dynamically encode task-critical spatial information in parietal cortex. J Neurosci 30(35):11640–11653PubMedCentralPubMedCrossRefGoogle Scholar
  22. Derdikman D, Moser EI (2010) A manifold of spatial maps in the brain. Trends Cogn Sci 14(12):561–569PubMedCrossRefGoogle Scholar
  23. Derdikman D, Moser EI (2014) Spatial maps in the entorhinal cortex and adjacent structures. In: Derdikman D, Knierim JJ (eds) Space, time and memory in the hippocampal formation. Springer, HeidelbergGoogle Scholar
  24. Derdikman D, Whitlock JR, Tsao A, Fyhn M, Hafting T, Moser MB, Moser EI (2009) Fragmentation of grid cell maps in a multicompartment environment. Nat Neurosci 12(10):1325–1332PubMedCrossRefGoogle Scholar
  25. DiMattia BD, Kesner RP (1988) Spatial cognitive maps: differential role of parietal cortex and hippocampal formation. Behav Neurosci 102(4):471–480PubMedCrossRefGoogle Scholar
  26. Driver J, Baylis GC, Goodrich SJ, Rafal RD (1994) Axis-based neglect of visual shapes. Neuropsychologia 32(11):1353–1365PubMedCrossRefGoogle Scholar
  27. Erlich JC, Bialek M, Brody CD (2011) A cortical substrate for memory-guided orienting in the rat. Neuron 72(2):330–343PubMedCentralPubMedCrossRefGoogle Scholar
  28. Ferbinteanu J, Shapiro ML (2003) Prospective and retrospective memory coding in the hippocampus. Neuron 40(6):1227–1239PubMedCrossRefGoogle Scholar
  29. Foreman N, Save E, Thinus-Blanc C, Buhot MC (1992) Visually guided locomotion, distractibility, and the missing-stimulus effect in hooded rats with unilateral or bilateral lesions of parietal cortex. Behav Neurosci 106(3):529–538PubMedCrossRefGoogle Scholar
  30. Foster TC, Castro CA, McNaughton BL (1989) Spatial selectivity of rat hippocampal neurons: dependence on preparedness for movement. Science 244(4912):1580–1582PubMedCrossRefGoogle Scholar
  31. Frank LM, Brown EN, Wilson M (2000) Trajectory encoding in the hippocampus and entorhinal cortex. Neuron 27(1):169–178PubMedCrossRefGoogle Scholar
  32. Freedman DJ, Assad JA (2006) Experience-dependent representation of visual categories in parietal cortex. Nature 443(7107):85–88PubMedCrossRefGoogle Scholar
  33. Furtak SC, Ahmed OJ, Burwell RD (2012) Single neuron activity and theta modulation in postrhinal cortex during visual object discrimination. Neuron 76(5):976–988PubMedCentralPubMedCrossRefGoogle Scholar
  34. Fyhn M, Molden S, Witter MP, Moser EI, Moser MB (2004) Spatial representation in the entorhinal cortex. Science 305(5688):1258–1264PubMedCrossRefGoogle Scholar
  35. Goodrich-Hunsaker NJ, Hunsaker MR, Kesner RP (2005) Dissociating the role of the parietal cortex and dorsal hippocampus for spatial information processing. Behav Neurosci 119(5):1307–1315PubMedCrossRefGoogle Scholar
  36. Gu X, Staines WA, Fortier PA (1999) Quantitative analysis of neurons projecting to primary motor cortex zones controlling limb movements in the rat. Brain Res 835:175–187PubMedCrossRefGoogle Scholar
  37. Hafting T, Fyhn M, Molden S, Moser MB, Moser EI (2005) Microstructure of a spatial map in the entorhinal cortex. Nature 436(7052):801–806PubMedCrossRefGoogle Scholar
  38. Hargreaves EL, Rao G, Lee I, Knierim JJ (2005) Major dissociation between medial and lateral entorhinal input to dorsal hippocampus. Science 308(5729):1792–1794PubMedCrossRefGoogle Scholar
  39. Harvey CD, Collman F, Dombeck DA, Tank DW (2009) Intracellular dynamics of hippocampal place cells during virtual navigation. Nature 461(7266):941–946PubMedCentralPubMedCrossRefGoogle Scholar
