Tracking of Autologous VSOP-Labeled Mesenchymal Stem Cells in the Sheep Brain Using 3.0 T MRI



Assessment of biodistribution and monitoring of cell migration processes in vivo are essential for the safety of novel cell-based therapies for ischemic stroke and early-stage clinical trials, but are mainly lacking investigation in large animal models which are closer to the situation found in human patients. This chapter reports a series of experiments which establish a MRI-sensitive labeling procedure for autologous ovine mesenchymal stem cells (MSC) and the assessment of in vivo and in vitro detection limits of the cells at 3.0 T. Cell migration was monitored after intravenous transplantation following experimental stroke in sheep. Cell detection was feasible at 3.0 T with detection limits defined at 500 cells in vitro and 1,000 cells after local stereotaxic administration in vivo. No signs for MSC homing toward the ischemic lesion were observed after systemic cell delivery. Iron-containing cells were identified in the lung and skin wounds, but not in brain parenchyma after intravenous cell delivery. These findings are in contrast to results obtained in small animal models and may indicate significant differences of MSC behavior in large organisms. They also revealed the necessity for sensitivity-enhanced MRI sequences for improved cell detection in large animals.


Single Photon Emission Compute Tomography Mesenchymal Stem Cell Middle Cerebral Artery Occlusion Prussian Blue Ischemic Lesion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Arbab AS, Bashaw LA, Miller BR, Jordan EK, Bulte JW, Frank JA (2003) Intracytoplasmic tagging of cells with ferumoxides and transfection agent for cellular magnetic resonance imaging after cell transplantation: methods and techniques. Transplantation 76:1123–1130PubMedCrossRefGoogle Scholar
  2. Bang OY, Lee JS, Lee PH, Lee G (2005) Autologous mesenchymal stem cell transplantation in stroke patients. Ann Neurol 57:874–882PubMedCrossRefGoogle Scholar
  3. Bao X, Feng M, Wei J, Han Q, Zhao H, Li G, Zhu Z, Xing H, An Y, Qin C, Zhao RC, Wang R (2011) Transplantation of Flk-1+ human bone marrow-derived mesenchymal stem cells promotes angiogenesis and neurogenesis after cerebral ischemia in rats. Eur J Neurosci 34:87–98PubMedCrossRefGoogle Scholar
  4. Barbosa da Fonseca LM, Gutfilen B, Rosado de Castro PH, Battistella V, Goldenberg RC, Kasai-Brunswick T, Chagas CL, Wajnberg E, Maiolino A, Salles XS, Andre C, Mendez-Otero R, de Freitas GR (2010) Migration and homing of bone-marrow mononuclear cells in chronic ischemic stroke after intra-arterial injection. Exp Neurol 221:122–128PubMedCrossRefGoogle Scholar
  5. Boltze J, Forschler A, Nitzsche B, Waldmin D, Hoffmann A, Boltze CM, Dreyer AY, Goldammer A, Reischauer A, Hartig W, Geiger KD, Barthel H, Emmrich F, Gille U (2008) Permanent middle cerebral artery occlusion in sheep: a novel large animal model of focal cerebral ­ischemia. J Cereb Blood Flow Metab 28:1951–1964PubMedCrossRefGoogle Scholar
  6. Bonita R, Mendis S, Truelsen T, Bogousslavsky J, Toole J, Yatsu F (2004) The global stroke ­initiative. Lancet Neurol 3:391–393PubMedCrossRefGoogle Scholar
