Paleoclimate Implications for Human-Made Climate Change

Conference paper

Abstract

Paleoclimate data help us assess climate sensitivity and potential human-made climate effects. We conclude that Earth in the warmest interglacial periods of the past million years was less than 1°C warmer than in the Holocene. Polar warmth in these interglacials and in the Pliocene does not imply that a substantial cushion remains between today’s climate and dangerous warming, but rather that Earth is poised to experience strong amplifying polar feedbacks in response to moderate global warming. Thus, goals to limit human-made warming to 2°C are not sufficient—they are prescriptions for disaster. Ice sheet disintegration is nonlinear, spurred by amplifying feedbacks. We suggest that ice sheet mass loss, if warming continues unabated, will be characterized better by a doubling time for mass loss rate than by a linear trend. Satellite gravity data, though too brief to be conclusive, are consistent with a doubling time of 10 years or less, implying the possibility of multimeter sea level rise this century. Observed accelerating ice sheet mass loss supports our conclusion that Earth’s temperature now exceeds the mean Holocene value. Rapid reduction of fossil fuel emissions is required for humanity to succeed in preserving a planet resembling the one on which civilization developed.

References

  1. Alley RB (2010) Ice in the hot box – what adaptation challenges might we face? In: 2010 AGU Fall Meeting, San Francisco, December 17, U52A-02Google Scholar
  2. Archer D (2005) Fate of fossil fuel CO2 in geologic time. J Geophys Res 110:C09505. doi:10.1029/2004JC002625 CrossRefGoogle Scholar
  3. Beerling DJ, Royer DL (2011) Earth’s atmospheric CO2 history by proxy. Nat Geosci 4:1–2CrossRefGoogle Scholar
  4. Beerling D, Berner RA, Mackenzie FT, Harfoot MB, Pyle JA (2009) Methane and the CH4-related greenhouse effect over the past 400 million years. Am J Sci 309:97–113CrossRefGoogle Scholar
  5. Beerling DJ, Fox A, Stevenson DS, Valdes PJ (2011) Enhanced chemistry-climate feedbacks in past greenhouse worlds. Proc Natl Acad Sci USA 108:9770–9775CrossRefGoogle Scholar
  6. Berger AL (1978) Long term variations of daily insolation and quaternary climate changes. J Atmos Sci 35:2362–2367CrossRefGoogle Scholar
  7. Berner RA (2004) The Phanerozoic carbon cycle: CO2 and O2. Oxford University Press, Oxford, 150 ppGoogle Scholar
  8. Berner RA, Caldeira K (1997) The need for mass balance and feedback in the geochemical carbon cycle. Geology 25:955–956CrossRefGoogle Scholar
  9. Bintanja R, van de Wal RSW, Oerlemans J (2005) Modelled atmospheric temperatures and global sea levels over the past million years. Nature 437:125–128CrossRefGoogle Scholar
  10. Blakey R (2008) Global paleogeographic views of Earth history – Late Precambrian to Recent. http://jan.ucc.nau.edu/~rcb7/globaltext2.html
  11. Bond G, Heinrich H, Broecker W, Labeyrie L, McManus J, Andrews J, Huon S, Jantschik R, Clasen S, Simet C, Tedesco K, Klas M, Bonani G, Ivy S (1992) Evidence for massive discharges of icebergs into the North Atlantic ocean during the last glacial period. Nature 360:245–249CrossRefGoogle Scholar
  12. Broecker WS, Bond G, Klas M, Bonani G, Wolfi W (1990) A salt oscillator in the glacial North Atlantic? Paleoceanography 5:469–477CrossRefGoogle Scholar
