Synaptic Dysfunction in Parkinson’s Disease

  • Barbara Picconi
  • Giovanni Piccoli
  • Paolo CalabresiEmail author
Part of the Advances in Experimental Medicine and Biology book series (volume 970)


Activity-dependent modifications in synaptic efficacy, such as long-term depression (LTD) and long-term potentiation (LTP), represent key cellular substrates for adaptive motor control and procedural memory. The impairment of these two forms of synaptic plasticity in the nucleus striatum could account for the onset and the progression of motor and cognitive symptoms of Parkinson’s disease (PD), characterized by the massive degeneration of dopaminergic neurons. In fact, both LTD and LTP are peculiarly controlled and modulated by dopaminergic transmission coming from nigrostriatal terminals.

Changes in corticostriatal and nigrostriatal neuronal excitability may influence profoundly the threshold for the induction of synaptic plasticity, and changes in striatal synaptic transmission efficacy are supposed to play a role in the occurrence of PD symptoms. Understanding of these maladaptive forms of synaptic plasticity has mostly come from the analysis of experimental animal models of PD. A series of cellular and synaptic alterations occur in the striatum of experimental parkinsonism in response to the massive dopaminergic loss. In particular, dysfunctions in trafficking and subunit composition of glutamatergic NMDA receptors on striatal efferent neurons contribute to the clinical features of the experimental parkinsonism.

Interestingly, it has become increasingly evident that in striatal spiny neurons, the correct assembly of NMDA receptor complex at the postsynaptic site is a major player in early phases of PD, and it is sensitive to distinct degrees of DA denervation. The molecular defects at the basis of PD progression may be not confined just at the postsynaptic neuron: accumulating evidences have recently shown that the genes linked to PD play a critical role at the presynaptic site. DA release into the synaptic cleft relies on a proper presynaptic vesicular transport; impairment of SV trafficking, modification of DA flow, and altered presynaptic plasticity have been described in several PD animal models. Furthermore, an impaired DA turnover has been described in presymptomatic PD patients. Thus, given the pathological events occurring precociously at the synapses of PD patients, post- and presynaptic sites may represent an adequate target for early therapeutic intervention.


α-synuclein LRRK2 NMDA receptors Postsynaptic density 


  1. Aasly, J. O., Toft, M., Fernandez-Mata, I., Kachergus, J., Hulihan, M., White, L. R., & Farrer, M. (2005). Clinical features of LRRK2-associated Parkinson’s disease in central Norway. Annals of Neurology, 57, 762–765.PubMedCrossRefGoogle Scholar
  2. Abeliovich, A., Schmitz, Y., Farinas, I., Choi-Lundberg, D., Ho, W. H., Castillo, P. E., Shinsky, N., Verdugo, J. M., Armanini, M., Ryan, A., Hynes, M., Phillips, H., Sulzer, D., & Rosenthal, A. (2000). Mice lacking alpha-synuclein display functional deficits in the nigrostriatal dopamine system. Neuron, 25, 239–252.PubMedCrossRefGoogle Scholar
  3. Adams, J. R., van Netten, H., Schulzer, M., Mak, E., McKenzie, J., Strongosky, A., Sossi, V., Ruth, T. J., Lee, C. S., Farrer, M., Gasser, T., Uitti, R. J., Calne, D. B., Wszolek, Z. K., & Stoessl, A. J. (2005). PET in LRRK2 mutations: Comparison to sporadic Parkinson’s disease and evidence for presymptomatic compensation. Brain, 128, 2777–2785.PubMedCrossRefGoogle Scholar
  4. Anglade, P., Mouatt-Prigent, A., Agid, Y., & Hirsch, E. (1996). Synaptic plasticity in the caudate nucleus of patients with Parkinson’s disease. Neurodegeneration, 5, 121–128.PubMedCrossRefGoogle Scholar
  5. Berg, D., Schweitzer, K., Leitner, P., Zimprich, A., Lichtner, P., Belcredi, P., Brussel, T., Schulte, C., Maass, S., & Nagele, T. (2005). Type and frequency of mutations in the LRRK2 gene in familial and sporadic Parkinson’s disease*. Brain, 128, 3000–3011.PubMedGoogle Scholar
  6. Bernard, V., Gardiol, A., Faucheux, B., Bloch, B., Agid, Y., & Hirsch, E. C. (1996). Expression of glutamate receptors in the human and rat basal ganglia: Effect of the dopaminergic denervation on AMPA receptor gene expression in the striatopallidal complex in Parkinson’s disease and rat with 6-OHDA lesion. The Journal of Comparative Neurology, 368, 553–568.PubMedCrossRefGoogle Scholar
  7. Betarbet, R., Porter, R. H., & Greenamyre, J. T. (2000). GluR1 glutamate receptor subunit is regulated differentially in the primate basal ganglia following nigrostriatal dopamine denervation. Journal of Neurochemistry, 74, 1166–1174.PubMedCrossRefGoogle Scholar
  8. Biskup, S., Moore, D. J., Celsi, F., Higashi, S., West, A. B., Andrabi, S. A., Kurkinen, K., Yu, S. W., Savitt, J. M., Waldvogel, H. J., Faull, R. L., Emson, P. C., Torp, R., Ottersen, O. P., Dawson, T. M., & Dawson, V. L. (2006). Localization of LRRK2 to membranous and vesicular structures in mammalian brain. Annals of Neurology, 60, 557–569.PubMedCrossRefGoogle Scholar
