STAT Transcription Factors: Controlling All Aspects of NK Cell Biology



Besides B and T cells, Natural Killer (NK) cells constitute the third lymphocytic population with a broad spectrum of skills and functions. For several decades NK cells have been portrayed as first line defense against virally infected and malignant cells. But recent reports unraveled far more diverse properties of NK cells, e.g. their involvement in reproductive immunology and in mucosal defense of pathogens in the gut, and especially their ability to retain memory over several months. This chapter combines well established paradigms of NK cell biology with recent findings and special emphasis on the JAK/STAT signaling pathway. NK cell development, activation and cytotoxic function are tightly regulated by a plethora of cytokines – prominent inducers of the JAK/STAT signaling cascade. The availability and detailed analysis of gene-targeted mice underscores the importance of STATs controlling all aspects of NK cell biology.


Natural Killer Natural Killer Cell Natural Killer Cell Cytotoxicity Natural Killer Cell Subset Natural Killer Cell Number 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Anfossi N, Andre P, Guia S, Falk CS, Roetynck S, Stewart CA, Breso V, Frassati C, Reviron D, Middleton D, Romagne F, Ugolini S, Vivier E (2006) Human NK cell education by inhibitory receptors for MHC class I. Immunity 25:331–342PubMedGoogle Scholar
  2. Arase H, Arase N, Saito T (1995) Fas-mediated cytotoxicity by freshly isolated natural killer cells. J Exp Med 181:1235–1238PubMedGoogle Scholar
  3. Bacon CM, Petricoin EF III, Ortaldo JR, Rees RC, Larner AC, Johnston JA, O’Shea JJ (1995) Interleukin 12 induces tyrosine phosphorylation and activation of STAT4 in human lymphocytes. Proc Natl Acad Sci USA 92:7307–7311PubMedGoogle Scholar
  4. Biron CA (1998) Role of early cytokines, including alpha and beta interferons (IFN-alpha/beta), in innate and adaptive immune responses to viral infections. Semin Immunol 10:383–390PubMedGoogle Scholar
  5. Biron CA, Su HC, Orange JS (1996) Function and regulation of natural killer (NK) cells during viral infections: characterization of responses in vivo. Methods 9:379–393PubMedGoogle Scholar
  6. Bjorkstrom NK, Lindgren T, Stoltz M, Fauriat C, Braun M, Evander M, Michaelsson J, Malmberg KJ, Klingstrom J, Ahlm C, Ljunggren HG (2010) Rapid expansion and long-term persistence of elevated NK cell numbers in humans infected with hantavirus. J Exp Med 208:13–21PubMedGoogle Scholar
  7. Boggs SS, Trevisan M, Patrene K, Geogopoulos K (1998) Lack of natural killer cell precursors in fetal liver of ikaros knockout mutant mice. Nat Immun 16:137–145PubMedGoogle Scholar
  8. Borg C, Terme M, Taieb J, Menard C, Flament C, Robert C, Maruyama K, Wakasugi H, Angevin E, Thielemans K, Le Cesne A, Chung-Scott V, Lazar V, Tchou I, Crepineau F, Lemoine F, Bernard J, Fletcher JA, Turhan A, Blay JY, Spatz A, Emile JF, Heinrich MC, Mecheri S, Tursz T, Zitvogel L (2004) Novel mode of action of c-kit tyrosine kinase inhibitors leading to NK cell-dependent antitumor effects. J Clin Invest 114:379–388PubMedGoogle Scholar
  9. Bovenschen N, Kummer JA (2010) Orphan granzymes find a home. Immunol Rev 235:117–127PubMedGoogle Scholar
  10. Brodin P, Hoglund P (2008) Beyond licensing and disarming: a quantitative view on NK-cell education. Eur J Immunol 38:2934–2937PubMedGoogle Scholar
  11. Colucci F, Samson SI, DeKoter RP, Lantz O, Singh H, Di Santo JP (2001) Differential requirement for the transcription factor PU.1 in the generation of natural killer cells versus B and T cells. Blood 97:2625–2632PubMedGoogle Scholar
  12. Cui Y, Riedlinger G, Miyoshi K, Tang W, Li C, Deng CX, Robinson GW, Hennighausen L (2004) Inactivation of Stat5 in mouse mammary epithelium during pregnancy reveals distinct functions in cell proliferation, survival, and differentiation. Mol Cell Biol 24:8037–8047PubMedGoogle Scholar