  13. Charlson RJ, Lovelock JE, Andreae MO, Warren SG (1987) Oceanic phytoplankton, atmospheric suphur, cloud albedo and climate. Nature 326:655–661CrossRefGoogle Scholar
  14. Charney JG, Arakawa A, Baker D, Bolin B, Dickenson R, Goody R, Leith C, Stommel HM, Wunsch CI (1979) Carbon dioxide and climate: a scientific assessment. National Academy of Sciences Press, Washington, DC, 33 ppGoogle Scholar
  15. Church JA et al (2010) Sea-level rise and variability: synthesis and outlook for the future. In: Church JA, Woodworth PL, Aarup T, Wilson WS (eds) Understanding sea-level rise and variability. Blackwell, OxfordCrossRefGoogle Scholar
  16. Chylek P, Lohmann U (2008) Aerosol radiative forcing and climate sensitivity deduced from the Last Glacial Maximum to Holocene transition. Geophys Res Lett 35:L04804. doi:10.1029/2007GL032759 CrossRefGoogle Scholar
  17. Dowsett HJ, Cronin T (1990) High eustatic sea level during the middle Pliocene: evidence from the southeastern U.S. Atlantic coastal plain. Geology 18:435–438CrossRefGoogle Scholar
  18. Dowsett H, Thompson R, Barron J, Cronin T, Fleming F, Ishman S, Poore R, Willard D, Holtz T Jr (1994) Joint investigations of the Middle Pliocene climate I: PRISM paleo-environmental reconstructions. Global Planet Change 9:169–195CrossRefGoogle Scholar
  19. Dowsett H, Barron J, Poore R (1996) Middle Pliocene sea surface temperatures: a global reconstruction. Mar Micropaleontol 27:13–26CrossRefGoogle Scholar
  20. Dowsett HJ, Barron JA, Poore RZ, Thompson RS, Cronin TM, Ishman SE, Willard DA (1999) Middle Pliocene paleoenvironmental reconstruction: PRISM2, U.S. Geol. Surv. Open File Rep., 99-535. http://pubs.usgs.gov/openfile/of99-535
  21. Dowsett HJ, Robinson MM, Foley KM (2009) Pliocene three-dimensional global ocean temperature reconstruction. Clim Past 5:769–783CrossRefGoogle Scholar
  22. Edmond JM, Huh Y (2003) Non-steady state carbonate recycling and implications for the evolution of atmospheric PCO2. Earth Planet Sci Lett 216:125–139CrossRefGoogle Scholar
  23. European Union (2008) The 2°C target. Information Reference Document. http://ec.europa.eu/clima/policies/international/docs/brochure_2c.pdf
  24. European Union (2010) Scientific Perspectives After Copenhagen. Information Reference Document. http://www.eutrio.be/files/bveu/media/documents/Scientific_Perspectives_After_Copenhagen.pdf
  25. Fairbanks RG (1989) A 17,000-year glacio-eustatic sea level record – influence of glacial melting rates on the Younger Dryas event and deep sea circulation. Nature 433:637–642CrossRefGoogle Scholar
  26. Gerlach T (2011) Volcanic versus anthropogenic carbon dioxide. Eos Trans Am Geophys Union 92:201–202CrossRefGoogle Scholar
  27. Grinsted A, Moore JC, Jevrejeva S (2010) Reconstructing sea level from paleo and projected temperatures 200 to 2100 AD. Clim Dyn 34:461–472CrossRefGoogle Scholar
  28. Hansen JE (2005) A slippery slope: how much global warming constitutes “dangerous anthropogenic interference”? An editorial essay. Climatic Change 68:269–279CrossRefGoogle Scholar
  29. Hansen JE (2007) Scientific reticence and sea level rise. Environ Res Lett 2:024002, 6 ppCrossRefGoogle Scholar
