Advertisement

Dendritic mRNA Targeting and Translation

  • Stefan KindlerEmail author
  • Hans-Jürgen Kreienkamp
Chapter
Part of the Advances in Experimental Medicine and Biology book series (volume 970)

Abstract

Selective targeting of specific mRNAs into neuronal dendrites and their locally regulated translation at particular cell contact sites contribute to input-specific synaptic plasticity. Thus, individual synapses become decision-making units, which control gene expression in a spatially restricted and nucleus-independent manner. Dendritic targeting of mRNAs is achieved by active, microtubule-dependent transport. For this purpose, mRNAs are packaged into large ribonucleoprotein (RNP) particles containing an array of trans-acting RNA-binding proteins. These are attached to molecular motors, which move their RNP cargo into dendrites. A variety of proteins may be synthesized in dendrites, including signalling and scaffold proteins of the synapse and neurotransmitter receptors. In some cases, such as the alpha subunit of the calcium/calmodulin-dependent protein kinase II (αCaMKII) and the activity-regulated gene of 3.1 kb (Arg3.1, also referred to as activity-regulated cDNA, Arc), their local synthesis at synapses can modulate long-term changes in synaptic efficiency. Local dendritic translation is regulated by several signalling cascades including Akt/mTOR and Erk/MAP kinase pathways, which are triggered by synaptic activity. More recent findings show that miRNAs also play an important role in protein synthesis at synapses. Disruption of local translation control at synapses, as observed in the fragile X syndrome (FXS) and its mouse models and possibly also in autism spectrum disorders, interferes with cognitive abilities in mice and men.

Keywords

Activity-dependent translation Dendritic targeting element Molecular motor Synaptic plasticity Trans-acting factor 

Notes

Acknowledgements

Work in the authors’ laboratories is supported by grants from FRAXA, Deutsche Forschungsgemeinschaft and Fritz-Thyssen-Stiftung.