  9. Bonifati, V. (2006a). Parkinson’s disease: The LRRK2-G2019S mutation: Opening a novel era in Parkinson’s disease genetics. European Journal of Human Genetics, 14, 1061–1062.PubMedCrossRefGoogle Scholar
  10. Bonifati, V. (2006b). The pleomorphic pathology of inherited Parkinson’s disease: Lessons from LRRK2. Current Neurology and Neuroscience Reports, 6, 355–357.PubMedCrossRefGoogle Scholar
  11. Bosgraaf, L., & Van Haastert, P. J. (2003). Roc, a Ras/GTPase domain in complex proteins. Biochimica et Biophysica Acta, 1643, 5–10.PubMedCrossRefGoogle Scholar
  12. Cabin, D. E., Shimazu, K., Murphy, D., Cole, N. B., Gottschalk, W., McIlwain, K. L., Orrison, B., Chen, A., Ellis, C. E., Paylor, R., Lu, B., & Nussbaum, R. L. (2002). Synaptic vesicle depletion correlates with attenuated synaptic responses to prolonged repetitive stimulation in mice lacking alpha-synuclein. The Journal of Neuroscience, 22, 8797–8807.PubMedGoogle Scholar
  13. Calabresi, P., Maj, R., Mercuri, N. B., & Bernardi, G. (1992a). Coactivation of D1 and D2 dopamine receptors is required for long-term synaptic depression in the striatum. Neuroscience Letters, 142, 95–99.PubMedCrossRefGoogle Scholar
  14. Calabresi, P., Pisani, A., Mercuri, N. B., & Bernardi, G. (1992b). Long-term potentiation in the striatum is unmasked by removing the voltage-dependent magnesium block of NMDA receptor channels. European Journal of Neuroscience, 4, 929–935.PubMedCrossRefGoogle Scholar
  15. Calabresi, P., Picconi, B., Parnetti, L., & Di Filippo, M. (2006). A convergent model for cognitive dysfunctions in Parkinson’s disease: The critical dopamine-acetylcholine synaptic balance. Lancet Neurology, 5, 974–983.PubMedCrossRefGoogle Scholar
  16. Calabresi, P., Picconi, B., Tozzi, A., & Di Filippo, M. (2007). Dopamine-mediated regulation of corticostriatal synaptic plasticity. Trends in Neurosciences, 30, 211–219.PubMedCrossRefGoogle Scholar
  17. Calabresi, P., Maj, R., Pisani, A., Mercuri, N. B., & Bernardi, G. (1992c). Long-term synaptic depression in the striatum: Physiological and pharmacological characterization. The Journal of Neuroscience, 12, 4224–4233.PubMedGoogle Scholar
  18. Calabresi, P., Gubellini, P., Centonze, D., Picconi, B., Bernardi, G., Chergui, K., Svenningsson, P., Fienberg, A. A., & Greengard, P. (2000). Dopamine and cAMP-regulated phosphoprotein 32 kDa controls both striatal long-term depression and long-term potentiation, opposing forms of synaptic plasticity. The Journal of Neuroscience, 20, 8443–8451.PubMedGoogle Scholar
  19. Carballo-Carbajal, I., Weber-Endress, S., Rovelli, G., Chan, D., Wolozin, B., Klein, C. L., Patenge, N., Gasser, T., & Kahle, P. J. (2010). Leucine-rich repeat kinase 2 induces alpha-synuclein expression via the extracellular signal-regulated kinase pathway. Cellular Signalling, 22, 821–827.PubMedCrossRefGoogle Scholar
  20. Charpier, S., & Deniau, J. M. (1997). In vivo activity-dependent plasticity at cortico-striatal connections: Evidence for physiological long-term potentiation. Proceedings of the National Academy of Sciences of the United States of America, 94, 7036–7040.PubMedCrossRefGoogle Scholar
  21. Collingridge, G. L., & Bliss, T. V. (1995). Memories of NMDA receptors and LTP. Trends in Neurosciences, 18, 54–56.PubMedCrossRefGoogle Scholar
  22. Collingridge, G. L., Isaac, J. T., & Wang, Y. T. (2004). Receptor trafficking and synaptic plasticity. Nature Reviews: Neuroscience, 5, 952–962.PubMedCrossRefGoogle Scholar
  23. Day, M., Wang, Z., Ding, J., An, X., Ingham, C. A., Shering, A. F., Wokosin, D., Ilijic, E., Sun, Z., Sampson, A. R., Mugnaini, E., Deutch, A. Y., Sesack, S. R., Arbuthnott, G. W., & Surmeier, D. J. (2006). Selective elimination of glutamatergic synapses on striatopallidal neurons in Parkinson disease models. Nature Neuroscience, 9, 251–259.PubMedCrossRefGoogle Scholar
  24. Dickson, D. W., Braak, H., Duda, J. E., Duyckaerts, C., Gasser, T., Halliday, G. M., Hardy, J., Leverenz, J. B., Del Tredici, K., Wszolek, Z. K., & Litvan, I. (2009). Neuropathological assessment of Parkinson’s disease: Refining the diagnostic criteria. Lancet Neurology, 8, 1150–1157.PubMedCrossRefGoogle Scholar
  25. Dingledine, R., Borges, K., Bowie, D., & Traynelis, S. F. (1999). The glutamate receptor ion channels. Pharmacological Reviews, 51, 7–61.PubMedGoogle Scholar
  26. Dunah, A. W., & Standaert, D. G. (2001). Dopamine D1 receptor-dependent trafficking of striatal NMDA glutamate receptors to the postsynaptic membrane. The Journal of Neuroscience, 21, 5546–5558.PubMedGoogle Scholar
  27. Ehlers, M. D. (2003). Activity level controls postsynaptic composition and signaling via the ubiquitin-proteasome system. Nature Neuroscience, 6, 231–242.PubMedCrossRefGoogle Scholar
  28. Fdez, E., & Hilfiker, S. (2006). Vesicle pools and synapsins: New insights into old enigmas. Brain Cell Biology, 35, 107–115.PubMedCrossRefGoogle Scholar