  13. DeBlaker-Hohe DF, Yamauchi A, Yu CR, Horvath-Arcidiacono JA, Bloom ET (1995) IL-12 synergizes with IL-2 to induce lymphokine-activated cytotoxicity and perforin and granzyme gene expression in fresh human NK cells. Cell Immunol 165:33–43PubMedGoogle Scholar
  14. Di Santo JP, Vosshenrich CA, Satoh-Takayama N (2010) A ‘natural’ way to provide innate mucosal immunity. Curr Opin Immunol 22:435–441PubMedGoogle Scholar
  15. Duncan GS, Mittrucker HW, Kagi D, Matsuyama T, Mak TW (1996) The transcription factor interferon regulatory factor-1 is essential for natural killer cell function in vivo. J Exp Med 184:2043–2048PubMedGoogle Scholar
  16. Dunn GP, Bruce AT, Ikeda H, Old LJ, Schreiber RD (2002) Cancer immunoediting: from immunosurveillance to tumor escape. Nat Immunol 3:991–998PubMedGoogle Scholar
  17. Durbin JE, Hackenmiller R, Simon MC, Levy DE (1996) Targeted disruption of the mouse Stat1 gene results in compromised innate immunity to viral disease. Cell 84:443–450PubMedGoogle Scholar
  18. Eckelhart E, Warsch W, Zebedin E, Simma O, Stoiber D, Kolbe T, Rulicke T, Mueller M, Casanova E, Sexl V (2011) A novel Ncr1-Cre mouse reveals the essential role of STAT5 for NK cell survival and development. Blood 117:1565–1573PubMedGoogle Scholar
  19. Ehrlich P (1908) Über den jetzigen Stand der Karzinomforschung. Presented at the Vereinigung für Wissenschaftliche Arbeit, University of Amsterdam, Amsterdam, 1 June 1908Google Scholar
  20. Elliott JM, Wahle JA, Yokoyama WM (2010) MHC class I-deficient natural killer cells acquire a licensed phenotype after transfer into an MHC class I-sufficient environment. J Exp Med 207:2073–2079PubMedGoogle Scholar
  21. Eriksen KW, Sondergaard H, Woetmann A, Krejsgaard T, Skak K, Geisler C, Wasik MA, Odum N (2009) The combination of IL-21 and IFN-alpha boosts STAT3 activation, cytotoxicity and experimental tumor therapy. Mol Immunol 46:812–820PubMedGoogle Scholar
  22. Froelich CJ, Pardo J, Simon MM (2009) Granule-associated serine proteases: granzymes might not just be killer proteases. Trends Immunol 30:117–123PubMedGoogle Scholar
  23. Gascoyne DM, Long E, Veiga-Fernandes H, de Boer J, Williams O, Seddon B, Coles M, Kioussis D, Brady HJ (2009) The basic leucine zipper transcription factor E4BP4 is essential for natural killer cell development. Nat Immunol 10:1118–1124PubMedGoogle Scholar
  24. Gidlund M, Orn A, Wigzell H, Senik A, Gresser I (1978) Enhanced NK cell activity in mice injected with interferon and interferon inducers. Nature 273:759–761PubMedGoogle Scholar
  25. Guerra N, Tan YX, Joncker NT, Choy A, Gallardo F, Xiong N, Knoblaugh S, Cado D, Greenberg NM, Raulet DH (2008) NKG2D-deficient mice are defective in tumor surveillance in models of spontaneous malignancy. Immunity 28:571–580PubMedGoogle Scholar
  26. Gur C, Porgador A, Elboim M, Gazit R, Mizrahi S, Stern-Ginossar N, Achdout H, Ghadially H, Dor Y, Nir T, Doviner V, Hershkovitz O, Mendelson M, Naparstek Y, Mandelboim O (2010) The activating receptor NKp46 is essential for the development of type 1 diabetes. Nat Immunol 11:121–128PubMedGoogle Scholar
  27. Hoelbl A, Kovacic B, Kerenyi MA, Simma O, Warsch W, Cui Y, Beug H, Hennighausen L, Moriggl R, Sexl V (2006) Clarifying the role of Stat5 in lymphoid development and Abelson-induced transformation. Blood 107:4898–4906PubMedGoogle Scholar
  28. Hoelbl A, Schuster C, Kovacic B, Zhu B, Wickre M, Hoelzl MA, Fajmann S, Grebien F, Warsch W, Stengl G, Hennighausen L, Poli V, Beug H, Moriggl R, Sexl V (2010) Stat5 is indispensable for the maintenance of bcr/abl-positive leukaemia. EMBO Mol Med 2:98–110PubMedGoogle Scholar
  29. Hoglund P, Glas R, Ohlen C, Ljunggren HG, Karre K (1991) Alteration of the natural killer repertoire in H-2 transgenic mice: specificity of rapid lymphoma cell clearance determined by the H-2 phenotype of the target. J Exp Med 174:327–334PubMedGoogle Scholar