References

  1. Aakalu, G., Smith, W. B., Nguyen, N., Jiang, C., & Schuman, E. M. (2001). Dynamic visualization of local protein synthesis in hippocampal neurons. Neuron, 2, 489–502.Google Scholar
  2. Atkins, C. M., Nozaki, N., Shigeri, Y., & Soderling, T. R. (2004). Cytoplasmic polyadenylation element binding protein-dependent protein synthesis is regulated by calcium/calmodulin-dependent protein kinase II. The Journal of Neuroscience, 22, 5193–5201.Google Scholar
  3. Banerjee, S., Neveu, P., & Kosik, K. S. (2009). A coordinated local translational control point at the synapse involving relief from silencing and MOV10 degradation. Neuron, 6, 871–884.Google Scholar
  4. Banko, J. L., Hou, L., & Klann, E. (2004). NMDA receptor activation results in PKA- and ERK-dependent Mnk1 activation and increased eIF4E phosphorylation in hippocampal area CA1. Journal of Neurochemistry, 2, 462–470.Google Scholar
  5. Banko, J. L., Hou, L., Poulin, F., Sonenberg, N., & Klann, E. (2006). Regulation of eukaryotic initiation factor 4E by converging signaling pathways during metabotropic glutamate receptor-dependent long-term depression. The Journal of Neuroscience, 8, 2167–2173.Google Scholar
  6. Barnard, D. C., Ryan, K., Manley, J. L., & Richter, J. D. (2004). Symplekin and xGLD-2 are required for CPEB-mediated cytoplasmic polyadenylation. Cell, 5, 641–651.Google Scholar
  7. Baron, M. K., Boeckers, T. M., Vaida, B., Faham, S., Gingery, M., Sawaya, M. R., Salyer, D., Gundelfinger, E. D., & Bowie, J. U. (2006). An architectural framework that may lie at the core of the postsynaptic density. Science, 5760, 531–535.Google Scholar
  8. Bassell, G. J., & Warren, S. T. (2008). Fragile X syndrome: Loss of local mRNA regulation alters synaptic development and function. Neuron, 2, 201–214.Google Scholar
  9. Berkel, S., Marshall, C. R., Weiss, B., Howe, J., Roeth, R., Moog, U., Endris, V., Roberts, W., Szatmari, P., Pinto, D., Bonin, M., Riess, A., Engels, H., Sprengel, R., Scherer, S. W., & Rappold, G. A. (2010). Mutations in the SHANK2 synaptic scaffolding gene in autism spectrum disorder and mental retardation. Nature Genetics, 6, 489–491.Google Scholar
  10. Blichenberg, A., Rehbein, M., Muller, R., Garner, C. C., Richter, D., & Kindler, S. (2001). Identification of a cis-acting dendritic targeting element in the mRNA encoding the alpha subunit of Ca2+/calmodulin-dependent protein kinase II. European Journal of Neuroscience, 10, 1881–1888.Google Scholar
  11. Böckers, T. M., Segger-Junius, M., Iglauer, P., Bockmann, J., Gundelfinger, E. D., Kreutz, M. R., Richter, D., Kindler, S., & Kreienkamp, H. J. (2004). Differential expression and dendritic transcript localization of Shank family members: Identification of a dendritic targeting element in the 3′ untranslated region of Shank1 mRNA. Molecular and Cellular Neuroscience, 1, 182–190.Google Scholar
  12. Bonaglia, M. C., Giorda, R., Borgatti, R., Felisari, G., Gagliardi, C., Selicorni, A., & Zuffardi, O. (2001). Disruption of the ProSAP2 gene in a t(12;22)(q24.1;q13.3) is associated with the 22q13.3 deletion syndrome. American Journal of Human Genetics, 2, 261–268.Google Scholar
  13. Bramham, C. R., & Wells, D. G. (2007). Dendritic mRNA: Transport, translation and function. Nature Reviews Neuroscience, 10, 776–789.Google Scholar
  14. Burgin, K. E., Waxham, M. N., Rickling, S., Westgate, S. A., Mobley, W. C., & Kelly, P. T. (1990). In situ hybridization histochemistry of Ca2+/calmodulin-dependent protein kinase in developing rat brain. The Journal of Neuroscience, 6, 1788–1798.Google Scholar
  15. Cajigas, I. J., Will, T., & Schuman, E. M. (2010). Protein homeostasis and synaptic plasticity. The EMBO Journal, 16, 2746–2752.Google Scholar
  16. Ceman, S., O’Donnell, W. T., Reed, M., Patton, S., Pohl, J., & Warren, S. T. (2003). Phosphorylation influences the translation state of FMRP-associated polyribosomes. Human Molecular Genetics, 24, 3295–3305.Google Scholar
  17. Cheever, A., & Ceman, S. (2009). Translation regulation of mRNAs by the fragile X family of proteins through the microRNA pathway. RNA Biology, 2, 175–178.Google Scholar
  18. Chowdhury, S., Shepherd, J. D., Okuno, H., Lyford, G., Petralia, R. S., Plath, N., Kuhl, D., Huganir, R. L., & Worley, P. F. (2006). Arc/Arg3.1 interacts with the endocytic machinery to regulate AMPA receptor trafficking. Neuron, 3, 445–459.Google Scholar