  7. Burns TC, Steinberg GK (2011) Stem cells and stroke: opportunities, challenges and strategies. Expert Opin Biol Ther 11:447–461PubMedCrossRefGoogle Scholar
  8. Chen J, Li Y, Wang L, Zhang Z, Lu D, Lu M, Chopp M (2001) Therapeutic benefit of intravenous administration of bone marrow stromal cells after cerebral ischemia in rats. Stroke 32:1005–1011PubMedCrossRefGoogle Scholar
  9. Chen J, Zhang ZG, Li Y, Wang L, Xu YX, Gautam SC, Lu M, Zhu Z, Chopp M (2003) Intravenous administration of human bone marrow stromal cells induces angiogenesis in the ischemic boundary zone after stroke in rats. Circ Res 92:692–699PubMedCrossRefGoogle Scholar
  10. Daadi MM, Li Z, Arac A, Grueter BA, Sofilos M, Malenka RC, Wu JC, Steinberg GK (2009) Molecular and magnetic resonance imaging of human embryonic stem cell-derived neural stem cell grafts in ischemic rat brain. Mol Ther 17:1282–1291PubMedCrossRefGoogle Scholar
  11. Dai Y, Zeng M, Li R, Rao S, Chen C, DelProposto Z, Haacke EM, Hu J, Renate J (2011) Improving detection of siderotic nodules in cirrhotic liver with a multi-breath-hold susceptibility-weighted imaging technique. J Magn Reson Imaging 34:318–325PubMedCrossRefGoogle Scholar
  12. de Vries IJ, Lesterhuis WJ, Barentsz JO, Verdijk P, van Krieken JH, Boerman OC, Oyen WJ, Bonenkamp JJ, Boezeman JB, Adema GJ, Bulte JW, Scheenen TW, Punt CJ, Heerschap A, Figdor CG (2005) Magnetic resonance tracking of dendritic cells in melanoma patients for monitoring of cellular therapy. Nat Biotechnol 23:1407–1413PubMedCrossRefGoogle Scholar
  13. Denic A, Macura SI, Mishra P, Gamez JD, Rodriguez M, Pirko I (2011) MRI in rodent models of brain disorders. Neurotherapeutics 8:3–18PubMedCrossRefGoogle Scholar
  14. Ding J, Hori K, Zhang R, Marcoux Y, Honardoust D, Shankowsky HA, Tredget EE (2011) Stromal cell-derived factor 1 (SDF-1) and its receptor CXCR4 in the formation of postburn hypertrophic scar (HTS). Wound Repair Regen 19:568–578PubMedCrossRefGoogle Scholar
  15. Dreyer A, Stroh A, Pösel C, Findeisen M, von Geymüller T, Lobsien D, Nitzsche B, Boltze J (2012) Frameless stereotaxy in sheep – neurosurgical and imaging techniques for translational stroke research. In: Balestrino M (ed) Advances in the preclinical study of ischemic stroke, 1st edn. InTech, RijekaGoogle Scholar
  16. Emre U, Rantanen K, Tatlisumak T (2007) Antithrombotic treatment in the prevention of ischemic stroke. Curr Drug Targets 8:817–823PubMedCrossRefGoogle Scholar
  17. Falluji N, Abou-Chebl A, Rodriguez Castro CE, Mukherjee D (2012) Reperfusion strategies for acute ischemic stroke. Angiology 63:289–296PubMedCrossRefGoogle Scholar
  18. Fischer UM, Harting MT, Jimenez F, Monzon-Posadas WO, Xue H, Savitz SI, Laine GA, Cox CS Jr (2009) Pulmonary passage is a major obstacle for intravenous stem cell delivery: the pulmonary first-pass effect. Stem Cells Dev 18:683–692PubMedCrossRefGoogle Scholar
  19. Frey S, Comeau R, Hynes B, Mackey S, Petrides M (2004) Frameless stereotaxy in the nonhuman primate. Neuroimage 23:1226–1234PubMedCrossRefGoogle Scholar
  20. Fujio M, Yamamoto A, Ando Y, Shohara R, Kinoshita K, Kaneko T, Hibi H, Ueda M (2011) Stromal cell-derived factor-1 enhances distraction osteogenesis-mediated skeletal tissue regeneration through the recruitment of endothelial precursors. Bone 49:693–700PubMedCrossRefGoogle Scholar
