Advertisement

Topology Optimisation of Regular and Irregular Elastic Gridshells by Means of a Non-linear Variational Method

  • Elisa Lafuente Hernández
  • Stefan Sechelmann
  • Thilo Rörig
  • Christoph Gengnagel

Abstract

Gridshells composed of elastically-bent profiles offer significant cost and time advantages during the production, transport and construction processes. Nevertheless, the shaping of the initially flat grid also generates important bending stresses on the structures, reducing therewith their bearing capacity against external loads. An optimisation of the grid topology in order to minimise the profiles curvature and, with it, the initial stresses is therefore crucial. In this paper a non-linear variational method for optimising topologies of elastic gridshells with regular and irregular meshes is presented. Different case studies of double-curved gridshells show the advantages and capacity of this method.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. ALPERMANN, H., LAFUENTE HERNÁNDEZ, E., AND GENGNAGEL, C. 2012. Case-studies of arched structures using actively-bent elements. In Conference Proceedings IASS Symposium 2012.Google Scholar
  2. BENSON, S., MCINNES, L. C., MORÉ, J., MUNSON, T., AND SARICH, J., 2007. TAO user manual (revision 1.9). http://www.mcs.anl.gov/tao.Google Scholar
  3. BOUHAYA, L., BAVEREL, O., AND CARON, J.-F. 2011. Optimisation structurelle des gridshells. In 10ème Colloque national en calcul des structures (CSMA).Google Scholar
  4. GENGNAGEL, C., KILIAN, A., PALZ, N., AND SCHEURER, F. 2012. Computational Design Modeling: Proceedings of the Design Modeling Symposium Berlin 2011. Springer.Google Scholar
  5. KUIJVENHOVEN, M., 2009. A design method for timber grid shells. Master’s thesis, Delft University of Technology.Google Scholar
  6. LAFUENTE HERNÁNDEZ, E., GENGNAGEL, C., SECHELMANN, S., AND RÖRIG, T. 2011. On the materiality and structural behaviour of highly-elastic grid-shell structures. In Computational Design Modeling: Proceedings of the Design Modeling Symposium Berlin 2011.Google Scholar
  7. OTTO, F., SCHAUER, E., HENNICKE, J., AND HASEGAWA, T. 1974. Gitterschalen: Bericht über das japanisch-deutsche Forschungsprojekt S.T.T., durchgeführt von Mai 1971 bis Mai 1973 am Institut für Leichte Flächentragwerke. Seibu Construction Company/Institut für Leichte Flächentragwerke/Krämer.Google Scholar
  8. SCHIFTNER, A., AND BALZER, J. 2010. Statics-sensitive layout of planar quadrilateral meshes. In Advances in Architectural Geometry 2010, C. Ceccato et al., Eds. Springer, 221–236.Google Scholar
  9. SOMMER, H., 2010. jPETScTao JNI library web page. http://jpetsctao.zwoggel.net/.Google Scholar
  10. SPRINGBORN, B., SCHRÖDER, P., AND PINKALL, U. 2008. Conformal equivalence of triangle meshes. ACM Trans. Graphics 27, 3, #77, 1–11.CrossRefGoogle Scholar
  11. VOSS, A. 1881. Ueber ein neues Princip der Abbildung krummer Oberflächen. Mathematische Annalen 19, 1–26.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag/Wien 2013

Authors and Affiliations

  • Elisa Lafuente Hernández
    • 1
  • Stefan Sechelmann
    • 2
  • Thilo Rörig
    • 2
  • Christoph Gengnagel
    • 1
  1. 1.Department of ArchitectureUniversity of the ArtsBerlinGermany
  2. 2.Institut für MathematikTechnische Universität BerlinGermany

Personalised recommendations