  29. Fortin, D. L., Nemani, V. M., Nakamura, K., & Edwards, R. H. (2010). The behavior of alpha-synuclein in neurons. Movement Disorders, 25(Suppl 1), S21–26.PubMedCrossRefGoogle Scholar
  30. Galter, D., Westerlund, M., Carmine, A., Lindqvist, E., Sydow, O., & Olson, L. (2006). LRRK2 expression linked to dopamine-innervated areas. Annals of Neurology, 59, 714–719.PubMedCrossRefGoogle Scholar
  31. Gardoni, F., Caputi, A., Cimino, M., Pastorino, L., Cattabeni, F., & Di Luca, M. (1998). Calcium/calmodulin-dependent protein kinase II is associated with NR2A/B subunits of NMDA receptor in postsynaptic densities. Journal of Neurochemistry, 71, 1733–1741.PubMedCrossRefGoogle Scholar
  32. Gardoni, F., Schrama, L. H., Kamal, A., Gispen, W. H., Cattabeni, F., & Di Luca, M. (2001). Hippocampal synaptic plasticity involves competition between Ca2+/calmodulin-dependent protein kinase II and postsynaptic density 95 for binding to the NR2A subunit of the NMDA receptor. The Journal of Neuroscience, 21, 1501–1509.PubMedGoogle Scholar
  33. Gardoni, F., Picconi, B., Ghiglieri, V., Polli, F., Bagetta, V., Bernardi, G., Cattabeni, F., Di Luca, M., & Calabresi, P. (2006). A critical interaction between NR2B and MAGUK in L-DOPA induced dyskinesia. The Journal of Neuroscience, 26, 2914–2922.PubMedCrossRefGoogle Scholar
  34. Gasser, T. (2009). Molecular pathogenesis of Parkinson disease: Insights from genetic studies. Expert Reviews in Molecular Medicine, 11, e22.PubMedCrossRefGoogle Scholar
  35. Gilks, W. P., Abou-Sleiman, P. M., Gandhi, S., Jain, S., Singleton, A., Lees, A. J., Shaw, K., Bhatia, K. P., Bonifati, V., Quinn, N. P., Lynch, J., Healy, D. G., Holton, J. L., Revesz, T., & Wood, N. W. (2005). A common LRRK2 mutation in idiopathic Parkinson’s disease. Lancet, 365, 415–416.PubMedGoogle Scholar
  36. Gillardon, F. (2009). Leucine-rich repeat kinase 2 phosphorylates brain tubulin-beta isoforms and modulates microtubule stability – a point of convergence in parkinsonian neurodegeneration? Journal of Neurochemistry, 110, 1514–1522.PubMedCrossRefGoogle Scholar
  37. Gispert, S., Ricciardi, F., Kurz, A., Azizov, M., Hoepken, H. H., Becker, D., Voos, W., Leuner, K., Muller, W. E., Kudin, A. P., Kunz, W. S., Zimmermann, A., Roeper, J., Wenzel, D., Jendrach, M., Garcia-Arencibia, M., Fernandez-Ruiz, J., Huber, L., Rohrer, H., Barrera, M., Reichert, A. S., Rub, U., Chen, A., Nussbaum, R. L., & Auburger, G. (2009). Parkinson phenotype in aged PINK1-deficient mice is accompanied by progressive mitochondrial dysfunction in absence of neurodegeneration. PLoS One, 4, e5777.PubMedCrossRefGoogle Scholar
  38. Gloeckner, C. J., Schumacher, A., Boldt, K., & Ueffing, M. (2009). The Parkinson disease-associated protein kinase LRRK2 exhibits MAPKKK activity and phosphorylates MKK3/6 and MKK4/7, in vitro. Journal of Neurochemistry, 109, 959–968.PubMedCrossRefGoogle Scholar
  39. Goldberg, M. S., Pisani, A., Haburcak, M., Vortherms, T. A., Kitada, T., Costa, C., Tong, Y., Martella, G., Tscherter, A., Martins, A., Bernardi, G., Roth, B. L., Pothos, E. N., Calabresi, P., & Shen, J. (2005). Nigrostriatal dopaminergic deficits and hypokinesia caused by inactivation of the familial Parkinsonism-linked gene DJ-1. Neuron, 45, 489–496.PubMedCrossRefGoogle Scholar
  40. Goldberg, M. S., Fleming, S. M., Palacino, J. J., Cepeda, C., Lam, H. A., Bhatnagar, A., Meloni, E. G., Wu, N., Ackerson, L. C., Klapstein, G. J., Gajendiran, M., Roth, B. L., Chesselet, M. F., Maidment, N. T., Levine, M. S., & Shen, J. (2003). Parkin-deficient mice exhibit nigrostriatal deficits but not loss of dopaminergic neurons. The Journal of Biological Chemistry, 278, 43628–43635.PubMedCrossRefGoogle Scholar
  41. Goldwurm, S., Di Fonzo, A., Simons, E. J., Rohe, C. F., Zini, M., Canesi, M., Tesei, S., Zecchinelli, A., Antonini, A., Mariani, C., Meucci, N., Sacilotto, G., Sironi, F., Salani, G., Ferreira, J., Chien, H. F., Fabrizio, E., Vanacore, N., Dalla Libera, A., Stocchi, F., Diroma, C., Lamberti, P., Sampaio, C., Meco, G., Barbosa, E., Bertoli-Avella, A. M., Breedveld, G. J., Oostra, B. A., Pezzoli, G., & Bonifati, V. (2005). The G6055A (G2019S) mutation in LRRK2 is frequent in both early and late onset Parkinson’s disease and originates from a common ancestor. Journal of Medical Genetics, 42, e65.PubMedCrossRefGoogle Scholar
  42. Gubellini, P., Picconi, B., Bari, M., Battista, N., Calabresi, P., Centonze, D., Bernardi, G., Finazzi-Agro, A., & Maccarrone, M. (2002). Experimental Parkinsonism alters endocannabinoid degradation: Implications for striatal glutamatergic transmission. The Journal of Neuroscience, 22, 6900–6907.PubMedGoogle Scholar
  43. Guo, L., Wang, W., & Chen, S. G. (2006). Leucine-rich repeat kinase 2: Relevance to Parkinson’s disease. The International Journal of Biochemistry & Cell Biology, 38, 1469–1475.CrossRefGoogle Scholar
  44. Hallett, P. J., Dunah, A. W., Ravenscroft, P., Zhou, S., Bezard, E., Crossman, A. R., Brotchie, J. M., & Standaert, D. G. (2005). Alterations of striatal NMDA receptor subunits associated with the development of dyskinesia in the MPTP-lesioned primate model of Parkinson’s disease. Neuropharmacology, 48, 503–516.PubMedCrossRefGoogle Scholar