  21. Haacke EM, Mittal S, Wu Z, Neelavalli J, Cheng YC (2009) Susceptibility-weighted imaging: technical aspects and clinical applications, part 1. AJNR Am J Neuroradiol 30:19–30PubMedCrossRefGoogle Scholar
  22. Hannoush EJ, Sifri ZC, Elhassan IO, Mohr AM, Alzate WD, Offin M, Livingston DH (2011) Impact of enhanced mobilization of bone marrow derived cells to site of injury. J Trauma 71:283–289PubMedCrossRefGoogle Scholar
  23. Honmou O, Houkin K, Matsunaga T, Niitsu Y, Ishiai S, Onodera R, Waxman SG, Kocsis JD (2011) Intravenous administration of auto serum-expanded autologous mesenchymal stem cells in stroke. Brain 134:1790–1807PubMedCrossRefGoogle Scholar
  24. Jang KS, Lee KS, Yang SH, Jeun SS (2010) In vivo tracking of transplanted bone marrow-derived mesenchymal stem cells in a murine model of stroke by bioluminescence imaging. J Korean Neurosurg Soc 48:391–398PubMedCrossRefGoogle Scholar
  25. Jensen MB, Yan H, Krishnaney-Davison R, Al SA, Zhang SC (2011) Survival and differentiation of transplanted neural stem cells derived from human induced pluripotent stem cells in a rat stroke model. J Stroke Cerebrovasc Dis. PMID: 22078778Google Scholar
  26. Kidwell CS, Wintermark M (2008) Imaging of intracranial haemorrhage. Lancet Neurol 7:256–267PubMedCrossRefGoogle Scholar
  27. Kim D, Chun BG, Kim YK, Lee YH, Park CS, Jeon I, Cheong C, Hwang TS, Chung H, Gwag BJ, Hong KS, Song J (2008) In vivo tracking of human mesenchymal stem cells in experimental stroke. Cell Transplant 16:1007–1012PubMedCrossRefGoogle Scholar
  28. Kranz A, Wagner DC, Kamprad M, Scholz M, Schmidt UR, Nitzsche F, Aberman Z, Emmrich F, Riegelsberger UM, Boltze J (2010) Transplantation of placenta-derived mesenchymal stromal cells upon experimental stroke in rats. Brain Res 1315:128–136PubMedCrossRefGoogle Scholar
  29. Langhorne P, Bernhardt J, Kwakkel G (2011) Stroke rehabilitation. Lancet 377:1693–1702PubMedCrossRefGoogle Scholar
  30. Lansberg MG, Bluhmki E, Thijs VN (2009) Efficacy and safety of tissue plasminogen activator 3 to 4.5 hours after acute ischemic stroke: a metaanalysis. Stroke 40:2438–2441PubMedCrossRefGoogle Scholar
  31. Lin YC, Ko TL, Shih YH, Lin MY, Fu TW, Hsiao HS, Hsu JY, Fu YS (2011) Human umbilical mesenchymal stem cells promote recovery after ischemic stroke. Stroke 42:2045–2053PubMedCrossRefGoogle Scholar
  32. Minnerup J, Kim JB, Schmidt A, Diederich K, Bauer H, Schilling M, Strecker JK, Ringelstein EB, Sommer C, Scholer HR, Schabitz WR (2011) Effects of neural progenitor cells on sensorimotor recovery and endogenous repair mechanisms after photothrombotic stroke. Stroke 42:1757–1763PubMedCrossRefGoogle Scholar
  33. Muja N, Bulte JW (2009) Magnetic resonance imaging of cells in experimental disease models. Prog Nucl Magn Reson Spectrosc 55:61–77PubMedCrossRefGoogle Scholar
  34. Nagai N, Kawao N, Okada K, Okumoto K, Teramura T, Ueshima S, Umemura K, Matsuo O (2010) Systemic transplantation of embryonic stem cells accelerates brain lesion decrease and angiogenesis. Neuroreport 21:575–579PubMedCrossRefGoogle Scholar