  30. Hansen J (2009) Storms of my grandchildren: the truth about the coming climate catastrophe and our last chance to save humanity. Bloomsbury, New York, 304 ppGoogle Scholar
  31. Hansen J, Johnson D, Lacis A, Lebedeff S, Lee P, Rind D, Russell G (1981) Climate impact of increasing atmospheric carbon dioxide. Science 213:957–966CrossRefGoogle Scholar
  32. Hansen J, Lacis A, Rind D, Russell G, Stone P, Ruedy R, Lerner J (1984) Climate sensitivity: analysis of feedback mechanisms. In: Hansen JE, Takahashi T (eds) Climate processes and climate sensitivity, vol 5, Geophysical Monograph 29, Maurice Ewing. American Geophysical Union, Washington, DC, pp 130–163CrossRefGoogle Scholar
  33. Hansen J, Sato M, Ruedy R, Lacis A, Oinas V (2000) Global warming in the twenty-first century: an alternative scenario. Proc Natl Acad Sci USA 97:9875–9880CrossRefGoogle Scholar
  34. Hansen J, Sato M, Ruedy R et al (2005) Efficacy of climate forcings. J Geophys Res 110:D18104. doi:10.1029/2005JD005776 CrossRefGoogle Scholar
  35. Hansen J, Sato M, Ruedy R, Lo K, Lea DW, Medina-Elizade M (2006) Global temperature change. Proc Natl Acad Sci USA 103:14288–14293CrossRefGoogle Scholar
  36. Hansen J, Sato M, Kharecha P, Russell G, Lea DW, Siddall M (2007a) Climate change and trace gases. Philos Trans R Soc A 365:1925–1954CrossRefGoogle Scholar
  37. Hansen J, Sato M, Ruedy R et al (2007b) Dangerous human-made interference with climate: a GISS modelE study. Atmos Chem Phys 7:2287–2312CrossRefGoogle Scholar
  38. Hansen J, Sato M, Ruedy R et al (2007c) Climate simulations for 1880-2003 with GISS modelE. Clim Dyn 29:661–696. doi:10.1007/s00382-007-0255-8 CrossRefGoogle Scholar
  39. Hansen J, Sato M, Kharecha P, Beerling D, Berner R, Masson-Delmotte V, Pagani M, Raymo M, Royer DL, Zachos JC (2008) Target atmospheric CO2: where should humanity aim? Open Atmos Sci J 2:217–231CrossRefGoogle Scholar
  40. Hansen J, Ruedy R, Sato M, Lo K (2010) Global surface temperature change. Rev Geophys 48:RG4004, 29 ppCrossRefGoogle Scholar
  41. Haug GH, Tiedemann R (1998) Effect of the formation of the Isthmus of Panama on Atlantic Ocean thermohaline circulation. Nature 393:673–676CrossRefGoogle Scholar
  42. Hays JD, Imbrie J, Shackleton NJ (1976) Variations in the Earth’s orbit: pacemaker of the ice ages. Science 194:1121–1132CrossRefGoogle Scholar
  43. Hewitt CD, Mitchell JFB (1997) Radiative forcing and response of a GCM to ice age boundary conditions: cloud feedback and climate sensitivity. Clim Dyn 13:821–834CrossRefGoogle Scholar
  44. Huybers P (2006) Early Pleistocene glacial cycles and the integrated summer insolation forcing. Science 313:508–511CrossRefGoogle Scholar
  45. Intergovernmental Panel on Climate Change (IPCC) (2001) In: Houghton JT, Ding Y, Griggs DJ et al (eds) Climate change 2001: the scientific basis. Cambridge University Press, Cambridge, 881 ppGoogle Scholar
  46. Intergovernmental Panel on Climate Change (IPCC) (2007) In: Solomon S, Dahe Q, Manning M et al (eds) Climate Change 2007: the physical science basis. Cambridge University Press, Cambridge, 996 ppGoogle Scholar
  47. Jenkins A, Dutrieux P, Jacobs SS, McPhail SD, Perrett JR, Webb AT, White D (2010) Observations beneath Pine Island Glacier in West Antarctica and implications for its retreat. Nat Geosci 3:468–472CrossRefGoogle Scholar