  45. Healy, D. G., Wood, N. W., & Schapira, A. H. (2008). Test for LRRK2 mutations in patients with Parkinson’s disease. Practical Neurology, 8, 381–385.PubMedCrossRefGoogle Scholar
  46. Healy, D. G., Abou-Sleiman, P. M., Valente, E. M., Gilks, W. P., Bhatia, K., Quinn, N., Lees, A. J., & Wood, N. W. (2004). DJ-1 mutations in Parkinson’s disease. Journal of Neurology, Neurosurgery, and Psychiatry, 75, 144–145.PubMedCrossRefGoogle Scholar
  47. Higashi, S., Moore, D. J., Colebrooke, R. E., Biskup, S., Dawson, V. L., Arai, H., Dawson, T. M., & Emson, P. C. (2007a). Expression and localization of Parkinson’s disease-associated leucine-rich repeat kinase 2 in the mouse brain. Journal of Neurochemistry, 100, 368–381.PubMedCrossRefGoogle Scholar
  48. Higashi, S., Biskup, S., West, A. B., Trinkaus, D., Dawson, V. L., Faull, R. L., Waldvogel, H. J., Arai, H., Dawson, T. M., Moore, D. J., & Emson, P. C. (2007b). Localization of Parkinson’s disease-associated LRRK2 in normal and pathological human brain. Brain Research, 1155, 208–219.PubMedCrossRefGoogle Scholar
  49. Imai, Y., Gehrke, S., Wang, H. Q., Takahashi, R., Hasegawa, K., Oota, E., & Lu, B. (2008). Phosphorylation of 4E-BP by LRRK2 affects the maintenance of dopaminergic neurons in Drosophila. The EMBO Journal, 27, 2432–2443.PubMedCrossRefGoogle Scholar
  50. Jaleel, M., Nichols, R. J., Deak, M., Campbell, D. G., Gillardon, F., Knebel, A., & Alessi, D. R. (2007). LRRK2 phosphorylates moesin at threonine-558: Characterization of how Parkinson’s disease mutants affect kinase activity. The Biochemical Journal, 405, 307–317.PubMedCrossRefGoogle Scholar
  51. Jankovic, J. (2008). Parkinson’s disease: Clinical features and diagnosis. Journal of Neurology, Neurosurgery, and Psychiatry, 79, 368–376.PubMedCrossRefGoogle Scholar
  52. Jenner, P., & Marsden, C. D. (1986). The actions of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine in animals as a model of Parkinson’s disease. Journal of Neural Transmission: Supplementum, 20, 11–39.Google Scholar
  53. Kehagia, A. A., Barker, R. A., & Robbins, T. W. (2010). Neuropsychological and clinical heterogeneity of cognitive impairment and dementia in patients with Parkinson’s disease. Lancet Neurology, 9, 1200–1213.PubMedCrossRefGoogle Scholar
  54. Kennedy, M. B. (2000). Signal-processing machines at the postsynaptic density. Science, 290, 750–754.PubMedCrossRefGoogle Scholar
  55. Kim, E., & Sheng, M. (2004). PDZ domain proteins of synapses. Nature Reviews: Neuroscience, 5, 771–781.PubMedCrossRefGoogle Scholar
  56. Kitada, T., Pisani, A., Porter, D. R., Yamaguchi, H., Tscherter, A., Martella, G., Bonsi, P., Zhang, C., Pothos, E. N., & Shen, J. (2007). Impaired dopamine release and synaptic plasticity in the striatum of PINK1-deficient mice. Proceedings of the National Academy of Sciences of the United States of America, 104, 11441–11446.PubMedCrossRefGoogle Scholar
  57. Kurz, A., Double, K. L., Lastres-Becker, I., Tozzi, A., Tantucci, M., Bockhart, V., Bonin, M., Garcia-Arencibia, M., Nuber, S., Schlaudraff, F., Liss, B., Fernandez-Ruiz, J., Gerlach, M., Wullner, U., Luddens, H., Calabresi, P., Auburger, G., & Gispert, S. (2010). A53T-alpha-synuclein overexpression impairs dopamine signaling and striatal synaptic plasticity in old mice. PLoS One, 5, e11464.PubMedCrossRefGoogle Scholar
  58. Lai, S. K., Tse, Y. C., Yang, M. S., Wong, C. K., Chan, Y. S., & Yung, K. K. (2003). Gene expression of glutamate receptors GluR1 and NR1 is differentially modulated in striatal neurons in rats after 6-hydroxydopamine lesion. Neurochemistry International, 43, 639–653.PubMedCrossRefGoogle Scholar
  59. Lang, A. E., & Lozano, A. M. (1998a). Parkinson’s disease. Second of two parts. The New England Journal of Medicine, 339, 1130–1143.PubMedCrossRefGoogle Scholar
  60. Lang, A. E., & Lozano, A. M. (1998b). Parkinson’s disease. First of two parts. The New England Journal of Medicine, 339, 1044–1053.PubMedCrossRefGoogle Scholar
  61. Lavedan, C. (1998). The synuclein family. Genome Research, 8, 871–880.PubMedGoogle Scholar
  62. Le, W. D., Xu, P., Jankovic, J., Jiang, H., Appel, S. H., Smith, R. G., & Vassilatis, D. K. (2003). Mutations in NR4A2 associated with familial Parkinson disease. Nature Genetics, 33, 85–89.PubMedCrossRefGoogle Scholar
  63. Lee, C. Y., Lee, C. H., Shih, C. C., & Liou, H. H. (2008). Paraquat inhibits postsynaptic AMPA receptors on dopaminergic neurons in the substantia nigra pars compacta. Biochemical Pharmacology, 76, 1155–1164.PubMedCrossRefGoogle Scholar
  64. Leroy, E., Boyer, R., Auburger, G., Leube, B., Ulm, G., Mezey, E., Harta, G., Brownstein, M. J., Jonnalagada, S., Chernova, T., Dehejia, A., Lavedan, C., Gasser, T., Steinbach, P. J., Wilkinson, K. D., & Polymeropoulos, M. H. (1998). The ubiquitin pathway in Parkinson’s disease. Nature, 395, 451–452.PubMedCrossRefGoogle Scholar
