Limited and Degradative Proteolysis in the Context of Posttranslational Regulatory Networks: Current Technical and Conceptional Advances

  • Stefan Tholen
  • Maria Magdalena Koczorowska
  • Zon Weng Lai
  • Joern Dengjel
  • Oliver SchillingEmail author


Proteolytic processing is a major posttranslational modification (PTM) and essential in a variety of pathological and physiological processes. Proteolysis is integrated in a complex network of multiple PTMs, such as phosphorylation, acetylation or ubiquitination, that form a strongly regulated network. Currently the investigation of the co-operative action of proteolysis with other PTMs is emerging. Recently developed proteomic and degradomic techniques enable the determination of the active site specificity of proteases, the identification of in vivo substrates as well as the elucidation of the impact of proteases to proteome composition. Activity-based probes allow for detection and localization of protease activity.

This chapter provides a comprehensive overview of proteomic and degradomic tools that characterize protease action and highlights important nodes of the proteolytic network. Moreover it illustrates how proteolysis is modulated by other PTMs, and depicts its role in protein turnover.


Cleavage Site Primary Amine Ubiquitin Proteasome System Limited Proteolysis Tobacco Etch Virus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



O.S. is supported by the Deutsche Forschungsgemeinschaft (DFG, SCHI 871/2 (Emmy-Noether) and SCHI 871/5), a starting grant of the European Research Council (Programme “Ideas”—Call identifier: ERC-2011-StG 282111-ProteaSys), and the Excellence Initiative of the German Federal and State Governments (EXC 294, BIOSS). J.D. is supported by the Excellence Initiative of the German Federal and State Governments through Freiburg Institute for Advanced Studies (FRIAS), School of Life Sciences—LifeNet and the Center for Biological Signalling Studies (BIOSS), by grants DE 1757/2-1 from the German Research Foundation, DFG, and through GerontoSys II—NephAge (031 5896 A) from the German Ministry for Education and Research, BMBF.