  19. Costa-Mattioli, M., Sonenberg, N., & Richter, J. D. (2009a). Chapter 8 translational regulatory mechanisms in synaptic plasticity and memory storage. Progress in Molecular Biology and Translational Science, 90, 293–311.PubMedGoogle Scholar
  20. Costa-Mattioli, M., Sossin, W. S., Klann, E., & Sonenberg, N. (2009b). Translational control of long-lasting synaptic plasticity and memory. Neuron, 1, 10–26.Google Scholar
  21. Dieterich, D. C., Karpova, A., Mikhaylova, M., Zdobnova, I., Konig, I., Landwehr, M., Kreutz, M., Smalla, K. H., Richter, K., Landgraf, P., Reissner, C., Boeckers, T. M., Zuschratter, W., Spilker, C., Seidenbecher, C. I., Garner, C. C., Gundelfinger, E. D., & Kreutz, M. R. (2008). Caldendrin-Jacob: A protein liaison that couples NMDA receptor signalling to the nucleus. PLoS Biology, 2, e34.Google Scholar
  22. Durand, C. M., Betancur, C., Boeckers, T. M., Bockmann, J., Chaste, P., Fauchereau, F., Nygren, G., Rastam, M., Gillberg, I. C., Anckarsater, H., Sponheim, E., Goubran-Botros, H., Delorme, R., Chabane, N., Mouren-Simeoni, M. C., de Mas, P., Bieth, E., Roge, B., Heron, D., Burglen, L., Gillberg, C., Leboyer, M., & Bourgeron, T. (2007). Mutations in the gene encoding the synaptic scaffolding protein SHANK3 are associated with autism spectrum disorders. Nature Genetics, 1, 25–27.Google Scholar
  23. Eberwine, J., & Crino, P. (2001). Analysis of mRNA populations from single live and fixed cells of the central nervous system. Current Protocols in Neuroscience, Unit 5.3.Google Scholar
  24. Edbauer, D., Neilson, J. R., Foster, K. A., Wang, C. F., Seeburg, D. P., Batterton, M. N., Tada, T., Dolan, B. M., Sharp, P. A., & Sheng, M. (2010). Regulation of synaptic structure and function by FMRP-associated microRNAs miR-125b and miR-132. Neuron, 3, 373–384.Google Scholar
  25. Falley, K., Schütt, J., Iglauer, P., Menke, K., Maas, C., Kneussel, M., Kindler, S., Wouters, F. S., Richter, D., & Kreienkamp, H. J. (2009). Shank1 mRNA: Dendritic transport by kinesin and translational control by the 5′untranslated region. Traffic, 7, 844–857.Google Scholar
  26. Flexner, J. B., Flexner, L. B., & Stellar, E. (1963). Memory in mice as affected by intracerebral puromycin. Science, 141, 57–59.PubMedGoogle Scholar
  27. Fukunaga, R., & Hunter, T. (1997). MNK1, a new MAP kinase-activated protein kinase, isolated by a novel expression screening method for identifying protein kinase substrates. The EMBO Journal, 8, 1921–1933.Google Scholar
  28. Gao, Y., Tatavarty, V., Korza, G., Levin, M. K., & Carson, J. H. (2008). Multiplexed dendritic targeting of alpha calcium calmodulin-dependent protein kinase II, neurogranin, and activity-regulated cytoskeleton-associated protein RNAs by the A2 pathway. Molecular Biology of the Cell, 5, 2311–2327.Google Scholar
  29. Garner, C. C., Tucker, R. P., & Matus, A. (1988). Selective localization of messenger RNA for cytoskeletal protein MAP2 in dendrites. Nature, 6200, 674–677.Google Scholar
  30. Gelinas, J. N., Banko, J. L., Hou, L., Sonenberg, N., Weeber, E. J., Klann, E., & Nguyen, P. V. (2007). ERK and mTOR signaling couple beta-adrenergic receptors to translation initiation machinery to gate induction of protein synthesis-dependent long-term potentiation. Journal of Biological Chemistry, 37, 27527–27535.Google Scholar
  31. Gkogkas, C., Sonenberg, N., & Costa-Mattioli, M. (2010). Translational control mechanisms in long-lasting synaptic plasticity and memory. Journal of Biological Chemistry, 42, 31913–31917.Google Scholar
  32. Gong, R., Park, C. S., Abbassi, N. R., & Tang, S. J. (2006). Roles of glutamate receptors and the mammalian target of rapamycin (mTOR) signaling pathway in activity-dependent dendritic protein synthesis in hippocampal neurons. Journal of Biological Chemistry, 27, 18802–18815.Google Scholar
  33. Grooms, S. Y., Noh, K. M., Regis, R., Bassell, G. J., Bryan, M. K., Carroll, R. C., & Zukin, R. S. (2006). Activity bidirectionally regulates AMPA receptor mRNA abundance in dendrites of hippocampal neurons. The Journal of Neuroscience, 32, 8339–8351.Google Scholar
  34. Gross, C., Nakamoto, M., Yao, X., Chan, C. B., Yim, S. Y., Ye, K., Warren, S. T., & Bassell, G. J. (2010). Excess phosphoinositide 3-kinase subunit synthesis and activity as a novel therapeutic target in fragile X syndrome. The Journal of Neuroscience, 32, 10624–10638.Google Scholar