  35. Natarajan SK, Snyder KV, Siddiqui AH, Ionita CC, Hopkins LN, Levy EI (2009) Safety and effectiveness of endovascular therapy after 8 hours of acute ischemic stroke onset and wake-up strokes. Stroke 40:3269–3274PubMedCrossRefGoogle Scholar
  36. Okazaki T, Magaki T, Takeda M, Kajiwara Y, Hanaya R, Sugiyama K, Arita K, Nishimura M, Kato Y, Kurisu K (2008) Intravenous administration of bone marrow stromal cells increases survivin and Bcl-2 protein expression and improves sensorimotor function following ischemia in rats. Neurosci Lett 430:109–114PubMedCrossRefGoogle Scholar
  37. Pillai DR, Heidemann RM, Kumar P, Shanbhag N, Lanz T, Dittmar MS, Sandner B, Beier CP, Weidner N, Greenlee MW, Schuierer G, Bogdahn U, Schlachetzki F (2011) Comprehensive small animal imaging strategies on a clinical 3 T dedicated head MR-scanner; adapted methods and sequence protocols in CNS pathologies. PLoS One 6:e16091PubMedCrossRefGoogle Scholar
  38. Pittenger MF (2008) Mesenchymal stem cells from adult bone marrow. Methods Mol Biol 449:27–44PubMedGoogle Scholar
  39. Sarkar D, Spencer JA, Phillips JA, Zhao W, Schafer S, Spelke DP, Mortensen LJ, Ruiz JP, Vemula PK, Sridharan R, Kumar S, Karnik R, Lin CP, Karp JM (2011a) Engineered cell homing. Blood 118:e184–e191PubMedCrossRefGoogle Scholar
  40. Sarkar D, Zhao W, Gupta A, Loh WL, Karnik R, Karp JM (2011b) Cell surface engineering of mesenchymal stem cells. Methods Mol Biol 698:505–523PubMedCrossRefGoogle Scholar
  41. Savitz SI, Chopp M, Deans R, Carmichael ST, Phinney D, Wechsler L (2011) Stem cell therapy as an emerging paradigm for stroke (STEPS) II. Stroke 42:825–829PubMedCrossRefGoogle Scholar
  42. Sehgal V, DelProposto Z, Haacke EM, Tong KA, Wycliffe N, Kido DK, Xu Y, Neelavalli J, Haddar D, Reichenbach JR (2005) Clinical applications of neuroimaging with susceptibility-weighted imaging. J Magn Reson Imaging 22:439–450PubMedCrossRefGoogle Scholar
  43. Seminatore C, Polentes J, Ellman D, Kozubenko N, Itier V, Tine S, Tritschler L, Brenot M, Guidou E, Blondeau J, Lhuillier M, Bugi A, Aubry L, Jendelova P, Sykova E, Perrier AL, Finsen B, Onteniente B (2010) The postischemic environment differentially impacts teratoma or tumor formation after transplantation of human embryonic stem cell-derived neural progenitors. Stroke 41:153–159PubMedCrossRefGoogle Scholar
  44. Shen LH, Li Y, Chen J, Cui Y, Zhang C, Kapke A, Lu M, Savant-Bhonsale S, Chopp M (2007a) One-year follow-up after bone marrow stromal cell treatment in middle-aged female rats with stroke. Stroke 38:2150–2156PubMedCrossRefGoogle Scholar
  45. Shen LH, Li Y, Chen J, Zacharek A, Gao Q, Kapke A, Lu M, Raginski K, Vanguri P, Smith A, Chopp M (2007b) Therapeutic benefit of bone marrow stromal cells administered 1 month after stroke. J Cereb Blood Flow Metab 27:6–13PubMedCrossRefGoogle Scholar
  46. Shen LH, Li Y, Gao Q, Savant-Bhonsale S, Chopp M (2008) Down-regulation of neurocan expression in reactive astrocytes promotes axonal regeneration and facilitates the neurorestorative effects of bone marrow stromal cells in the ischemic rat brain. Glia 56:1747–1754PubMedCrossRefGoogle Scholar
  47. Shichinohe H, Kuroda S, Yano S, Hida K, Iwasaki Y (2007) Role of SDF-1/CXCR4 system in survival and migration of bone marrow stromal cells after transplantation into mice cerebral infarct. Brain Res 1183:138–147PubMedCrossRefGoogle Scholar