  1. Agard NJ, Wells JA (2009) Methods for the proteomic identification of protease substrates. Curr Opin Chem Biol 13:503–509PubMedCentralPubMedGoogle Scholar
  2. Agard NJ, Maltby D, Wells JA (2010) Inflammatory stimuli regulate caspase substrate profiles. Mol Cell Proteomics 9:880–893PubMedGoogle Scholar
  3. Agarraberes FA, Terlecky SR, Dice JF (1997) An intralysosomal hsp70 is required for a selective pathway of lysosomal protein degradation. J Cell Biol 137:825–834PubMedGoogle Scholar
  4. Akimov V, Rigbolt KT, Nielsen MM, Blagoev B (2011) Characterization of ubiquitination dependent dynamics in growth factor receptor signaling by quantitative proteomics. Mol Biosyst 7(12):3223–3233PubMedGoogle Scholar
  5. Arnesen T, Van Damme P, Polevoda B, Helsens K, Evjenth R, Colaert N, Varhaug JE, Vandekerckhove J, Lillehaug JR, Sherman F et al (2009) Proteomics analyses reveal the evolutionary conservation and divergence of N-terminal acetyltransferases from yeast and humans. Proc Natl Acad Sci U S A 106:8157–8162PubMedCentralPubMedGoogle Scholar
  6. Arntzen MO, Thiede B (2012) ApoptoProteomics, an integrated database for analysis of proteomics data obtained from apoptotic cells. Mol Cell Proteomics 11(M111):010447PubMedGoogle Scholar
  7. Attaix D, Combaret L, Pouch MN, Taillandier D (2001) Regulation of proteolysis. Curr Opin Clin Nutr Metab Care 4:45–49PubMedGoogle Scholar
  8. auf dem Keller U, Schilling O (2010) Proteomic techniques and activity-based probes for the system-wide study of proteolysis. Biochimie 92:1705–1714Google Scholar
  9. auf dem Keller U, Prudova A, Gioia M, Butler GS, Overall CM (2010) A statistics-based platform for quantitative N-terminome analysis and identification of protease cleavage products. Mol Cell Proteomics 9:912–927Google Scholar
  10. Beau I, Esclatine A, Codogno P (2008) Lost to translation: when autophagy targets mature ribosomes. Trends Cell Biol 18:311–314PubMedGoogle Scholar
  11. Becker-Pauly C, Barre O, Schilling O, auf dem Keller U, Ohler A, Broder C, Schutte A, Kappelhoff R, Stocker W, Overall CM (2011) Proteomic analyses reveal an acidic prime side specificity for the astacin metalloprotease family reflected by physiological substrates. Mol Cell Proteomics 10(M111):009233PubMedGoogle Scholar
  12. Behrends C, Sowa ME, Gygi SP, Harper JW (2010) Network organization of the human autophagy system. Nature 466:68–76PubMedCentralPubMedGoogle Scholar
  13. Berger AB, Witte MD, Denault JB, Sadaghiani AM, Sexton KM, Salvesen GS, Bogyo M (2006) Identification of early intermediates of caspase activation using selective inhibitors and activity-based probes. Mol Cell 23:509–521PubMedGoogle Scholar
  14. Bernales S, McDonald KL, Walter P (2006) Autophagy counterbalances endoplasmic reticulum expansion during the unfolded protein response. PLoS Biol 4:e423PubMedCentralPubMedGoogle Scholar
  15. Biniossek ML, Nagler DK, Becker-Pauly C, Schilling O (2011) Proteomic identification of protease cleavage sites characterizes prime and non-prime specificity of cysteine cathepsins B, L, and S. J Proteome Res 10:5363–5373PubMedGoogle Scholar
  16. Bitoun E, Micheloni A, Lamant L, Bonnart C, Tartaglia-Polcini A, Cobbold C, Al Saati T, Mariotti F, Mazereeuw-Hautier J, Boralevi F et al (2003) LEKTI proteolytic processing in human primary keratinocytes, tissue distribution and defective expression in Netherton syndrome. Hum Mol Genet 12:2417–2430PubMedGoogle Scholar
  17. Blair JA, Rauh D, Kung C, Yun CH, Fan QW, Rode H, Zhang C, Eck MJ, Weiss WA, Shokat KM (2007) Structure-guided development of affinity probes for tyrosine kinases using chemical genetics. Nat Chem Biol 3:229–238PubMedGoogle Scholar
  18. Blum G (2008) Use of fluorescent imaging to investigate pathological protease activity. Curr Opin Drug Discov Devel 11:708–716PubMedGoogle Scholar
  19. Blum G, Mullins SR, Keren K, Fonovic M, Jedeszko C, Rice MJ, Sloane BF, Bogyo M (2005) Dynamic imaging of protease activity with fluorescently quenched activity-based probes. Nat Chem Biol 1:203–209PubMedGoogle Scholar
  20. Blum G, von Degenfeld G, Merchant MJ, Blau HM, Bogyo M (2007) Noninvasive optical imaging of cysteine protease activity using fluorescently quenched activity-based probes. Nat Chem Biol 3:668–677PubMedGoogle Scholar
  21. Boisvert FM, Ahmad Y, Gierlinski M, Charriere F, Lamond D, Scott M, Barton G, Lamond AI (2012) A quantitative spatial proteomics analysis of proteome turnover in human cells. Mol Cell Proteomics 11(3):M111.011429PubMedGoogle Scholar
  22. Buschmann T, Lerner D, Lee CG, Ronai Z (2001) The Mdm-2 amino terminus is required for Mdm2 binding and SUMO-1 conjugation by the E2 SUMO-1 conjugating enzyme Ubc9. J Biol Chem 276:40389–40395PubMedGoogle Scholar
  23. Butler GS, Overall CM (2009) Updated biological roles for matrix metalloproteinases and new “intracellular” substrates revealed by degradomics. Biochemistry 48:10830–10845PubMedGoogle Scholar
  24. Butler GS, Butler MJ, Atkinson SJ, Will H, Tamura T, Schade van Westrum S, Crabbe T, Clements J, d’Ortho MP, Murphy G (1998) The TIMP2 membrane type 1 metalloproteinase “receptor” regulates the concentration and efficient activation of progelatinase A. A kinetic study. J Biol Chem 273:871–880PubMedGoogle Scholar