  30. Huntington ND, Vosshenrich CA, Di Santo JP (2007) Developmental pathways that generate natural-killer-cell diversity in mice and humans. Nat Rev Immunol 7:703–714PubMedGoogle Scholar
  31. Ikawa T, Fujimoto S, Kawamoto H, Katsura Y, Yokota Y (2001) Commitment to natural killer cells requires the helix-loop-helix inhibitor Id2. Proc Natl Acad Sci USA 98:5164–5169PubMedGoogle Scholar
  32. Imada K, Bloom ET, Nakajima H, Horvath-Arcidiacono JA, Udy GB, Davey HW, Leonard WJ (1998) Stat5b is essential for natural killer cell-mediated proliferation and cytolytic activity. J Exp Med 188:2067–2074PubMedGoogle Scholar
  33. Intlekofer AM, Takemoto N, Wherry EJ, Longworth SA, Northrup JT, Palanivel VR, Mullen AC, Gasink CR, Kaech SM, Miller JD, Gapin L, Ryan K, Russ AP, Lindsten T, Orange JS, Goldrath AW, Ahmed R, Reiner SL (2005) Effector and memory CD8+ T cell fate coupled by T-bet and eomesodermin. Nat Immunol 6:1236–1244PubMedGoogle Scholar
  34. Joncker NT, Raulet DH (2008) Regulation of NK cell responsiveness to achieve self-tolerance and maximal responses to diseased target cells. Immunol Rev 224:85–97PubMedGoogle Scholar
  35. Kallies A, Carotta S, Huntington ND, Bernard NJ, Tarlinton DM, Smyth MJ, Nutt SL (2011) A role for Blimp-1 in the transcriptional network controlling natural killer cell maturation. Blood 117:1869–1879PubMedGoogle Scholar
  36. Kamiya S, Owaki T, Morishima N, Fukai F, Mizuguchi J, Yoshimoto T (2004) An indispensable role for STAT1 in IL-27-induced T-bet expression but not proliferation of naive CD4+ T cells. J Immunol 173:3871–3877PubMedGoogle Scholar
  37. Kamizono S, Duncan GS, Seidel MG, Morimoto A, Hamada K, Grosveld G, Akashi K, Lind EF, Haight JP, Ohashi PS, Look AT, Mak TW (2009) Nfil3/E4bp4 is required for the development and maturation of NK cells in vivo. J Exp Med 206:2977–2986PubMedGoogle Scholar
  38. Kaplan MH, Sun YL, Hoey T, Grusby MJ (1996) Impaired IL-12 responses and enhanced development of Th2 cells in Stat4-deficient mice. Nature 382:174–177PubMedGoogle Scholar
  39. Karaghiosoff M, Neubauer H, Lassnig C, Kovarik P, Schindler H, Pircher H, McCoy B, Bogdan C, Decker T, Brem G, Pfeffer K, Muller M (2000) Partial impairment of cytokine responses in Tyk2-deficient mice. Immunity 13:549–560PubMedGoogle Scholar
  40. Karre K (2008) Natural killer cell recognition of missing self. Nat Immunol 9:477–480PubMedGoogle Scholar
  41. Karre K, Ljunggren HG, Piontek G, Kiessling R (1986) Selective rejection of H-2-deficient lymphoma variants suggests alternative immune defence strategy. Nature 319:675–678PubMedGoogle Scholar
  42. Kennedy MK, Glaccum M, Brown SN, Butz EA, Viney JL, Embers M, Matsuki N, Charrier K, Sedger L, Willis CR, Brasel K, Morrissey PJ, Stocking K, Schuh JC, Joyce S, Peschon JJ (2000) Reversible defects in natural killer and memory CD8 T cell lineages in interleukin 15-deficient mice. J Exp Med 191:771–780PubMedGoogle Scholar
  43. Kiessling R, Klein E, Wigzell H (1975) “Natural” killer cells in the mouse. I. Cytotoxic cells with specificity for mouse Moloney leukemia cells. Specificity and distribution according to genotype. Eur J Immunol 5:112–117PubMedGoogle Scholar
  44. Kim S, Iizuka K, Kang HS, Dokun A, French AR, Greco S, Yokoyama WM (2002) In vivo developmental stages in murine natural killer cell maturation. Nat Immunol 3:523–528PubMedGoogle Scholar
  45. Kortylewski M, Kujawski M, Wang T, Wei S, Zhang S, Pilon-Thomas S, Niu G, Kay H, Mule J, Kerr WG, Jove R, Pardoll D, Yu H (2005) Inhibiting Stat3 signaling in the hematopoietic system elicits multicomponent antitumor immunity. Nat Med 11:1314–1321PubMedGoogle Scholar