  48. Jouzel J, Masson-Delmotte V, Cattani O et al (2007) Orbital and millennial Antarctic climate variability over the past 800,000 years. Science 317:793–796CrossRefGoogle Scholar
  49. Kent DV, Muttoni G (2008) Equatorial convergence of India and early Cenozoic climate trends. Proc Natl Acad Sci USA 105:16065–16070CrossRefGoogle Scholar
  50. Kohler P, Bintanja R, Fischer H, Joos F, Knutti R, Lohmann G, Masson-Delmotte V (2010) What caused Earth’s temperature variations during the last 800,000 years? Data-based evidence on radiative forcing and constraints on climate sensitivity. Quat Sci Rev 29:129–145CrossRefGoogle Scholar
  51. Kumar P, Yuan X, Kumar MR, Kind R, Li X, Chadha RK (2007) The rapid drift of the Indian tectonic plate. Nature 449:894–897CrossRefGoogle Scholar
  52. Lacis AA, Schmidt GA, Rind D, Ruedy RA (2010) Atmospheric CO2: principal control knob governing Earth’s temperature. Science 330:356–359. doi:10.1126/science.1190653 CrossRefGoogle Scholar
  53. Lea DW, Pak DK, Spero HJ (2000) Climate impact of late Quaternary equatorial Pacific sea surface temperature variations. Science 289:1719–1723CrossRefGoogle Scholar
  54. Lea DW, Pak DK, Belanger CL, Spero HJ, Hall MA, Shackleton NJ (2006) Paleoclimate history of Galapagos surface waters over the last 135,000 years. Quat Sci Rev 25:1152–1167CrossRefGoogle Scholar
  55. Loulergue L, Schilt A, Spahni R, Masson-Delmotte V, Blunier T, Lemieux B, Barnola J-M, Raynaud D, Stocker TF, Chappelaz J (2008) Orbital and millennial-scale features of atmospheric CH4 over the past 800,000 years. Nature 453:383–386CrossRefGoogle Scholar
  56. Lunt DJ, Haywood AM, Schmidt GA, Salzmann U, Valdes PJ, Dowsett HJ (2010) Earth system sensitivity inferred from Pliocene modeling and data. Nat Geosci 3:60–64CrossRefGoogle Scholar
  57. Luthi D, Le Floch M, Bereiter B et al (2008) High-resolution carbon dioxide concentration record 650,000-800,000 years before present. Nature 453:379–382CrossRefGoogle Scholar
  58. Manabe S, Stouffer R (1997) Coupled ocean-atmosphere model response to freshwater input: comparison to Younger Dryas event. Paleoceanography 12:307–320CrossRefGoogle Scholar
  59. Markwick PJ (1998) Fossil crocodilians as indicators of Late Cretaceous and Cenozoic climates: implications for using paleontological data in reconstructing palaeoclimate. Palaeogeogr Palaeoclimatol Palaeoecol 137:205–271. doi:10.1016/S0031-0182/(97)00108-9 CrossRefGoogle Scholar
  60. Masson-Delmotte V, Stenni B, Pol K et al (2010) EPICA Dome C record of glacial and interglacial intensities. Quat Sci Rev 29:113–128CrossRefGoogle Scholar
  61. Mayewski PA, Rohling EE, Stager JC, Karlen W, Maasch KA, Meeker LD, Meyerson EA, Gasse F, van Kreveld S, Holmgren K, Lee-Thorp J, Rosqvist G, Rack F, Staubwasser M, Schneider RR, Steig EJ (2004) Holocene climate variability. Quat Res 62:243–255CrossRefGoogle Scholar
  62. Medina-Elizade M, Lea DW (2005) The mid-Pleistocene transition in the tropical Pacific. Science 310:1009–1012CrossRefGoogle Scholar
  63. Milankovitch M (1941) Kanon der Erdbestrahlung und seine Andwendung auf das Eiszeiten-problem. Royal Serbian Academy, BelgradeGoogle Scholar
  64. Mudelsee M (2001) The phase relations among atmospheric CO2 content, temperature and global ice volume over the past 420 ka. Quat Sci Rev 20:583–589CrossRefGoogle Scholar