  40. Harvey CD, Coen P, Tank DW (2012) Choice-specific sequences in parietal cortex during a virtual-navigation decision task. Nature 484(7392):62–68PubMedCentralPubMedCrossRefGoogle Scholar
  41. Hassabis D, Kumaran D, Maguire EA (2007) Using imagination to understand the neural basis of episodic memory. J Neurosci 27(52):14365–14374PubMedCentralPubMedCrossRefGoogle Scholar
  42. Hayashi MJ, Kanai R, Tanabe HC, Yoshida Y, Carlson S, Walsh V, Sadato N (2013) Interaction of numerosity and time in prefrontal and parietal cortex. J Neurosci 33(3):883–893PubMedCrossRefGoogle Scholar
  43. Hoh TE, Kolb B, Eppel A, Vanderwolf CH, Cain DP (2003) Role of the neocortex in the water maze task in the rat: a detailed behavioral and Golgi-Cox analysis. Behav Brain Res 138(1):81–94PubMedCrossRefGoogle Scholar
  44. Karnath H, Schenkel P, Fischer B (1991) Decrease of contralateral neglect by neck muscle vibration and spatial orientation of the trunk midline. Brain 116:383–396CrossRefGoogle Scholar
  45. Kelemen E, Fenton AA (2010) Dynamic grouping of hippocampal neural activity during cognitive control of two spatial frames. PLoS Biol 2010:8(6)Google Scholar
  46. Kesner RP (2009) The posterior parietal cortex and long-term memory representation of spatial information. Neurobiol Learn Mem 91(2):197–206PubMedCentralPubMedCrossRefGoogle Scholar
  47. Knierim JJ, Hamilton DA (2011) Framing spatial cognition: neural representations of proximal and distal frames of reference and their roles in navigation. Physiol Rev 91(4):1245–1279PubMedCentralPubMedCrossRefGoogle Scholar
  48. Knierim JJ, Kudrimoti HS, McNaughton BL (1998) Interactions between idiothetic cues and external landmarks in the control of place cells and head direction cells. J Neurophysiol 80(1):425–446PubMedGoogle Scholar
  49. Kolb B, Walkey J (1987) Behavioural and anatomical studies of the posterior parietal cortex in the rat. Behav Brain Res 23(2):127–145PubMedCrossRefGoogle Scholar
  50. Leutgeb S, Leutgeb JK (2014) Remapping to discriminate contexts with hippocampal population codes. In: Derdikman D, Knierim JJ (eds) Space, time and memory in the hippocampal formation. Springer, HeidelbergGoogle Scholar
  51. Leutgeb S, Leutgeb JK, Barnes CA, Moser EI, McNaughton BL, Moser MB (2005) Independent codes for spatial and episodic memory in hippocampal neuronal ensembles. Science 309(5734):619–623PubMedCrossRefGoogle Scholar
  52. Long JM, Kesner RP (1998) Effects of hippocampal and parietal cortex lesions on memory for egocentric distance and spatial location information in rats. Behav Neurosci 112(3):480–495PubMedCrossRefGoogle Scholar
  53. Markus EJ, Qin YL, Leonard B, Skaggs WE, McNaughton BL, Barnes CA (1995) Interactions between location and task affect the spatial and directional firing of hippocampal neurons. J Neurosci 15(11):7079–7094PubMedGoogle Scholar
  54. McNaughton BL, Mizumori SJ, Barnes CA, Leonard BJ, Marquis M, Green EJ (1994) Cortical representation of motion during unrestrained spatial navigation in the rat. Cereb Cortex 4(1):27–39PubMedCrossRefGoogle Scholar
  55. McNaughton BL, Battaglia FP, Jensen O, Moser EI, Moser MB (2006) Path integration and the neural basis of the ‘cognitive map’. Nat Rev Neurosci 7(8):663–678PubMedCrossRefGoogle Scholar
  56. Mizumori SJ, Williams JD (1993) Directionally selective mnemonic properties of neurons in the lateral dorsal nucleus of the thalamus of rats. J Neurosci 13(9):4015–4028PubMedGoogle Scholar
  57. Morris RG, Schenk F, Tweedie F, Jarrard LE (1990) Ibotenate lesions of hippocampus and/or subiculum: dissociating components of allocentric spatial learning. Eur J Neurosci 2(12):1016–1028PubMedCrossRefGoogle Scholar