  46. Kovacic B, Stoiber D, Moriggl R, Weisz E, Ott RG, Kreibich R, Levy DE, Beug H, Freissmuth M, Sexl V (2006) STAT1 acts as a tumor promoter for leukemia development. Cancer Cell 10:77–87PubMedGoogle Scholar
  47. Kreutzman A, Juvonen V, Kairisto V, Ekblom M, Stenke L, Seggewiss R, Porkka K, Mustjoki S (2010) Mono/oligoclonal T and NK cells are common in chronic myeloid leukemia patients at diagnosis and expand during dasatinib therapy. Blood 116:772–782PubMedGoogle Scholar
  48. Lanier LL (2008) Up on the tightrope: natural killer cell activation and inhibition. Nat Immunol 9:495–502PubMedGoogle Scholar
  49. Lauwerys BR, Renauld JC, Houssiau FA (1999) Synergistic proliferation and activation of natural killer cells by interleukin 12 and interleukin 18. Cytokine 11:822–830PubMedGoogle Scholar
  50. Lee CK, Gimeno R, Levy DE (1999) Differential regulation of constitutive major histocompatibility complex class I expression in T and B lymphocytes. J Exp Med 190:1451–1464PubMedGoogle Scholar
  51. Lee CK, Rao DT, Gertner R, Gimeno R, Frey AB, Levy DE (2000) Distinct requirements for IFNs and STAT1 in NK cell function. J Immunol 165:3571–3577PubMedGoogle Scholar
  52. Leon F, Roldan E, Sanchez L, Camarero C, Bootello A, Roy G (2003) Human small-intestinal epithelium contains functional natural killer lymphocytes. Gastroenterology 125:345–356PubMedGoogle Scholar
  53. Liang S, Wei H, Sun R, Tian Z (2003) IFNalpha regulates NK cell cytotoxicity through STAT1 pathway. Cytokine 23:190–199PubMedGoogle Scholar
  54. Liao NS, Bix M, Zijlstra M, Jaenisch R, Raulet D (1991) MHC class I deficiency: susceptibility to natural killer (NK) cells and impaired NK activity. Science 253:199–202PubMedGoogle Scholar
  55. Lohoff M, Duncan GS, Ferrick D, Mittrucker HW, Bischof S, Prechtl S, Rollinghoff M, Schmitt E, Pahl A, Mak TW (2000) Deficiency in the transcription factor interferon regulatory factor (IRF)-2 leads to severely compromised development of natural killer and T helper type 1 cells. J Exp Med 192:325–336PubMedGoogle Scholar
  56. Long EO (2008) Negative signaling by inhibitory receptors: the NK cell paradigm. Immunol Rev 224:70–84PubMedGoogle Scholar
  57. Loza MJ, Perussia B (2004) Differential regulation of NK cell proliferation by type I and type II IFN. Int Immunol 16:23–32PubMedGoogle Scholar
  58. Manaster I, Mandelboim O (2010) The unique properties of uterine NK cells. Am J Reprod Immunol 63:434–444PubMedGoogle Scholar
  59. Marques L, Brucet M, Lloberas J, Celada A (2004) STAT1 regulates lipopolysaccharide- and TNF-alpha-dependent expression of transporter associated with antigen processing 1 and low molecular mass polypeptide 2 genes in macrophages by distinct mechanisms. J Immunol 173:1103–1110PubMedGoogle Scholar
  60. Martin MP, Nelson G, Lee JH, Pellett F, Gao X, Wade J, Wilson MJ, Trowsdale J, Gladman D, Carrington M (2002) Cutting edge: susceptibility to psoriatic arthritis: influence of activating killer Ig-like receptor genes in the absence of specific HLA-C alleles. J Immunol 169:2818–2822PubMedGoogle Scholar
  61. Matikainen S, Paananen A, Miettinen M, Kurimoto M, Timonen T, Julkunen I, Sareneva T (2001) IFN-alpha and IL-18 synergistically enhance IFN-gamma production in human NK cells: differential regulation of Stat4 activation and IFN-gamma gene expression by IFN-alpha and IL-12. Eur J Immunol 31:2236–2245PubMedGoogle Scholar
  62. Matsuyama T, Kimura T, Kitagawa M, Pfeffer K, Kawakami T, Watanabe N, Kundig TM, Amakawa R, Kishihara K, Wakeham A et al (1993) Targeted disruption of IRF-1 or IRF-2 results in abnormal type I IFN gene induction and aberrant lymphocyte development. Cell 75:83–97PubMedGoogle Scholar
  63. Medvedev AE, Johnsen AC, Haux J, Steinkjer B, Egeberg K, Lynch DH, Sundan A, Espevik T (1997) Regulation of Fas and Fas-ligand expression in NK cells by cytokines and the involvement of Fas-ligand in NK/LAK cell-mediated cytotoxicity. Cytokine 9:394–404PubMedGoogle Scholar