  65. Pagani M, Liu Z, LaRiviere J, Ravelo AC (2010) High Earth-system climate sensitivity determined from Pliocene carbon dioxide concentrations. Nat Geosci 3:27–30CrossRefGoogle Scholar
  66. Park J, Royer DL (2011) Geologic constraints on the glacial amplification of Phanerozoic climate sensitivity. Am J Sci 311:1–26CrossRefGoogle Scholar
  67. Patriat P, Sloan H, Saunter D (2008) From slow to ultraslow: A previously undetected event at the Southwest Indian Ridge at ca. 24 Ma. Geology 36:207–210CrossRefGoogle Scholar
  68. Pfeffer WT, Harper JT, O’Neel S (2008) Kinematic constraints on glacier contributions to 21st century sea level rise. Science 321:1340–1343CrossRefGoogle Scholar
  69. Rahmstorf S (1996) On the freshwater forcing and transport of the Atlantic thermohaline circulation. Clim Dyn 12:799–811CrossRefGoogle Scholar
  70. Rahmstorf S (2007) A semi-empirical approach to projecting future sea-level rise. Science 315:368–370CrossRefGoogle Scholar
  71. Randall DA, Wood RA (2007) Climate models and their evaluation. In: Solomon S, Dahe Q, Manning M et al (eds) IPCC Climate Change 2007: the physical science basis. Cambridge University Press, Cambridge, 996 ppGoogle Scholar
  72. Rignot E, Bamber JL, van den Broeke MR, Davis C, Li Y, van de Berg WJ, van Meijgaard E (2008) Recent Antarctic ice mass loss from radar interferometry and regional climate modeling. Nat Geosci 1:106–110CrossRefGoogle Scholar
  73. Roe G (2006) In defense of Milankovitch. Geophys Res Lett 33:L24703. doi:10.1029/2006GL027817 CrossRefGoogle Scholar
  74. Rohling EJ, Grant K, Hemleben Ch, Siddall M, Hoogakker BAA, Bolshaw M, Kucera M (2008) High rates of sea-level rise during the last interglacial period. Nat Geosci 1:38–42CrossRefGoogle Scholar
  75. Rohling EJ, Grant K, Bolshaw M, Roberts AP, Siddall M, Hemleben Ch, Kucera M (2009) Antarctic temperature and global sea level closely coupled over the past five glacial cycles. Nat Geosci 2:500–5004CrossRefGoogle Scholar
  76. Royer DL (2006) CO2-forced climate thresholds during the Phanerozoic. Geochim Cosmochim Acta 70:5665–5675CrossRefGoogle Scholar
  77. Royer DL, Pagani M, Beerling DJ (2011) Geologic constraints on earth system sensitivity to CO2 during the Cretaceous and early Paleogene. Earth Syst Dyn Discuss 2:211–240CrossRefGoogle Scholar
  78. Sackmann I-J, Boothroyd AI, Kraemer KE (1993) Our sun III. Present and future. Astrophys J 418:457–468CrossRefGoogle Scholar
  79. Saraswat R, Nigam R, Weldeab S, Mackensen A, Naidu PD (2005) A first look at past sea surface temperatures in the equatorial Indian Ocean from Mg/Ca in foraminifera. Geophys Res Lett 32:L24605, 4 ppCrossRefGoogle Scholar
  80. Sasgen I, Martinec Z, Bamber J (2010) Combined GRACE and InSAR estimate of West Antarctic ice mass loss. J Geophys Res 115:F04010. doi:10.1029/2009JF001525 CrossRefGoogle Scholar
  81. Schmidt GA, Ruedy R, Hansen JE et al (2006) Present day atmospheric simulations using GISS ModelE: Comparison to in-situ, satellite and reanalysis data. J Clim 19:153–192. doi:10.1175/JCLI3612.1 CrossRefGoogle Scholar
  82. Schneider von Deimling T, Held H, Ganopolski A, Rahmstorf S (2006) Climate sensitivity estimated from ensemble simulations of glacial climate. Clim Dyn 27:149–163CrossRefGoogle Scholar