  65. Lesage, S., Leutenegger, A. L., Ibanez, P., Janin, S., Lohmann, E., Durr, A., & Brice, A. (2005). LRRK2 haplotype analyses in European and North African families with Parkinson disease: A common founder for the G2019S mutation dating from the 13th century. The American Society of Human Genetics, 77, 330–332.CrossRefGoogle Scholar
  66. Li, X., Patel, J. C., Wang, J., Avshalumov, M. V., Nicholson, C., Buxbaum, J. D., Elder, G. A., Rice, M. E., & Yue, Z. (2010). Enhanced striatal dopamine transmission and motor performance with LRRK2 overexpression in mice is eliminated by familial Parkinson’s disease mutation G2019S. The Journal of Neuroscience, 30, 1788–1797.PubMedCrossRefGoogle Scholar
  67. Li, Y., Liu, W., Oo, T. F., Wang, L., Tang, Y., Jackson-Lewis, V., Zhou, C., Geghman, K., Bogdanov, M., Przedborski, S., Beal, M. F., Burke, R. E., & Li, C. (2009). Mutant LRRK2(R1441G) BAC transgenic mice recapitulate cardinal features of Parkinson’s disease. Nature Neuroscience, 12, 826–828.PubMedCrossRefGoogle Scholar
  68. Lin, X., Parisiadou, L., Gu, X. L., Wang, L., Shim, H., Sun, L., Xie, C., Long, C. X., Yang, W. J., Ding, J., Chen, Z. Z., Gallant, P. E., Tao-Cheng, J. H., Rudow, G., Troncoso, J. C., Liu, Z., Li, Z., & Cai, H. (2009). Leucine-rich repeat kinase 2 regulates the progression of neuropathology induced by Parkinson’s-disease-related mutant alpha-synuclein. Neuron, 64, 807–827.PubMedCrossRefGoogle Scholar
  69. Lovinger, D. M., Tyler, E. C., & Merritt, A. (1993). Short- and long-term synaptic depression in rat neostriatum. Journal of Neurophysiology, 70, 1937–1949.PubMedGoogle Scholar
  70. Mahon, S., Deniau, J. M., & Charpier, S. (2004). Corticostriatal plasticity: Life after the depression. Trends in Neurosciences, 27, 460–467.PubMedCrossRefGoogle Scholar
  71. Malenka, R. C., & Bear, M. F. (2004). LTP and LTD: An embarrassment of riches. Neuron, 44, 5–21.PubMedCrossRefGoogle Scholar
  72. Manning, G., Whyte, D. B., Martinez, R., Hunter, T., & Sudarsanam, S. (2002). The protein kinase complement of the human genome. Science, 298, 1912–1934.PubMedCrossRefGoogle Scholar
  73. Marin, I. (2006). The Parkinson disease gene LRRK2: Evolutionary and structural insights. Molecular Biology and Evolution, 23, 2423–2433.PubMedCrossRefGoogle Scholar
  74. Marx, F. P., Holzmann, C., Strauss, K. M., Li, L., Eberhardt, O., Gerhardt, E., Cookson, M. R., Hernandez, D., Farrer, M. J., Kachergus, J., Engelender, S., Ross, C. A., Berger, K., Schols, L., Schulz, J. B., Riess, O., & Kruger, R. (2003). Identification and functional characterization of a novel R621C mutation in the synphilin-1 gene in Parkinson’s disease. Human Molecular Genetics, 12, 1223–1231.PubMedCrossRefGoogle Scholar
  75. Mata, I. F., Kachergus, J. M., Taylor, J. P., Lincoln, S., Aasly, J., Lynch, T., Hulihan, M. M., Cobb, S. A., Wu, R. M., Lu, C. S., Lahoz, C., Wszolek, Z. K., & Farrer, M. J. (2005). Lrrk2 pathogenic substitutions in Parkinson’s disease. Neurogenetics, 6, 171–177.PubMedCrossRefGoogle Scholar
  76. Meixner, A., Boldt, K., Van Troys, M., Askenazi, M., Gloeckner, C. J., Bauer, M., Marto, J. A., Ampe, C., Kinkl, N., & Ueffing, M. (2010). A QUICK screen for Lrrk2 interaction partners–leucine-rich repeat kinase 2 is involved in actin cytoskeleton dynamics. Molecular and Cellular Proteomics, 10, M110 001172.PubMedGoogle Scholar
  77. Melrose, H., Lincoln, S., Tyndall, G., Dickson, D., & Farrer, M. (2006). Anatomical localization of leucine-rich repeat kinase 2 in mouse brain. Neuroscience, 139, 791–794.PubMedCrossRefGoogle Scholar
  78. Moore, D. J. (2008). The biology and pathobiology of LRRK2: Implications for Parkinson’s disease. Parkinsonism & Related Disorders, 14(Suppl 2), S92–98.CrossRefGoogle Scholar
  79. Moore, D. J., Dawson, V. L., & Dawson, T. M. (2006). Lessons from Drosophila models of DJ-1 deficiency. Science of Aging Knowledge Environment, 2006, pe2.PubMedCrossRefGoogle Scholar
  80. Murphy, D. D., Rueter, S. M., Trojanowski, J. Q., & Lee, V. M. (2000). Synucleins are developmentally expressed, and alpha-synuclein regulates the size of the presynaptic vesicular pool in primary hippocampal neurons. The Journal of Neuroscience, 20, 3214–3220.PubMedGoogle Scholar
  81. Nash, J. E., Johnston, T. H., Collingridge, G. L., Garner, C. C., & Brotchie, J. M. (2005). Subcellular redistribution of the synapse-associated proteins PSD-95 and SAP97 in animal models of Parkinson’s disease and L-DOPA-induced dyskinesia. The FASEB Journal, 19, 583–585.Google Scholar
  82. Nemani, V. M., Lu, W., Berge, V., Nakamura, K., Onoa, B., Lee, M. K., Chaudhry, F. A., Nicoll, R. A., & Edwards, R. H. (2010). Increased expression of alpha-synuclein reduces neurotransmitter release by inhibiting synaptic vesicle reclustering after endocytosis. Neuron, 65, 66–79.PubMedCrossRefGoogle Scholar
  83. Nishi, M., Hinds, H., Lu, H. P., Kawata, M., & Hayashi, Y. (2001). Motoneuron-specific expression of NR3B, a novel NMDA-type glutamate receptor subunit that works in a dominant-negative manner. The Journal of Neuroscience, 21, RC185.PubMedGoogle Scholar