  58. Mountcastle VB (1995) The parietal system and some higher brain functions. Cereb Cortex 5:377–390PubMedCrossRefGoogle Scholar
  59. Mountcastle VB, Lynch JC, Georgopoulos A, Sakata H, Acuna C (1975) Posterior parietal association cortex of the monkey: command functions for operations within extrapersonal space. J Neurophysiol 38(4):871–908PubMedGoogle Scholar
  60. Muller RU, Kubie JL (1987) The effects of changes in the environment on the spatial firing of hippocampal complex-spike cells. J Neurosci 7(7):1951–1968PubMedGoogle Scholar
  61. Murata A, Gallese V, Luppino G, Kaseda M, Sakata H (2000) Selectivity for the shape, size, and orientation of objects for grasping in neurons of monkey parietal area AIP. J Neurophysiol 83:2580–2601PubMedGoogle Scholar
  62. Nitz DA (2006) Tracking route progression in the posterior parietal cortex. Neuron 49(5):747–756PubMedCrossRefGoogle Scholar
  63. Nitz D (2009) Parietal cortex, navigation, and the construction of arbitrary reference frames for spatial information. Neurobiol Learn Mem 91(2):179–185PubMedCrossRefGoogle Scholar
  64. Nitz DA (2011) Path shape impacts the extent of CA1 pattern recurrence both within and across environments. J Neurophysiol 105(4):1815–1824PubMedCrossRefGoogle Scholar
  65. Nitz DA (2012) Spaces within spaces: rat parietal cortex neurons register position across three reference frames. Nat Neurosci 15(10):1365–1367PubMedCrossRefGoogle Scholar
  66. O’Keefe J, Dostrovsky J (1971) The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. Brain Res 34(1):171–175PubMedCrossRefGoogle Scholar
  67. Pinto-Hamuy T, Montero VM, Torrealba F (2004) Neurotoxic lesion of anteromedial/posterior parietal cortex disrupts spatial maze memory in blind rats. Behav Brain Res 153(2):465–470PubMedCrossRefGoogle Scholar
  68. Platt ML, Glimcher PW (1999) Neural correlates of decision variables in parietal cortex. Nature 400:233–238PubMedCrossRefGoogle Scholar
  69. Pouget A, Driver J (2000) Relating unilateral neglect to the neural coding of space. Curr Opin Neurobiol 10:242–249PubMedCrossRefGoogle Scholar
  70. Pouget A, Sejnowski TJ (1997) A new view of hemineglect based on the response properties of parietal neurons. Philos Trans R Soc Lond B 352:1449–1459CrossRefGoogle Scholar
  71. Qin YL, McNaughton BL, Skaggs WE, Barnes CA (1997) Memory reprocessing in corticocortical and hippocampocortical neuronal ensembles. Philos Trans R Soc Lond B Biol Sci 352(1360):1525–1533PubMedCentralPubMedCrossRefGoogle Scholar
  72. Rafal RD (1994) Neglect. Curr Opin Neurobiol 4(2):231–236PubMedCrossRefGoogle Scholar
  73. Ravassard P, Kees A, Willers B, Ho D, Aharoni D, Cushman J, Aghajan ZM, Mehta MR (2013) Multisensory control of hippocampal spatiotemporal selectivity. Science 340(6138):1342–1346PubMedCrossRefGoogle Scholar
  74. Reep RL, Corwin JV (2009) Posterior parietal cortex as part of a neural network for directed attention in rats. Neurobiol Learn Mem 91(2):104–113PubMedCrossRefGoogle Scholar
  75. Reep RL, Chandler HC, King V, Corwin JV (1994) Rat posterior parietal cortex: topography of corticocortical and thalamic connections. Exp Brain Res 100(1):67–84PubMedCrossRefGoogle Scholar
  76. Richter W, Ugurbil K, Georgopoulos A, Kim SG (1997) Time-resolved fMRI of mental rotation. Neuroreport 8(17):3697–3702PubMedCrossRefGoogle Scholar
  77. Robinson S, Bucci DJ (2012) Damage to the posterior parietal cortex impairs two forms of relational learning. Front Integr Neurosci 6:45PubMedCentralPubMedCrossRefGoogle Scholar