  35. Gundelfinger, E. D., Boeckers, T. M., Baron, M. K., & Bowie, J. U. (2006). A role for zinc in postsynaptic density asSAMbly and plasticity? Trends in Biochemical Sciences, 7, 366–373.Google Scholar
  36. Hanus, C., & Ehlers, M. D. (2008). Secretory outposts for the local processing of membrane cargo in neuronal dendrites. Traffic, 9, 1437–1445.PubMedGoogle Scholar
  37. Herb, A., Wisden, W., Catania, M., Marechal, D., Dresse, A., & Seeburg, P. (1997). Prominent dendritic localization in forebrain neurons of a novel mRNA and its product, dendrin. Molecular and Cellular Neuroscience, 8, 367–374.PubMedGoogle Scholar
  38. Huang, Y. S., Carson, J. H., Barbarese, E., & Richter, J. D. (2003). Facilitation of dendritic mRNA transport by CPEB. Genes & Development, 5, 638–653.Google Scholar
  39. Huang, Y. S., Jung, M. Y., Sarkissian, M., & Richter, J. D. (2002). N-methyl-D-aspartate receptor signaling results in Aurora kinase-catalyzed CPEB phosphorylation and alpha CaMKII mRNA polyadenylation at synapses. The EMBO Journal, 9, 2139–2148.Google Scholar
  40. Huber, K. M., Gallagher, S. M., Warren, S. T., & Bear, M. F. (2002). Altered synaptic plasticity in a mouse model of fragile X mental retardation. Proceedings of the National Academy of Sciences of the United States of America, 11, 7746–7750.Google Scholar
  41. Iacoangeli, A., Rozhdestvensky, T. S., Dolzhanskaya, N., Tournier, B., Schütt, J., Brosius, J., Denman, R. B., Khandjian, E. W., Kindler, S., & Tiedge, H. (2008a). On BC1 RNA and the fragile X mental retardation protein. Proceedings of the National Academy of Sciences of the United States of America, 2, 734–739.Google Scholar
  42. Iacoangeli, A., Rozhdestvensky, T. S., Dolzhanskaya, N., Tournier, B., Schütt, J., Brosius, J., Denman, R. B., Khandjian, E. W., Kindler, S., & Tiedge, H. (2008b). Reply to Bagni: On BC1 RNA and the fragile X mental retardation protein. Proceedings of the National Academy of Sciences of the United States of America, 22, E29.Google Scholar
  43. Iijima, T., Imai, T., Kimura, Y., Bernstein, A., Okano, H. J., Yuzaki, M., & Okano, H. (2005). Hzf protein regulates dendritic localization and BDNF-induced translation of type 1 inositol 1,4,5-trisphosphate receptor mRNA. Proceedings of the National Academy of Sciences of the United States of America, 47, 17190–17195.Google Scholar
  44. Jackson, R. J., Hellen, C. U., & Pestova, T. V. (2010). The mechanism of eukaryotic translation initiation and principles of its regulation. Nature Reviews: Molecular Cell Biology, 2, 113–127.Google Scholar
  45. Jin, P., Alisch, R. S., & Warren, S. T. (2004). RNA and microRNAs in fragile X mental retardation. Nature Cell Biology, 11, 1048–1053.Google Scholar
  46. Ju, W., Morishita, W., Tsui, J., Gaietta, G., Deerinck, T. J., Adams, S. R., Garner, C. C., Tsien, R. Y., Ellisman, M. H., & Malenka, R. C. (2004). Activity-dependent regulation of dendritic synthesis and trafficking of AMPA receptors. Nature Neuroscience, 3, 244–253.Google Scholar
  47. Kacharmina, J. E., Job, C., Crino, P., & Eberwine, J. (2000). Stimulation of glutamate receptor protein synthesis and membrane insertion within isolated neuronal dendrites. Proceedings of the National Academy of Sciences of the United States of America, 21, 11545–11550.Google Scholar
  48. Kanai, Y., Dohmae, N., & Hirokawa, N. (2004). Kinesin transports RNA: Isolation and characterization of an RNA-transporting granule. Neuron, 4, 513–525.Google Scholar
  49. Kang, H., & Schuman, E. M. (1996). A requirement for local protein synthesis in neurotrophin-induced hippocampal synaptic plasticity. Science, 5280, 1402–1406.Google Scholar
  50. Kanhema, T., Dagestad, G., Panja, D., Tiron, A., Messaoudi, E., Havik, B., Ying, S. W., Nairn, A. C., Sonenberg, N., & Bramham, C. R. (2006). Dual regulation of translation initiation and peptide chain elongation during BDNF-induced LTP in vivo: Evidence for compartment-specific translation control. Journal of Neurochemistry, 5, 1328–1337.Google Scholar
  51. Kelleher, R. J., III, & Bear, M. F. (2008). The autistic neuron: Troubled translation? Cell, 3, 401–406.Google Scholar
  52. Kelleher, R. J., III, Govindarajan, A., Jung, H. Y., Kang, H., & Tonegawa, S. (2004). Translational control by MAPK signaling in long-term synaptic plasticity and memory. Cell, 3, 467–479.Google Scholar