  84. Nussbaum, R. L., & Polymeropoulos, M. H. (1997). Genetics of Parkinson’s disease. Human Molecular Genetics, 6, 1687–1691.PubMedCrossRefGoogle Scholar
  85. O’Dell, T. J., & Kandel, E. R. (1994). Low-frequency stimulation erases LTP through an NMDA receptor-mediated activation of protein phosphatases. Learning & Memory, 1, 129–139.Google Scholar
  86. Oh, J. D., Vaughan, C. L., & Chase, T. N. (1999). Effect of dopamine denervation and dopamine agonist administration on serine phosphorylation of striatal NMDA receptor subunits. Brain Research, 821, 433–442.PubMedCrossRefGoogle Scholar
  87. Paille, V., Picconi, B., Bagetta, V., Ghiglieri, V., Sgobio, C., Di Filippo, M., Viscomi, M. T., Giampa, C., Fusco, F. R., Gardoni, F., Bernardi, G., Greengard, P., Di Luca, M., & Calabresi, P. (2010). Distinct levels of dopamine denervation differentially alter striatal synaptic plasticity and NMDA receptor subunit composition. The Journal of Neuroscience, 30, 14182–14193.PubMedCrossRefGoogle Scholar
  88. Paisan-Ruiz, C., Nath, P., Washecka, N., Gibbs, J. R., & Singleton, A. B. (2008). Comprehensive analysis of LRRK2 in publicly available Parkinson’s disease cases and neurologically normal controls. Human Mutation, 29, 485–490.PubMedCrossRefGoogle Scholar
  89. Paisan-Ruiz, C., Jain, S., Evans, E. W., Gilks, W. P., Simon, J., van der Brug, M., Lopez de Munain, A., Aparicio, S., Gil, A. M., Khan, N., Johnson, J., Martinez, J. R., Nicholl, D., Carrera, I. M., Pena, A. S., de Silva, R., Lees, A., Marti-Masso, J. F., Perez-Tur, J., Wood, N. W., & Singleton, A. B. (2004). Cloning of the gene containing mutations that cause PARK8-linked Parkinson’s disease. Neuron, 44, 595–600.PubMedCrossRefGoogle Scholar
  90. Partridge, J. G., Tang, K. C., & Lovinger, D. M. (2000). Regional and postnatal heterogeneity of activity-dependent long-term changes in synaptic efficacy in the dorsal striatum. Journal of Neurophysiology, 84, 1422–1429.PubMedGoogle Scholar
  91. Piccoli, G., Condliffe, S. B., Bauer, M., Giesert, F., Boldt, K., De Astis, S., Meixner, A., Sarioglu, H., Vogt-Weisenhorn, D. M., Wurst, W., Gloeckner, C. J., Matteoli, M., Sala, C., & Ueffing, M. (2011). LRRK2 controls synaptic vesicle storage and mobilization within the recycling pool. The Journal of Neuroscience, 31, 2225–2237.PubMedCrossRefGoogle Scholar
  92. Picconi, B., Centonze, D., Hakansson, K., Bernardi, G., Greengard, P., Fisone, G., Cenci, M. A., & Calabresi, P. (2003). Loss of bidirectional striatal synaptic plasticity in L-DOPA-induced dyskinesia. Nature Neuroscience, 6, 501–506.PubMedGoogle Scholar
  93. Picconi, B., Gardoni, F., Centonze, D., Mauceri, D., Cenci, M. A., Bernardi, G., Calabresi, P., & Di Luca, M. (2004). Abnormal Ca2 + −calmodulin-dependent protein kinase II function mediates synaptic and motor deficits in experimental parkinsonism. The Journal of Neuroscience, 24, 5283–5291.PubMedCrossRefGoogle Scholar
  94. Polymeropoulos, M. H., Lavedan, C., Leroy, E., Ide, S. E., Dehejia, A., Dutra, A., Pike, B., Root, H., Rubenstein, J., Boyer, R., Stenroos, E. S., Chandrasekharappa, S., Athanassiadou, A., Papapetropoulos, T., Johnson, W. G., Lazzarini, A. M., Duvoisin, R. C., Di Iorio, G., Golbe, L. I., & Nussbaum, R. L. (1997). Mutation in the alpha-synuclein gene identified in families with Parkinson’s disease. Science, 276, 2045–2047.PubMedCrossRefGoogle Scholar
  95. Qing, H., Wong, W., McGeer, E. G., & McGeer, P. L. (2009). Lrrk2 phosphorylates alpha synuclein at serine 129: Parkinson disease implications. Biochemical and Biophysical Research Communications, 387, 149–152.PubMedCrossRefGoogle Scholar
  96. Quik, M., Chen, L., Parameswaran, N., Xie, X., Langston, J. W., & McCallum, S. E. (2006). Chronic oral nicotine normalizes dopaminergic function and synaptic plasticity in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-lesioned primates. The Journal of Neuroscience, 26, 4681–4689.PubMedCrossRefGoogle Scholar
  97. Raju, D. V., Ahern, T. H., Shah, D. J., Wright, T. M., Standaert, D. G., Hall, R. A., & Smith, Y. (2008). Differential synaptic plasticity of the corticostriatal and thalamostriatal systems in an MPTP-treated monkey model of parkinsonism. European Journal of Neuroscience, 27, 1647–1658.PubMedCrossRefGoogle Scholar
  98. Reynolds, J. N., & Wickens, J. R. (2000). Substantia nigra dopamine regulates synaptic plasticity and membrane potential fluctuations in the rat neostriatum, in vivo. Neuroscience, 99, 199–203.PubMedCrossRefGoogle Scholar
  99. Rizo, J., & Rosenmund, C. (2008). Synaptic vesicle fusion. Nature Structural and Molecular Biology, 15, 665–674.PubMedCrossRefGoogle Scholar
  100. Schulz-Schaeffer, W. J. (2010). The synaptic pathology of alpha-synuclein aggregation in dementia with Lewy bodies, Parkinson’s disease and Parkinson’s disease dementia. Acta Neuropathologica, 120, 131–143.PubMedCrossRefGoogle Scholar
  101. Schwarting, R. K., & Huston, J. P. (1996). The unilateral 6-hydroxydopamine lesion model in behavioral brain research. Analysis of functional deficits, recovery and treatments. Progress in Neurobiology, 50, 275–331.PubMedCrossRefGoogle Scholar