  64. Meraz MA, White JM, Sheehan KC, Bach EA, Rodig SJ, Dighe AS, Kaplan DH, Riley JK, Greenlund AC, Campbell D, Carver-Moore K, DuBois RN, Clark R, Aguet M, Schreiber RD (1996) Targeted disruption of the Stat1 gene in mice reveals unexpected physiologic specificity in the JAK-STAT signaling pathway. Cell 84:431–442PubMedGoogle Scholar
  65. Miyagi T, Gil MP, Wang X, Louten J, Chu WM, Biron CA (2007) High basal STAT4 balanced by STAT1 induction to control type 1 interferon effects in natural killer cells. J Exp Med 204:2383–2396PubMedGoogle Scholar
  66. Miyazaki T, Kawahara A, Fujii H, Nakagawa Y, Minami Y, Liu ZJ, Oishi I, Silvennoinen O, Witthuhn BA, Ihle JN et al (1994) Functional activation of Jak1 and Jak3 by selective association with IL-2 receptor subunits. Science 266:1045–1047PubMedGoogle Scholar
  67. Moriggl R, Topham DJ, Teglund S, Sexl V, McKay C, Wang D, Hoffmeyer A, van Deursen J, Sangster MY, Bunting KD, Grosveld GC, Ihle JN (1999) Stat5 is required for IL-2-induced cell cycle progression of peripheral T cells. Immunity 10:249–259PubMedGoogle Scholar
  68. Morris SC, Orekhova T, Meadows MJ, Heidorn SM, Yang J, Finkelman FD (2006) IL-4 induces in vivo production of IFN-gamma by NK and NKT cells. J Immunol 176:5299–5305PubMedGoogle Scholar
  69. Neubauer H, Cumano A, Muller M, Wu H, Huffstadt U, Pfeffer K (1998) Jak2 deficiency defines an essential developmental checkpoint in definitive hematopoiesis. Cell 93:397–409PubMedGoogle Scholar
  70. Nguyen KB, Cousens LP, Doughty LA, Pien GC, Durbin JE, Biron CA (2000) Interferon alpha/beta-mediated inhibition and promotion of interferon gamma: STAT1 resolves a paradox. Nat Immunol 1:70–76PubMedGoogle Scholar
  71. Nguyen KB, Salazar-Mather TP, Dalod MY, Van Deusen JB, Wei XQ, Liew FY, Caligiuri MA, Durbin JE, Biron CA (2002) Coordinated and distinct roles for IFN-alpha beta, IL-12, and IL-15 regulation of NK cell responses to viral infection. J Immunol 169:4279–4287PubMedGoogle Scholar
  72. Nosaka T, van Deursen JM, Tripp RA, Thierfelder WE, Witthuhn BA, McMickle AP, Doherty PC, Grosveld GC, Ihle JN (1995) Defective lymphoid development in mice lacking Jak3. Science 270:800–802PubMedGoogle Scholar
  73. Ogasawara K, Hida S, Azimi N, Tagaya Y, Sato T, Yokochi-Fukuda T, Waldmann TA, Taniguchi T, Taki S (1998) Requirement for IRF-1 in the microenvironment supporting development of natural killer cells. Nature 391:700–703PubMedGoogle Scholar
  74. O'Leary JG, Goodarzi M, Drayton DL, von Andrian UH (2006) T cell- and B cell-independent adaptive immunity mediated by natural killer cells. Nat Immunol 7:507–516PubMedGoogle Scholar
  75. Orange JS, Biron CA (1996a) An absolute and restricted requirement for IL-12 in natural killer cell IFN-gamma production and antiviral defense. Studies of natural killer and T cell responses in contrasting viral infections. J Immunol 156:1138–1142PubMedGoogle Scholar
  76. Orange JS, Biron CA (1996b) Characterization of early IL-12, IFN-alphabeta, and TNF effects on antiviral state and NK cell responses during murine cytomegalovirus infection. J Immunol 156:4746–4756PubMedGoogle Scholar
  77. Orr MT, Lanier LL (2010) Natural killer cell education and tolerance. Cell 142:847–856PubMedGoogle Scholar
  78. Park SY, Saijo K, Takahashi T, Osawa M, Arase H, Hirayama N, Miyake K, Nakauchi H, Shirasawa T, Saito T (1995) Developmental defects of lymphoid cells in Jak3 kinase-deficient mice. Immunity 3:771–782PubMedGoogle Scholar
  79. Park C, Li S, Cha E, Schindler C (2000) Immune response in Stat2 knockout mice. Immunity 13:795–804PubMedGoogle Scholar
  80. Pearce EL, Mullen AC, Martins GA, Krawczyk CM, Hutchins AS, Zediak VP, Banica M, DiCioccio CB, Gross DA, Mao CA, Shen H, Cereb N, Yang SY, Lindsten T, Rossant J, Hunter CA, Reiner SL (2003) Control of effector CD8+ T cell function by the transcription factor Eomesodermin. Science 302:1041–1043PubMedGoogle Scholar