  53. Kim, E., Naisbitt, S., Hsueh, Y. P., Rao, A., Rothschild, A., Craig, A. M., & Sheng, M. (1997). GKAP, a novel synaptic protein that interacts with the guanylate kinase-like domain of the PSD-95/SAP90 family of channel clustering molecules. The Journal of Cell Biology, 3, 669–678.Google Scholar
  54. Kindler, S., Dieterich, D. C., Schutt, J., Sahin, J., Karpova, A., Mikhaylova, M., Schob, C., Gundelfinger, E. D., Kreienkamp, H. J., & Kreutz, M. R. (2009). Dendritic mRNA targeting of Jacob and N-methyl-d-aspartate-induced nuclear translocation after calpain-mediated proteolysis. Journal of Biological Chemistry, 37, 25431–25440.Google Scholar
  55. Kindler, S., Rehbein, M., Classen, B., Richter, D., & Böckers, T. M. (2004). Distinct spatiotemporal expression of SAPAP transcripts in the developing rat brain: A novel dendritically localized mRNA. Brain Research: Molecular Brain Research, 1, 14–21.Google Scholar
  56. Kindler, S., Wang, H., Richter, D., & Tiedge, H. (2005). RNA transport and local control of translation. Annual Review of Cell and Developmental Biology, 21, 223–245.PubMedGoogle Scholar
  57. Kobayashi, H., Yamamoto, S., Maruo, T., & Murakami, F. (2005). Identification of a cis-acting element required for dendritic targeting of activity-regulated cytoskeleton-associated protein mRNA. European Journal of Neuroscience, 12, 2977–2984.Google Scholar
  58. Krichevsky, A. M., & Kosik, K. S. (2001). Neuronal RNA granules: A link between RNA localization and stimulation-dependent translation. Neuron, 4, 683–696.Google Scholar
  59. Lin, D., Pestova, T. V., Hellen, C. U., & Tiedge, H. (2008). Translational control by a small RNA: Dendritic BC1 RNA targets the eukaryotic initiation factor 4A helicase mechanism. Molecular and Cellular Biology, 9, 3008–3019.Google Scholar
  60. Link, W., Konietzko, U., Kauselmann, G., Krug, M., Schwanke, B., Frey, U., & Kuhl, D. (1995). Somatodendritic expression of an immediate early gene is regulated by synaptic activity. Proceedings of the National Academy of Sciences of the United States of America, 12, 5734–5738.Google Scholar
  61. Lyford, G. L., Yamagata, K., Kaufmann, W. E., Barnes, C. A., Sanders, L. K., Copeland, N. G., Gilbert, D. J., Jenkins, N. A., Lanahan, A. A., & Worley, P. F. (1995). Arc, a growth factor and activity-regulated gene, encodes a novel cytoskeleton-associated protein that is enriched in neuronal dendrites. Neuron, 2, 433–445.Google Scholar
  62. Miller, S., Yasuda, M., Coats, J. K., Jones, Y., Martone, M. E., & Mayford, M. (2002). Disruption of dendritic translation of CaMKIIalpha impairs stabilization of synaptic plasticity and memory consolidation. Neuron, 3, 507–519.Google Scholar
  63. Monshausen, M., Putz, U., Rehbein, M., Schweizer, M., DesGroseillers, L., Kuhl, D., Richter, D., & Kindler, S. (2001). Two rat brain Staufen isoforms differentially bind RNA. Journal of Neurochemistry, 1, 155–165.Google Scholar
  64. Mori, Y., Imaizumi, K., Katayama, T., Yoneda, T., & Tohyama, M. (2000). Two cis-acting elements in the 3′ untranslated region of alpha-CaMKII regulate its dendritic targeting. Nature Neuroscience, 11, 1079–1084.Google Scholar
  65. Nairn, A. C., Matsushita, M., Nastiuk, K., Horiuchi, A., Mitsui, K., Shimizu, Y., & Palfrey, H. C. (2001). Elongation factor-2 phosphorylation and the regulation of protein synthesis by calcium. Progress in Molecular and Subcellular Biology, 27, 91–129.PubMedGoogle Scholar
  66. Naisbitt, S., Kim, E., Tu, J. C., Xiao, B., Sala, C., Valtschanoff, J., Weinberg, R. J., Worley, P. F., & Sheng, M. (1999). Shank, a novel family of postsynaptic density proteins that binds to the NMDA receptor/PSD-95/GKAP complex and cortactin. Neuron, 3, 569–582.Google Scholar
  67. Napoli, I., Mercaldo, V., Boyl, P. P., Eleuteri, B., Zalfa, F., De Rubeis, S., Di Marino, D., Mohr, E., Massimi, M., Falconi, M., Witke, W., Costa-Mattioli, M., Sonenberg, N., Achsel, T., & Bagni, C. (2008). The fragile X syndrome protein represses activity-dependent translation through CYFIP1, a new 4E-BP. Cell, 6, 1042–1054.Google Scholar