  102. Selkoe, D. J. (2002). Alzheimer’s disease is a synaptic failure. Science, 298, 789–791.PubMedCrossRefGoogle Scholar
  103. Shendelman, S., Jonason, A., Martinat, C., Leete, T., & Abeliovich, A. (2004). DJ-1 is a redox-dependent molecular chaperone that inhibits alpha-synuclein aggregate formation. PLoS Biology, 2, e362.PubMedCrossRefGoogle Scholar
  104. Shin, N., Jeong, H., Kwon, J., Heo, H. Y., Kwon, J. J., Yun, H. J., Kim, C. H., Han, B. S., Tong, Y., Shen, J., Hatano, T., Hattori, N., Kim, K. S., Chang, S., & Seol, W. (2008). LRRK2 regulates synaptic vesicle endocytosis. Experimental Cell Research, 314, 2055–2065.PubMedCrossRefGoogle Scholar
  105. Sidhu, A., Wersinger, C., & Vernier, P. (2004). Does alpha-synuclein modulate dopaminergic synaptic content and tone at the synapse? The FASEB Journal, 18, 637–647.CrossRefGoogle Scholar
  106. Silvestri, L., Caputo, V., Bellacchio, E., Atorino, L., Dallapiccola, B., Valente, E. M., & Casari, G. (2005). Mitochondrial import and enzymatic activity of PINK1 mutants associated to recessive parkinsonism. Human Molecular Genetics, 14, 3477–3492.PubMedCrossRefGoogle Scholar
  107. Simon-Sanchez, J., Schulte, C., Bras, J. M., Sharma, M., Gibbs, J. R., Berg, D., Paisan-Ruiz, C., Lichtner, P., Scholz, S. W., Hernandez, D. G., Kruger, R., Federoff, M., Klein, C., Goate, A., Perlmutter, J., Bonin, M., Nalls, M. A., Illig, T., Gieger, C., Houlden, H., Steffens, M., Okun, M. S., Racette, B. A., Cookson, M. R., Foote, K. D., Fernandez, H. H., Traynor, B. J., Schreiber, S., Arepalli, S., Zonozi, R., Gwinn, K., van der Brug, M., Lopez, G., Chanock, S. J., Schatzkin, A., Park, Y., Hollenbeck, A., Gao, J., Huang, X., Wood, N. W., Lorenz, D., Deuschl, G., Chen, H., Riess, O., Hardy, J. A., Singleton, A. B., & Gasser, T. (2009). Genome-wide association study reveals genetic risk underlying Parkinson’s disease. Nature Genetics, 41, 1308–1312.PubMedCrossRefGoogle Scholar
  108. Singleton, A. B., Farrer, M., Johnson, J., Singleton, A., Hague, S., Kachergus, J., Hulihan, M., Peuralinna, T., Dutra, A., Nussbaum, R., Lincoln, S., Crawley, A., Hanson, M., Maraganore, D., Adler, C., Cookson, M. R., Muenter, M., Baptista, M., Miller, D., Blancato, J., Hardy, J., & Gwinn-Hardy, K. (2003). Alpha-Synuclein locus triplication causes Parkinson’s disease. Science, 302, 841.PubMedCrossRefGoogle Scholar
  109. Smith, A. D., Castro, S. L., & Zigmond, M. J. (2002). Stress-induced Parkinson’s disease: A working hypothesis. Physiology and Behavior, 77, 527–531.PubMedCrossRefGoogle Scholar
  110. Sossi, V., de la Fuente-Fernandez, R., Nandhagopal, R., Schulzer, M., McKenzie, J., Ruth, T. J., Aasly, J. O., Farrer, M. J., Wszolek, Z. K., & Stoessl, J. A. (2010). Dopamine turnover increases in asymptomatic LRRK2 mutations carriers. Movement Disorders, 25, 2717–2723.PubMedCrossRefGoogle Scholar
  111. Spillantini, M. G., Crowther, R. A., Jakes, R., Hasegawa, M., & Goedert, M. (1998). Alpha-Synuclein in filamentous inclusions of Lewy bodies from Parkinson’s disease and dementia with lewy bodies. Proceedings of the National Academy of Sciences of the United States of America, 95, 6469–6473.PubMedCrossRefGoogle Scholar
  112. Strack, S., McNeill, R. B., & Colbran, R. J. (2000). Mechanism and regulation of calcium/calmodulin-dependent protein kinase II targeting to the NR2B subunit of the N-methyl-D-aspartate receptor. The Journal of Biological Chemistry, 275, 23798–23806.PubMedCrossRefGoogle Scholar
  113. Sudhof, T. C., & Rothman, J. E. (2009). Membrane fusion: Grappling with SNARE and SM proteins. Science, 323, 474–477.PubMedCrossRefGoogle Scholar
  114. Taylor, J. P., Mata, I. F., & Farrer, M. J. (2006). LRRK2: A common pathway for parkinsonism, pathogenesis and prevention? Trends in Molecular Medicine, 12, 76–82.PubMedCrossRefGoogle Scholar
  115. Taymans, J. M., & Cookson, M. R. (2010). Mechanisms in dominant parkinsonism: The toxic triangle of LRRK2, alpha-synuclein, and tau. Bioessays, 32, 227–235.PubMedCrossRefGoogle Scholar
  116. Tong, Y., Pisani, A., Martella, G., Karouani, M., Yamaguchi, H., Pothos, E. N., & Shen, J. (2009). R1441C mutation in LRRK2 impairs dopaminergic neurotransmission in mice. Proceedings of the National Academy of Sciences of the United States of America, 106, 14622–14627.PubMedCrossRefGoogle Scholar
  117. Turner, K. M., Burgoyne, R. D., & Morgan, A. (1999). Protein phosphorylation and the regulation of synaptic membrane traffic. Trends in Neurosciences, 22, 459–464.PubMedCrossRefGoogle Scholar
  118. Ulas, J., & Cotman, C. W. (1996). Dopaminergic denervation of striatum results in elevated expression of NR2A subunit. Neuroreport, 7, 1789–1793.PubMedCrossRefGoogle Scholar