  81. Pende D, Accame L, Pareti L, Mazzocchi A, Moretta A, Parmiani G, Moretta L (1998) The susceptibility to natural killer cell-mediated lysis of HLA class I-positive melanomas reflects the expression of insufficient amounts of different HLA class I alleles. Eur J Immunol 28:2384–2394PubMedGoogle Scholar
  82. Rani MR, Pandalai S, Shrock J, Almasan A, Ransohoff RM (2007) Requirement of catalytically active Tyk2 and accessory signals for the induction of TRAIL mRNA by IFN-beta. J Interferon Cytokine Res 27:767–779PubMedGoogle Scholar
  83. Raulet DH, Vance RE (2006) Self-tolerance of natural killer cells. Nat Rev Immunol 6:520–531PubMedGoogle Scholar
  84. Riese RJ, Krishnaswami S, Kremer J (2010) Inhibition of JAK kinases in patients with rheumatoid arthritis: scientific rationale and clinical outcomes. Best Pract Res Clin Rheumatol 24:513–526PubMedGoogle Scholar
  85. Robbins SH, Tessmer MS, Van Kaer L, Brossay L (2005) Direct effects of T-bet and MHC class I expression, but not STAT1, on peripheral NK cell maturation. Eur J Immunol 35:757–765PubMedGoogle Scholar
  86. Rodig SJ, Meraz MA, White JM, Lampe PA, Riley JK, Arthur CD, King KL, Sheehan KC, Yin L, Pennica D, Johnson EM Jr, Schreiber RD (1998) Disruption of the Jak1 gene demonstrates obligatory and nonredundant roles of the Jaks in cytokine-induced biologic responses. Cell 93:373–383PubMedGoogle Scholar
  87. Rohon P, Porkka K, Mustjoki S (2010) Immunoprofiling of patients with chronic myeloid leukemia at diagnosis and during tyrosine kinase inhibitor therapy. Eur J Haematol 85:387–398PubMedGoogle Scholar
  88. Rosmaraki EE, Douagi I, Roth C, Colucci F, Cumano A, Di Santo JP (2001) Identification of committed NK cell progenitors in adult murine bone marrow. Eur J Immunol 31:1900–1909PubMedGoogle Scholar
  89. Roth C, Carlyle JR, Takizawa H, Raulet DH (2000) Clonal acquisition of inhibitory Ly49 receptors on developing NK cells is successively restricted and regulated by stromal class I MHC. Immunity 13:143–153PubMedGoogle Scholar
  90. Russ AP, Wattler S, Colledge WH, Aparicio SA, Carlton MB, Pearce JJ, Barton SC, Surani MA, Ryan K, Nehls MC, Wilson V, Evans MJ (2000) Eomesodermin is required for mouse trophoblast development and mesoderm formation. Nature 404:95–99PubMedGoogle Scholar
  91. Salcedo TW, Azzoni L, Wolf SF, Perussia B (1993) Modulation of perforin and granzyme messenger RNA expression in human natural killer cells. J Immunol 151:2511–2520PubMedGoogle Scholar
  92. Satoh-Takayama N, Vosshenrich CA, Lesjean-Pottier S, Sawa S, Lochner M, Rattis F, Mention JJ, Thiam K, Cerf-Bensussan N, Mandelboim O, Eberl G, Di Santo JP (2008) Microbial flora drives interleukin 22 production in intestinal NKp46+ cells that provide innate mucosal immune defense. Immunity 29:958–970PubMedGoogle Scholar
  93. Schleicher U, Mattner J, Blos M, Schindler H, Rollinghoff M, Karaghiosoff M, Muller M, Werner-Felmayer G, Bogdan C (2004) Control of Leishmania major in the absence of Tyk2 kinase. Eur J Immunol 34:519–529PubMedGoogle Scholar
  94. Shimoda K, Tsutsui H, Aoki K, Kato K, Matsuda T, Numata A, Takase K, Yamamoto T, Nukina H, Hoshino T, Asano Y, Gondo H, Okamura T, Okamura S, Nakayama K, Nakanishi K, Niho Y, Harada M (2002) Partial impairment of interleukin-12 (IL-12) and IL-18 signaling in Tyk2-deficient mice. Blood 99:2094–2099PubMedGoogle Scholar
  95. Smyth MJ, Hayakawa Y, Takeda K, Yagita H (2002) New aspects of natural-killer-cell surveillance and therapy of cancer. Nat Rev Cancer 2:850–861PubMedGoogle Scholar
  96. Stoiber D, Kovacic B, Schuster C, Schellack C, Karaghiosoff M, Kreibich R, Weisz E, Artwohl M, Kleine OC, Muller M, Baumgartner-Parzer S, Ghysdael J, Freissmuth M, Sexl V (2004) TYK2 is a key regulator of the surveillance of B lymphoid tumors. J Clin Invest 114:1650–1658PubMedGoogle Scholar