  68. Narayanan, U., Nalavadi, V., Nakamoto, M., Thomas, G., Ceman, S., Bassell, G. J., & Warren, S. T. (2008). S6K1 phosphorylates and regulates fragile X mental retardation protein (FMRP) with the neuronal protein synthesis-dependent mammalian target of rapamycin (mTOR) signaling cascade. Journal of Biological Chemistry, 27, 18478–18482.Google Scholar
  69. Ostroff, L. E., Cain, C. K., Bedont, J., Monfils, M. H., & Ledoux, J. E. (2010). Fear and safety learning differentially affect synapse size and dendritic translation in the lateral amygdala. Proceedings of the National Academy of Sciences of the United States of America, 20, 9418–9423.Google Scholar
  70. Ouyang, Y., Rosenstein, A., Kreiman, G., Schuman, E. M., & Kennedy, M. B. (1999). Tetanic stimulation leads to increased accumulation of Ca(2+)/calmodulin-dependent protein kinase II via dendritic protein synthesis in hippocampal neurons. The Journal of Neuroscience, 18, 7823–7833.Google Scholar
  71. Park, S., Park, J. M., Kim, S., Kim, J. A., Shepherd, J. D., Smith-Hicks, C. L., Chowdhury, S., Kaufmann, W., Kuhl, D., Ryazanov, A. G., Huganir, R. L., Linden, D. J., & Worley, P. F. (2008). Elongation factor 2 and fragile X mental retardation protein control the dynamic translation of Arc/Arg3.1 essential for mGluR-LTD. Neuron, 1, 70–83.Google Scholar
  72. Parsons, R. G., Gafford, G. M., & Helmstetter, F. J. (2006). Translational control via the mammalian target of rapamycin pathway is critical for the formation and stability of long-term fear memory in amygdala neurons. The Journal of Neuroscience, 50, 12977–12983.Google Scholar
  73. Pfeiffer, B. E., & Huber, K. M. (2006). Current advances in local protein synthesis and synaptic plasticity. The Journal of Neuroscience, 27, 7147–7150.Google Scholar
  74. Pinkstaff, J. K., Chappell, S. A., Mauro, V. P., Edelman, G. M., & Krushel, L. A. (2001). Internal initiation of translation of five dendritically localized neuronal mRNAs. Proceedings of the National Academy of Sciences of the United States of America, 5, 2770–2775.Google Scholar
  75. Plath, N., Ohana, O., Dammermann, B., Errington, M. L., Schmitz, D., Gross, C., Mao, X., Engelsberg, A., Mahlke, C., Welzl, H., Kobalz, U., Stawrakakis, A., Fernandez, E., Waltereit, R., Bick-Sander, A., Therstappen, E., Cooke, S. F., Blanquet, V., Wurst, W., Salmen, B., Bosl, M. R., Lipp, H. P., Grant, S. G., Bliss, T. V., Wolfer, D. P., & Kuhl, D. (2006). Arc/Arg3.1 is essential for the consolidation of synaptic plasticity and memories. Neuron, 3, 437–444.Google Scholar
  76. Pyronnet, S., Imataka, H., Gingras, A. C., Fukunaga, R., Hunter, T., & Sonenberg, N. (1999). Human eukaryotic translation initiation factor 4G (eIF4G) recruits mnk1 to phosphorylate eIF4E. The EMBO Journal, 1, 270–279.Google Scholar
  77. Raab-Graham, K. F., Haddick, P. C., Jan, Y. N., & Jan, L. Y. (2006). Activity- and mTOR-dependent suppression of Kv1.1 channel mRNA translation in dendrites. Science, 5796, 144–148.Google Scholar
  78. Rehbein, M., Wege, K., Buck, F., Schweizer, M., Richter, D., & Kindler, S. (2002). Molecular characterization of MARTA1, a protein interacting with the dendritic targeting element of MAP2 mRNAs. Journal of Neurochemistry, 5, 1039–1046.Google Scholar
  79. Romorini, S., Piccoli, G., Jiang, M., Grossano, P., Tonna, N., Passafaro, M., Zhang, M., & Sala, C. (2004). A functional role of postsynaptic density-95-guanylate kinase-associated protein complex in regulating Shank assembly and stability to synapses. The Journal of Neuroscience, 42, 9391–9404.Google Scholar
  80. Sala, C., Piech, V., Wilson, N. R., Passafaro, M., Liu, G., & Sheng, M. (2001). Regulation of dendritic spine morphology and synaptic function by Shank and Homer. Neuron, 1, 115–130.Google Scholar
  81. Scheetz, A. J., Nairn, A. C., & Constantine-Paton, M. (2000). NMDA receptor-mediated control of protein synthesis at developing synapses. Nature Neuroscience, 3, 211–216.PubMedGoogle Scholar
  82. Schratt, G. (2009). microRNAs at the synapse. Nature Reviews Neuroscience, 12, 842–849.Google Scholar
  83. Schratt, G. M., Nigh, E. A., Chen, W. G., Hu, L., & Greenberg, M. E. (2004). BDNF regulates the translation of a select group of mRNAs by a mammalian target of rapamycin-phosphatidylinositol 3-kinase-dependent pathway during neuronal development. The Journal of Neuroscience, 33, 7366–7377.Google Scholar
  84. Schratt, G. M., Tuebing, F., Nigh, E. A., Kane, C. G., Sabatini, M. E., Kiebler, M., & Greenberg, M. E. (2006). A brain-specific microRNA regulates dendritic spine development. Nature, 7074, 283–289.Google Scholar