  48. Shobha N, Buchan AM, Hill MD (2011) Thrombolysis at 3–4.5 hours after acute ischemic stroke onset–evidence from the Canadian Alteplase for Stroke Effectiveness Study (CASES) registry. Cerebrovasc Dis 31:223–228PubMedCrossRefGoogle Scholar
  49. Stroh A, Zimmer C, Gutzeit C, Jakstadt M, Marschinke F, Jung T, Pilgrimm H, Grune T (2004) Iron oxide particles for molecular magnetic resonance imaging cause transient oxidative stress in rat macrophages. Free Radic Biol Med 36:976–984PubMedCrossRefGoogle Scholar
  50. Stroh A, Faber C, Neuberger T, Lorenz P, Sieland K, Jakob PM, Webb A, Pilgrimm H, Schober R, Pohl EE, Zimmer C (2005) In vivo detection limits of magnetically labeled embryonic stem cells in the rat brain using high-field (17.6 T) magnetic resonance imaging. Neuroimage 24:635–645PubMedCrossRefGoogle Scholar
  51. Stroh A, Zimmer C, Werner N, Gertz K, Weir K, Kronenberg G, Steinbrink J, Mueller S, Sieland K, Dirnagl U, Nickenig G, Endres M (2006) Tracking of systemically administered mononuclear cells in the ischemic brain by high-field magnetic resonance imaging. Neuroimage 33:886–897PubMedCrossRefGoogle Scholar
  52. Stroh A, Boltze J, Sieland K, Hild K, Gutzeit C, Jung T, Kressel J, Hau S, Reich D, Grune T, Zimmer C (2009) Impact of magnetic labeling on human and mouse stem cells and their long-term magnetic resonance tracking in a rat model of Parkinson disease. Mol Imaging 8:166–178PubMedGoogle Scholar
  53. Tsai LK, Wang Z, Munasinghe J, Leng Y, Leeds P, Chuang DM (2011) Mesenchymal stem cells primed with valproate and lithium robustly migrate to infarcted regions and facilitate recovery in a stroke model. Stroke 42:2932–2939PubMedCrossRefGoogle Scholar
  54. Ukai R, Honmou O, Harada K, Houkin K, Hamada H, Kocsis JD (2007) Mesenchymal stem cells derived from peripheral blood protects against ischemia. J Neurotrauma 24:508–520PubMedCrossRefGoogle Scholar
  55. Vahedi K, Hofmeijer J, Juettler E, Vicaut E, George B, Algra A, Amelink GJ, Schmiedeck P, Schwab S, Rothwell PM, Bousser MG, van der Worp HB, Hacke W (2007) Early decompressive surgery in malignant infarction of the middle cerebral artery: a pooled analysis of three randomised controlled trials. Lancet Neurol 6:215–222PubMedCrossRefGoogle Scholar
  56. Wu J, Sun Z, Sun HS, Wu J, Weisel RD, Keating A, Li ZH, Feng ZP, Li RK (2008) Intravenously administered bone marrow cells migrate to damaged brain tissue and improve neural function in ischemic rats. Cell Transplant 16:993–1005PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2013

Authors and Affiliations

  1. 1.Department of Cell TherapyFraunhofer-Institute for Cell Therapy and ImmunologyLeipzigGermany
  2. 2.Translational Centre for Regenerative MedicineUniversity of LeipzigLeipzigGermany
  3. 3.Department for NeuroradiologyUniversity of LeipzigLeipzigGermany
  4. 4.Department of Chemistry and Mineralogy, Institute of Analytical ChemistryUniversity of LeipzigLeipzigGermany
  5. 5.Focus Group Translational Neurosciences (FTN), Institute for Microscopic Anatomy and NeurobiologyJohannes Gutenberg-University MainzMainzGermany

Personalised recommendations