  97. Strange A, Capon F, Spencer CC, Knight J, Weale ME, Allen MH, Barton A, Band G, Bellenguez C, Bergboer JG, Blackwell JM, Bramon E, Bumpstead SJ, Casas JP, Cork MJ, Corvin A, Deloukas P, Dilthey A, Duncanson A, Edkins S, Estivill X, Fitzgerald O, Freeman C, Giardina E, Gray E, Hofer A, Huffmeier U, Hunt SE, Irvine AD, Jankowski J, Kirby B, Langford C, Lascorz J, Leman J, Leslie S, Mallbris L, Markus HS, Mathew CG, McLean WH, McManus R, Mossner R, Moutsianas L, Naluai AT, Nestle FO, Novelli G, Onoufriadis A, Palmer CN, Perricone C, Pirinen M, Plomin R, Potter SC, Pujol RM, Rautanen A, Riveira-Munoz E, Ryan AW, Salmhofer W, Samuelsson L, Sawcer SJ, Schalkwijk J, Smith CH, Stahle M, Su Z, Tazi-Ahnini R, Traupe H, Viswanathan AC, Warren RB, Weger W, Wolk K, Wood N, Worthington J, Young HS, Zeeuwen PL, Hayday A, Burden AD, Griffiths CE, Kere J, Reis A, McVean G, Evans DM, Brown MA, Barker JN, Peltonen L, Donnelly P, Trembath RC (2010) A genome-wide association study identifies new psoriasis susceptibility loci and an interaction between HLA-C and ERAP1. Nat Genet 42:985–990PubMedGoogle Scholar
  98. Street SE, Cretney E, Smyth MJ (2001) Perforin and interferon-gamma activities independently control tumor initiation, growth, and metastasis. Blood 97:192–197PubMedGoogle Scholar
  99. Strengell M, Matikainen S, Siren J, Lehtonen A, Foster D, Julkunen I, Sareneva T (2003) IL-21 in synergy with IL-15 or IL-18 enhances IFN-gamma production in human NK and T cells. J Immunol 170:5464–5469PubMedGoogle Scholar
  100. Sun JC, Lanier LL (2009) Natural killer cells remember: an evolutionary bridge between innate and adaptive immunity? Eur J Immunol 39:2059–2064PubMedGoogle Scholar
  101. Sun JC, Beilke JN, Lanier LL (2009) Adaptive immune features of natural killer cells. Nature 457:557–561PubMedGoogle Scholar
  102. Szabo SJ, Sullivan BM, Stemmann C, Satoskar AR, Sleckman BP, Glimcher LH (2002) Distinct effects of T-bet in TH1 lineage commitment and IFN-gamma production in CD4 and CD8 T cells. Science 295:338–342PubMedGoogle Scholar
  103. Tagliabue A, Befus AD, Clark DA, Bienenstock J (1982) Characteristics of natural killer cells in the murine intestinal epithelium and lamina propria. J Exp Med 155:1785–1796PubMedGoogle Scholar
  104. Takeda K, Noguchi K, Shi W, Tanaka T, Matsumoto M, Yoshida N, Kishimoto T, Akira S (1997) Targeted disruption of the mouse Stat3 gene leads to early embryonic lethality. Proc Natl Acad Sci USA 94:3801–3804PubMedGoogle Scholar
  105. Taki S, Nakajima S, Ichikawa E, Saito T, Hida S (2005) IFN regulatory factor-2 deficiency revealed a novel checkpoint critical for the generation of peripheral NK cells. J Immunol 174:6005–6012PubMedGoogle Scholar
  106. Thierfelder WE, van Deursen JM, Yamamoto K, Tripp RA, Sarawar SR, Carson RT, Sangster MY, Vignali DA, Doherty PC, Grosveld GC, Ihle JN (1996) Requirement for Stat4 in interleukin-12-mediated responses of natural killer and T cells. Nature 382:171–174PubMedGoogle Scholar
  107. Townsend MJ, Weinmann AS, Matsuda JL, Salomon R, Farnham PJ, Biron CA, Gapin L, Glimcher LH (2004) T-bet regulates the terminal maturation and homeostasis of NK and Valpha14i NKT cells. Immunity 20:477–494PubMedGoogle Scholar
  108. Trambas CM, Griffiths GM (2003) Delivering the kiss of death. Nat Immunol 4:399–403PubMedGoogle Scholar
  109. Trinchieri G, Matsumoto-Kobayashi M, Clark SC, Seehra J, London L, Perussia B (1984) Response of resting human peripheral blood natural killer cells to interleukin 2. J Exp Med 160:1147–1169PubMedGoogle Scholar
  110. Turkson J, Jove R (2000) STAT proteins: novel molecular targets for cancer drug discovery. Oncogene 19:6613–6626PubMedGoogle Scholar