  78. Rogers JL, Kesner RP (2007) Hippocampal-parietal cortex interactions: evidence from a disconnection study in the rat. Behav Brain Res 179(1):19–27PubMedCentralPubMedCrossRefGoogle Scholar
  79. Sargolini F, Fyhn M, Hafting T, McNaughton BL, Witter MP, Moser MB, Moser EI (2006) Conjunctive representation of position, direction, and velocity in entorhinal cortex. Science 312(5774):758–762PubMedCrossRefGoogle Scholar
  80. Save E, Poucet B (2000) Involvement of the hippocampus and associative parietal cortex in the use of proximal and distal landmarks for navigation. Behav Brain Res 109(2):195–206PubMedCrossRefGoogle Scholar
  81. Save E, Poucet B (2009) Role of the parietal cortex in long-term representation of spatial information in the rat. Neurobiol Learn Mem 91(2):172–178PubMedCrossRefGoogle Scholar
  82. Save E, Poucet B, Foreman N, Buhot MC (1992) Object exploration and reactions to spatial and nonspatial changes in hooded rats following damage to parietal cortex or hippocampal formation. Behav Neurosci 106(3):447–456PubMedCrossRefGoogle Scholar
  83. Save E, Paz-Villagran V, Alexinsky T, Poucet B (2005) Functional interaction between the associative parietal cortex and hippocampal place cell firing in the rat. Eur J Neurosci 21(2):522–530PubMedCrossRefGoogle Scholar
  84. Shadlen MN, Newsome WT (2001) Neural basis of a perceptual decision in the parietal cortex (area LIP) of the rhesus monkey. J Neurophysiol 86(4):1916–1936PubMedGoogle Scholar
  85. Singer AC, Karlsson MP, Nathe AR, Carr MF, Frank LM (2010) Experience-dependent development of coordinated hippocampal spatial activity representing the similarity of related locations. J Neurosci 30(35):11586–11604PubMedCentralPubMedCrossRefGoogle Scholar
  86. Snyder LH, Grieve KL, Brotchie P, Andersen RA (1998) Separate body- and world-referenced representations of visual space in parietal cortex. Nature 394(6696):887–891PubMedCrossRefGoogle Scholar
  87. Spiers HJ, Maguire EA (2007) A navigational guidance system in the human brain. Hippocampus 17(8):618–626PubMedCentralPubMedCrossRefGoogle Scholar
  88. Sul JH, Jo S, Lee D, Jung MW (2011) Role of rodent secondary motor cortex in value-based action selection. Nat Neurosci 14(9):1202–1208PubMedCentralPubMedCrossRefGoogle Scholar
  89. Taube JS, Muller RU, Ranck JB Jr (1990) Head-direction cells recorded from the postsubiculum in freely moving rats. II. Effects of environmental manipulations. J Neurosci 10(2):436–447PubMedGoogle Scholar
  90. Terrazas A, Krause M, Lipa P, Gothard KM, Barnes CA, McNaughton BL (2005) Self-motion and the hippocampal spatial metric. J Neurosci 25(35):8085–8096PubMedCrossRefGoogle Scholar
  91. Tudusciuc O, Nieder A (2009) Contributions of primate prefrontal and posterior parietal cortices to length and numerosity representation. J Neurophysiol 101(6):2984–2994PubMedCrossRefGoogle Scholar
  92. Vallar G (1998) Spatial hemineglect in humans. Trends Cogn Sci 2(3):87–97PubMedCrossRefGoogle Scholar
  93. Whitlock JR, Pfuhl G, Dagslott N, Moser MB, Moser EI (2012) Functional split between parietal and entorhinal cortices in the rat. Neuron 73(4):789–802PubMedCrossRefGoogle Scholar
  94. Wood ER, Dudchenko PA, Robitsek RJ, Eichenbaum H (2000) Hippocampal neurons encode information about different types of memory episodes occurring in the same location. Neuron 27(3):623–633PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2014

Authors and Affiliations

  1. 1.University of CaliforniaSan DiegoUSA

Personalised recommendations