  85. Schütt, J., Falley, K., Richter, D., Kreienkamp, H. J., & Kindler, S. (2009). Fragile X mental retardation protein regulates the levels of scaffold proteins and glutamate receptors in postsynaptic densities. Journal of Biological Chemistry, 38, 25479–25487.Google Scholar
  86. Shin, C. Y., Kundel, M., & Wells, D. G. (2004). Rapid, activity-induced increase in tissue plasminogen activator is mediated by metabotropic glutamate receptor-dependent mRNA translation. The Journal of Neuroscience, 42, 9425–9433.Google Scholar
  87. Slezak-Prochazka, I., Durmus, S., Kroesen, B. J., & van den Berg, A. (2010). MicroRNAs, macrocontrol: Regulation of miRNA processing. RNA, 6, 1087–1095.Google Scholar
  88. Slipczuk, L., Bekinschtein, P., Katche, C., Cammarota, M., Izquierdo, I., & Medina, J. H. (2009). BDNF activates mTOR to regulate GluR1 expression required for memory formation. PloS One, 6, e6007.Google Scholar
  89. Sonenberg, N., & Hinnebusch, A. G. (2009). Regulation of translation initiation in eukaryotes: Mechanisms and biological targets. Cell, 4, 731–745.Google Scholar
  90. Steward, O. (2002). mRNA at synapses, synaptic plasticity, and memory consolidation. Neuron, 3, 338–340.Google Scholar
  91. Steward, O., & Levy, W. B. (1982). Preferential localization of polyribosomes under the base of dendritic spines in granule cells of the dentate gyrus. The Journal of Neuroscience, 3, 284–291.Google Scholar
  92. Steward, O., & Worley, P. F. (2001). Selective targeting of newly synthesized Arc mRNA to active synapses requires NMDA receptor activation. Neuron, 1, 227–240.Google Scholar
  93. Sutton, M. A., & Schuman, E. M. (2006). Dendritic protein synthesis, synaptic plasticity, and memory. Cell, 1, 49–58.Google Scholar
  94. Takei, N., Inamura, N., Kawamura, M., Namba, H., Hara, K., Yonezawa, K., & Nawa, H. (2004). Brain-derived neurotrophic factor induces mammalian target of rapamycin-dependent local activation of translation machinery and protein synthesis in neuronal dendrites. The Journal of Neuroscience, 44, 9760–9769.Google Scholar
  95. Takei, N., Kawamura, M., Hara, K., Yonezawa, K., & Nawa, H. (2001). Brain-derived neurotrophic factor enhances neuronal translation by activating multiple initiation processes: Comparison with the effects of insulin. Journal of Biological Chemistry, 46, 42818–42825.Google Scholar
  96. Takeuchi, M., Hata, Y., Hirao, K., Toyoda, A., Irie, M., & Takai, Y. (1997). SAPAPs: A family of PSD-95/SAP90-associated proteins localized at postsynaptic density. Journal of Biological Chemistry, 18, 11943–11951.Google Scholar
  97. Tang, S. J., Meulemans, D., Vazquez, L., Colaco, N., & Schuman, E. (2001). A role for a rat homolog of staufen in the transport of RNA to neuronal dendrites. Neuron, 3, 463–475.Google Scholar
  98. Tang, S. J., Reis, G., Kang, H., Gingras, A. C., Sonenberg, N., & Schuman, E. M. (2002). A rapamycin-sensitive signaling pathway contributes to long-term synaptic plasticity in the hippocampus. Proceedings of the National Academy of Sciences of the United States of America, 1, 467–472.Google Scholar
  99. Tcherkezian, J., Brittis, P. A., Thomas, F., Roux, P. P., & Flanagan, J. G. (2010). Transmembrane receptor DCC associates with protein synthesis machinery and regulates translation. Cell, 4, 632–644.Google Scholar
  100. Tiruchinapalli, D. M., Oleynikov, Y., Kelic, S., Shenoy, S. M., Hartley, A., Stanton, P. K., Singer, R. H., & Bassell, G. J. (2003). Activity-dependent trafficking and dynamic localization of zipcode binding protein 1 and beta-actin mRNA in dendrites and spines of hippocampal neurons. The Journal of Neuroscience, 8, 3251–3261.Google Scholar
  101. Tsokas, P., Ma, T., Iyengar, R., Landau, E. M., & Blitzer, R. D. (2007). Mitogen-activated protein kinase upregulates the dendritic translation machinery in long-term potentiation by controlling the mammalian target of rapamycin pathway. The Journal of Neuroscience, 22, 5885–5894.Google Scholar
  102. Tübing, F., Vendra, G., Mikl, M., Macchi, P., Thomas, S., & Kiebler, M. A. (2010). Dendritically localized transcripts are sorted into distinct ribonucleoprotein particles that display fast directional motility along dendrites of hippocampal neurons. The Journal of Neuroscience, 11, 4160–4170.Google Scholar