  111. Uemura A, Takehara T, Miyagi T, Suzuki T, Tatsumi T, Ohkawa K, Kanto T, Hiramatsu N, Hayashi N (2010) Natural killer cell is a major producer of interferon gamma that is critical for the IL-12-induced anti-tumor effect in mice. Cancer Immunol Immunother 59:453–463PubMedGoogle Scholar
  112. van den Broek ME, Kagi D, Ossendorp F, Toes R, Vamvakas S, Lutz WK, Melief CJ, Zinkernagel RM, Hengartner H (1996) Decreased tumor surveillance in perforin-deficient mice. J Exp Med 184:1781–1790PubMedGoogle Scholar
  113. Vosshenrich CA, Ranson T, Samson SI, Corcuff E, Colucci F, Rosmaraki EE, Di Santo JP (2005) Roles for common cytokine receptor gamma-chain-dependent cytokines in the generation, differentiation, and maturation of NK cell precursors and peripheral NK cells in vivo. J Immunol 174:1213–1221PubMedGoogle Scholar
  114. Wang KS, Ritz J, Frank DA (1999) IL-2 induces STAT4 activation in primary NK cells and NK cell lines, but not in T cells. J Immunol 162:299–304PubMedGoogle Scholar
  115. Wang T, Niu G, Kortylewski M, Burdelya L, Shain K, Zhang S, Bhattacharya R, Gabrilovich D, Heller R, Coppola D, Dalton W, Jove R, Pardoll D, Yu H (2004) Regulation of the innate and adaptive immune responses by Stat-3 signaling in tumor cells. Nat Med 10:48–54PubMedGoogle Scholar
  116. Wendel M, Galani IE, Suri-Payer E, Cerwenka A (2008) Natural killer cell accumulation in tumors is dependent on IFN-gamma and CXCR3 ligands. Cancer Res 68:8437–8445PubMedGoogle Scholar
  117. Werneck MB, Lugo-Villarino G, Hwang ES, Cantor H, Glimcher LH (2008) T-bet plays a key role in NK-mediated control of melanoma metastatic disease. J Immunol 180:8004–8010PubMedGoogle Scholar
  118. Xu X, Fu XY, Plate J, Chong AS (1998) IFN-gamma induces cell growth inhibition by Fas-mediated apoptosis: requirement of STAT1 protein for up-regulation of Fas and FasL expression. Cancer Res 58:2832–2837PubMedGoogle Scholar
  119. Yamamoto K, Shibata F, Miyasaka N, Miura O (2002) The human perforin gene is a direct target of STAT4 activated by IL-12 in NK cells. Biochem Biophys Res Commun 297:1245–1252PubMedGoogle Scholar
  120. Yen JH, Moore BE, Nakajima T, Scholl D, Schaid DJ, Weyand CM, Goronzy JJ (2001) Major histocompatibility complex class I-recognizing receptors are disease risk genes in rheumatoid arthritis. J Exp Med 193:1159–1167PubMedGoogle Scholar
  121. Yokoyama WM, Kim S (2006) How do natural killer cells find self to achieve tolerance? Immunity 24:249–257PubMedGoogle Scholar
  122. Yu CR, Ortaldo JR, Curiel RE, Young HA, Anderson SK, Gosselin P (1999) Role of a STAT binding site in the regulation of the human perforin promoter. J Immunol 162:2785–2790PubMedGoogle Scholar
  123. Yu H, Pardoll D, Jove R (2009) STATs in cancer inflammation and immunity: a leading role for STAT3. Nat Rev Cancer 9:798–809PubMedGoogle Scholar
  124. Yue P, Turkson J (2009) Targeting STAT3 in cancer: how successful are we? Expert Opin Investig Drugs 18:45–56PubMedGoogle Scholar
  125. Zamai L, Ahmad M, Bennett IM, Azzoni L, Alnemri ES, Perussia B (1998) Natural killer (NK) cell-mediated cytotoxicity: differential use of TRAIL and Fas ligand by immature and mature primary human NK cells. J Exp Med 188:2375–2380PubMedGoogle Scholar
  126. Zebedin E, Simma O, Schuster C, Putz EM, Fajmann S, Warsch W, Eckelhart E, Stoiber D, Weisz E, Schmid JA, Pickl WF, Baumgartner C, Valent P, Piekorz RP, Freissmuth M, Sexl V (2008) Leukemic challenge unmasks a requirement for PI3Kdelta in NK cell-mediated tumor surveillance. Blood 112:4655–4664PubMedGoogle Scholar
  127. Zompi S, Colucci F (2005) Anatomy of a murder–signal transduction pathways leading to activation of natural killer cells. Immunol Lett 97:31–39PubMedGoogle Scholar

Copyright information

© Springer-Verlag Wien 2012

Authors and Affiliations

  1. 1.University of Veterinary Medicine ViennaViennaAustria
  2. 2.Medical University of ViennaViennaAustria

Personalised recommendations