  119. Valente, E. M., Abou-Sleiman, P. M., Caputo, V., Muqit, M. M., Harvey, K., Gispert, S., Ali, Z., Del Turco, D., Bentivoglio, A. R., Healy, D. G., Albanese, A., Nussbaum, R., Gonzalez-Maldonado, R., Deller, T., Salvi, S., Cortelli, P., Gilks, W. P., Latchman, D. S., Harvey, R. J., Dallapiccola, B., Auburger, G., & Wood, N. W. (2004). Hereditary early-onset Parkinson’s disease caused by mutations in PINK1. Science, 304, 1158–1160.PubMedCrossRefGoogle Scholar
  120. Walsh, J. P. (1993). Depression of excitatory synaptic input in rat striatal neurons. Brain Research, 608, 123–128.PubMedCrossRefGoogle Scholar
  121. Walsh, J. P., & Dunia, R. (1993). Synaptic activation of N-methyl-D-aspartate receptors induces short-term potentiation at excitatory synapses in the striatum of the rat. Neuroscience, 57, 241–248.PubMedCrossRefGoogle Scholar
  122. Wang, Y., Chandran, J. S., Cai, H., & Mattson, M. P. (2008). DJ-1 is essential for long-term depression at hippocampal CA1 synapses. Neuromolecular Medicine, 10, 40–45.PubMedCrossRefGoogle Scholar
  123. Whaley, N. R., Uitti, R. J., Dickson, D. W., Farrer, M. J., & Wszolek, Z. K. (2006). Clinical and pathologic features of families with LRRK2-associated Parkinson’s disease. Journal of Neural Transmission. Supplementum, 70, 221–229.PubMedCrossRefGoogle Scholar
  124. Wider, C., Dickson, D. W., & Wszolek, Z. K. (2010). Leucine-rich repeat kinase 2 gene-associated disease: redefining genotype-phenotype correlation. Neurodegenerative Diseases, 7, 175–179.PubMedCrossRefGoogle Scholar
  125. Wilson, M. A., St Amour, C. V., Collins, J. L., Ringe, D., & Petsko, G. A. (2004). The 1.8-A resolution crystal structure of YDR533Cp from Saccharomyces cerevisiae: a member of the DJ-1/ThiJ/PfpI superfamily. Proceedings of the National Academy of Sciences of the United States of America, 101, 1531–1536.PubMedCrossRefGoogle Scholar
  126. Wishart TM, Parson SH, Gillingwater TH. (2006). Synaptic vulnerability in neurodegenerative disease. Journal of Neuropathology and Experimental Neurology, 65, 733–739.CrossRefGoogle Scholar
  127. Xiong, H., Wang, D., Chen, L., Choo, Y. S., Ma, H., Tang, C., Xia, K., Jiang, W., Ronai, Z., Zhuang, X., & Zhang, Z. (2009). Parkin, PINK1, and DJ-1 form a ubiquitin E3 ligase complex promoting unfolded protein degradation. The Journal of Clinical Investigation, 119, 650–660.PubMedCrossRefGoogle Scholar
  128. Xiong, Y., Coombes, C. E., Kilaru, A., Li, X., Gitler, A. D., Bowers, W. J., Dawson, V. L., Dawson, T. M., & Moore, D. J. (2010). GTPase activity plays a key role in the pathobiology of LRRK2. PLoS Genetics, 6, e1000902.PubMedCrossRefGoogle Scholar
  129. Yao, I., Takagi, H., Ageta, H., Kahyo, T., Sato, S., Hatanaka, K., Fukuda, Y., Chiba, T., Morone, N., Yuasa, S., Inokuchi, K., Ohtsuka, T., Macgregor, G. R., Tanaka, K., & Setou, M. (2007). SCRAPPER-dependent ubiquitination of active zone protein RIM1 regulates synaptic vesicle release. Cell, 130, 943–957.PubMedCrossRefGoogle Scholar
  130. Yu, S., Ueda, K., & Chan, P. (2005). Alpha-synuclein and dopamine metabolism. Molecular Neurobiology, 31, 243–254.PubMedCrossRefGoogle Scholar
  131. Yu, S., Li, X., Liu, G., Han, J., Zhang, C., Li, Y., Xu, S., Liu, C., Gao, Y., Yang, H., Ueda, K., & Chan, P. (2007). Extensive nuclear localization of alpha-synuclein in normal rat brain neurons revealed by a novel monoclonal antibody. Neuroscience, 145, 539–555.PubMedCrossRefGoogle Scholar
  132. Zhang, L., Shimoji, M., Thomas, B., Moore, D. J., Yu, S. W., Marupudi, N. I., Torp, R., Torgner, I. A., Ottersen, O. P., Dawson, T. M., & Dawson, V. L. (2005). Mitochondrial localization of the Parkinson’s disease related protein DJ-1: Implications for pathogenesis. Human Molecular Genetics, 14, 2063–2073.PubMedCrossRefGoogle Scholar
  133. Zhou, C., Huang, Y., Shao, Y., May, J., Prou, D., Perier, C., Dauer, W., Schon, E. A., & Przedborski, S. (2008). The kinase domain of mitochondrial PINK1 faces the cytoplasm. Proceedings of the National Academy of Sciences of the United States of America, 105, 12022–12027.PubMedCrossRefGoogle Scholar
  134. Zigmond, M. J., Hastings, T. G., & Perez, R. G. (2002). Increased dopamine turnover after partial loss of dopaminergic neurons: Compensation or toxicity? Parkinsonism & Related Disorders, 8, 389–393.CrossRefGoogle Scholar
  135. Zimprich, A., Biskup, S., Leitner, P., Lichtner, P., Farrer, M., Lincoln, S., Kachergus, J., Hulihan, M., Uitti, R. J., Calne, D. B., Stoessl, A. J., Pfeiffer, R. F., Patenge, N., Carbajal, I. C., Vieregge, P., Asmus, F., Muller-Myhsok, B., Dickson, D. W., Meitinger, T., Strom, T. M., Wszolek, Z. K., & Gasser, T. (2004). Mutations in LRRK2 cause autosomal-dominant parkinsonism with pleomorphic pathology. Neuron, 44, 601–607.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag/WIen 2012

Authors and Affiliations

  • Barbara Picconi
    • 1
  • Giovanni Piccoli
    • 2
  • Paolo Calabresi
    • 1
    • 3
    Email author
  1. 1.Laboratorio di NeurofisiologiaFondazione Santa Lucia I.R.C.C.S.RomeItaly
  2. 2.CNR Institute of NeuroscienceMilanItaly
  3. 3.Clinica Neurologica, Facoltà di Medicina e ChirurgiaUniversità degli Studi di Perugia, Ospedale S. Maria della MisericordiaPerugiaItaly

Personalised recommendations