  103. Valtschanoff, J. G., & Weinberg, R. J. (2001). Laminar organization of the NMDA receptor complex within the postsynaptic density. The Journal of Neuroscience, 4, 1211–1217.Google Scholar
  104. Verpelli, C., Piccoli, G., Zanchi, A., Gardoni, F., Huang, K., Brambilla, D., Di Luca, M., Battaglioli, E., & Sala, C. (2010). Synaptic activity controls dendritic spine morphology by modulating eEF2-dependent BDNF synthesis. The Journal of Neuroscience, 17, 5830–5842.Google Scholar
  105. Wang, H., Iacoangeli, A., Lin, D., Williams, K., Denman, R. B., Hellen, C. U., & Tiedge, H. (2005). Dendritic BC1 RNA in translational control mechanisms. The Journal of Cell Biology, 5, 811–821.Google Scholar
  106. Wang, H., Iacoangeli, A., Popp, S., Muslimov, I. A., Imataka, H., Sonenberg, N., Lomakin, I. B., & Tiedge, H. (2002). Dendritic BC1 RNA: Functional role in regulation of translation initiation. The Journal of Neuroscience, 23, 10232–10241.Google Scholar
  107. Wang, H., Kim, S. S., & Zhuo, M. (2010). Roles of fragile X mental retardation protein in dopaminergic stimulation-induced synapse-associated protein synthesis and subsequent alpha-amino-3-hydroxyl-5-methyl-4-isoxazole-4-propionate (AMPA) receptor internalization. Journal of Biological Chemistry, 28, 21888–21901.Google Scholar
  108. Waskiewicz, A. J., Johnson, J. C., Penn, B., Mahalingam, M., Kimball, S. R., & Cooper, J. A. (1999). Phosphorylation of the cap-binding protein eukaryotic translation initiation factor 4E by protein kinase Mnk1 in vivo. Molecular and Cellular Biology, 3, 1871–1880.Google Scholar
  109. Waung, M. W., Pfeiffer, B. E., Nosyreva, E. D., Ronesi, J. A., & Huber, K. M. (2008). Rapid translation of Arc/Arg3.1 selectively mediates mGluR-dependent LTD through persistent increases in AMPAR endocytosis rate. Neuron, 1, 84–97.Google Scholar
  110. Welch, J. M., Lu, J., Rodriguiz, R. M., Trotta, N. C., Peca, J., Ding, J. D., Feliciano, C., Chen, M., Adams, J. P., Luo, J., Dudek, S. M., Weinberg, R. J., Calakos, N., Wetsel, W. C., & Feng, G. (2007). Cortico-striatal synaptic defects and OCD-like behaviours in Sapap3-mutant mice. Nature, 7156, 894–900.Google Scholar
  111. Welch, J. M., Wang, D., & Feng, G. (2004). Differential mRNA expression and protein localization of the SAP90/PSD-95-associated proteins (SAPAPs) in the nervous system of the mouse. The Journal of Comparative Neurology, 1, 24–39.Google Scholar
  112. Wells, D. G. (2006). RNA-binding proteins: A lesson in repression. The Journal of Neuroscience, 27, 7135–7138.Google Scholar
  113. Wells, D. G., Dong, X., Quinlan, E. M., Huang, Y. S., Bear, M. F., Richter, J. D., & Fallon, J. R. (2001). A role for the cytoplasmic polyadenylation element in NMDA receptor-regulated mRNA translation in neurons. The Journal of Neuroscience, 24, 9541–9548.Google Scholar
  114. Wu, L., Wells, D., Tay, J., Mendis, D., Abbott, M. A., Barnitt, A., Quinlan, E., Heynen, A., Fallon, J. R., & Richter, J. D. (1998). CPEB-mediated cytoplasmic polyadenylation and the regulation of experience-dependent translation of alpha-CaMKII mRNA at synapses. Neuron, 5, 1129–1139.Google Scholar
  115. Zalfa, F., Giorgi, M., Primerano, B., Moro, A., Di Penta, A., Reis, S., Oostra, B., & Bagni, C. (2003). The fragile X syndrome protein FMRP associates with BC1 RNA and regulates the translation of specific mRNAs at synapses. Cell, 3, 317–327.Google Scholar
  116. Zhong, J., Chuang, S. C., Bianchi, R., Zhao, W., Lee, H., Fenton, A. A., Wong, R. K., & Tiedge, H. (2009). BC1 regulation of metabotropic glutamate receptor-mediated neuronal excitability. The Journal of Neuroscience, 32, 9977–9986.Google Scholar
  117. Zhong, J., Zhang, T., & Bloch, L. M. (2006). Dendritic mRNAs encode diversified functionalities in hippocampal pyramidal neurons. BMC Neuroscience, 7, 17.PubMedGoogle Scholar
  118. Zitzer, H., Hönck, H. H., Bächner, D., Richter, D., & Kreienkamp, H. J. (1999). Somatostatin receptor interacting protein defines a novel family of multidomain proteins present in human and rodent brain. Journal of Biological Chemistry, 46, 32997–33001.Google Scholar

Copyright information

© Springer-Verlag/WIen 2012

Authors and Affiliations

  1. 1.Institute for Human GeneticsUniversity Medical Center Hamburg-EppendorfHamburgGermany

Personalised recommendations