  83. Schneider SH, Mastrandrea MD (2005) Probabilistic assessment of “dangerous” climate change and emissions pathways. Proc Natl Acad Sci USA 102:15728–15735CrossRefGoogle Scholar
  84. Seki O, Foster GL, Schmidt DN, Mackensen A, Kawamura K, Pancost RD (2010) Alkenone and boron-based Pliocene pCO2 records. Earth Planet Sci Lett 292:201–211CrossRefGoogle Scholar
  85. Shakun JD, Carlson AE (2010) A global perspective on Last Glacial Maximum to Holocene climate change. Quat Sci Rev 29:1801–1816CrossRefGoogle Scholar
  86. Shepherd A, Wingham D, Rignot E (2004) Warm ocean is eroding West Antarctic ice sheet. Geophys Res Lett 31:L23402, 4 ppCrossRefGoogle Scholar
  87. Siddall M, Rohling EJ, Almogi-Labin A, Hemleben Ch, Meischner D, Schmelzer I, Smeed D (2003) Sea-level fluctuations during the last glacial cycle. Nature 423:853–858CrossRefGoogle Scholar
  88. Sorensen LS, Forsberg R (2010) Greenland ice sheet mass loss from GRACE monthly models. In: Gravity, geoid and earth observations, vol 135, International Association of Geodesy Symposia. Springer, Berlin, doi:10.1007/978-3-642-10634-7_70 Google Scholar
  89. Staudigel H, Hart SR, Schmincke H-U, Smith BM (1989) Cretaceous ocean crust at DSDP Sites 417 and 418: Carbon uptake from weathering versus loss by magmatic outgassing. Geochim Cosmochim Acta 53:3091–3094CrossRefGoogle Scholar
  90. Stockholm Memo (2011) Tipping the scales towards sustainability. In: 3rd Nobel Laureate symposium on global sustainability, Stockholm, 16–19 May 2011. http://globalsymposium2011.org/wp-content/uploads/2011/05/The-Stockholm-Memorandum.pdf
  91. Valdes P (2011) Built for stability. Nat Geosci 4:414–416CrossRefGoogle Scholar
  92. Velicogna I (2009) Increasing rates of ice mass loss from the Greenland and Antarctic ice sheets revealed by GRACE. Geophys Res Lett 36:L19503. doi:10.1029/2009GL040222 CrossRefGoogle Scholar
  93. Vermeer M, Rahmstorf S (2009) Global sea level linked to global temperature. Proc Natl Acad Sci USA 106:21527–21532CrossRefGoogle Scholar
  94. Vimeux F, Coffey KM, Jouzel J (2002) New insights into Southern Hemisphere temperature changes from Vostok ice cores using deuterium excess correction. Earth Planet Sci Lett 203:829–843CrossRefGoogle Scholar
  95. Waelbroeck C, Labeyrie L, Michel E, Duplessy JC, McManus JF, Lambeck K, Balbon E, Labracherie M (2002) Sea-level and deep water temperature changes derived from benthic foraminifera isotopic records. Quat Sci Rev 21:295–305CrossRefGoogle Scholar
  96. Wara MW, Ravelo A, Delaney ML (2005) Permanent El Nino-like conditions during the Pliocene warm period. Science 309:758–761CrossRefGoogle Scholar
  97. Wingham DJ, Wallis DW, Shepherd A (2009) The spatial and temporal evolution of Pine Island Glacier thinning, 1995–2006. Geophys Res Lett 36:L17501CrossRefGoogle Scholar
  98. Wunsch C (2003) The spectral description of climate change including the 100 ky energy. Clim Dyn 20:353–363Google Scholar
  99. Zachos J, Pagani M, Sloan L, Thomas E, Billups K (2001) Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292:686–693CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2012

Authors and Affiliations

  1. 1.NASA Goddard Institute for Space Studies and Columbia University Earth InstituteNew YorkUSA

Personalised recommendations