  25. Cardoso CM, Groth-Pedersen L, Hoyer-Hansen M, Kirkegaard T, Corcelle E, Andersen JS, Jaattela M, Nylandsted J (2009) Depletion of kinesin 5B affects lysosomal distribution and stability and induces peri-nuclear accumulation of autophagosomes in cancer cells. PLoS One 4:e4424PubMedCentralPubMedGoogle Scholar
  26. Chan EW, Chattopadhaya S, Panicker RC, Huang X, Yao SQ (2004) Developing photoactive affinity probes for proteomic profiling: hydroxamate-based probes for metalloproteases. J Am Chem Soc 126:14435–14446PubMedGoogle Scholar
  27. Chan CP, Mak TY, Chin KT, Ng IO, Jin DY (2010) N-linked glycosylation is required for optimal proteolytic activation of membrane-bound transcription factor CREB-H. J Cell Sci 123:1438–1448PubMedGoogle Scholar
  28. Chavanas S, Bodemer C, Rochat A, Hamel-Teillac D, Ali M, Irvine AD, Bonafe JL, Wilkinson J, Taieb A, Barrandon Y et al (2000) Mutations in SPINK5, encoding a serine protease inhibitor, cause Netherton syndrome. Nat Genet 25:141–142PubMedGoogle Scholar
  29. Chitra S, Nalini G, Rajasekhar G (2012) The ubiquitin proteasome system and efficacy of proteasome inhibitors in diseases. Int J Rheum Dis 15:249–260PubMedGoogle Scholar
  30. Choudhary C, Kumar C, Gnad F, Nielsen ML, Rehman M, Walther TC, Olsen JV, Mann M (2009) Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science 325:834–840PubMedGoogle Scholar
  31. Ciechanover A (2005) Proteolysis: from the lysosome to ubiquitin and the proteasome. Nat Rev Mol Cell Biol 6:79–87PubMedGoogle Scholar
  32. Ciechanover A (2006) The ubiquitin proteolytic system: from an idea to the patient bed. Proc Am Thorac Soc 3:21–31PubMedGoogle Scholar
  33. Ciechanover A, Elias S, Heller H, Ferber S, Hershko A (1980) Characterization of the heat-stable polypeptide of the ATP-dependent proteolytic system from reticulocytes. J Biol Chem 255:7525–7528PubMedGoogle Scholar
  34. Conus S, Simon HU (2010) Cathepsins and their involvement in immune responses. Swiss Med Wkly 140:w13042PubMedGoogle Scholar
  35. Coux O, Tanaka K, Goldberg AL (1996) Structure and functions of the 20S and 26S proteasomes. Annu Rev Biochem 65:801–847PubMedGoogle Scholar
  36. Cox J, Mann M (2007) Is proteomics the new genomics? Cell 130:395–398PubMedGoogle Scholar
  37. Crawford ED, Wells JA (2011) Caspase substrates and cellular remodeling. Annu Rev Biochem 80:1055–1087PubMedGoogle Scholar
  38. Cuervo AM, Dice JF, Knecht E (1997) A population of rat liver lysosomes responsible for the selective uptake and degradation of cytosolic proteins. J Biol Chem 272:5606–5615PubMedGoogle Scholar
  39. De Duve C, Gianetto R, Appelmans F, Wattiaux R (1953) Enzymic content of the mitochondria fraction. Nature 172:1143–1144Google Scholar
  40. de Godoy LM, Olsen JV, de Souza GA, Li G, Mortensen P, Mann M (2006) Status of complete proteome analysis by mass spectrometry: SILAC labeled yeast as a model system. Genome Biol 7:R50PubMedCentralPubMedGoogle Scholar
  41. Debigare R, Price SR (2003) Proteolysis, the ubiquitin-proteasome system, and renal diseases. Am J Physiol Renal Physiol 285:F1–F8PubMedGoogle Scholar
  42. Dengjel J, Hoyer-Hansen M, Nielsen MO, Eisenberg T, Harder LM, Schandorff S, Farkas T, Kirkegaard T, Becker AC, Schroeder S et al (2012) Identification of autophagosome-associated proteins and regulators by quantitative proteomic analysis and genetic screens. Mol Cell Proteomics 11(M111):014035PubMedGoogle Scholar
  43. Deu E, Verdoes M, Bogyo M (2012) New approaches for dissecting protease functions to improve probe development and drug discovery. Nat Struct Mol Biol 19:9–16PubMedCentralPubMedGoogle Scholar
  44. Ding B, Sun Y, Huang J (2012) Overexpression of SKI oncoprotein leads to p53 degradation through regulation of MDM2 protein sumoylation. J Biol Chem 287:14621–14630PubMedGoogle Scholar
  45. Dix MM, Simon GM, Cravatt BF (2008) Global mapping of the topography and magnitude of proteolytic events in apoptosis. Cell 134:679–691PubMedCentralPubMedGoogle Scholar
  46. Dix MM, Simon GM, Wang C, Okerberg E, Patricelli MP, Cravatt BF (2012) Functional interplay between caspase cleavage and phosphorylation sculpts the apoptotic proteome. Cell 150:426–440PubMedCentralPubMedGoogle Scholar
  47. Dong J, Atwood CS, Anderson VE, Siedlak SL, Smith MA, Perry G, Carey PR (2003) Metal binding and oxidation of amyloid-beta within isolated senile plaque cores: Raman microscopic evidence. Biochemistry 42:2768–2773PubMedGoogle Scholar
  48. Doucet A, Overall CM (2008) Protease proteomics: revealing protease in vivo functions using systems biology approaches. Mol Aspects Med 29:339–358PubMedGoogle Scholar
  49. Doucet A, Butler GS, Rodriguez D, Prudova A, Overall CM (2008) Metadegradomics: toward in vivo quantitative degradomics of proteolytic post-translational modifications of the cancer proteome. Mol Cell Proteomics 7:1925–1951PubMedGoogle Scholar
  50. Drag M, Salvesen GS (2010) Emerging principles in protease-based drug discovery. Nat Rev Drug Discov 9:690–701PubMedCentralPubMedGoogle Scholar
  51. Drews O, Wildgruber R, Zong C, Sukop U, Nissum M, Weber G, Gomes AV, Ping P (2007) Mammalian proteasome subpopulations with distinct molecular compositions and proteolytic activities. Mol Cell Proteomics 6:2021–2031PubMedGoogle Scholar
  52. Dubin G (2005) Proteinaceous cysteine protease inhibitors. Cell Mol Life Sci 62:653–669PubMedGoogle Scholar
  53. Dunn WA Jr, Cregg JM, Kiel JA, van der Klei IJ, Oku M, Sakai Y, Sibirny AA, Stasyk OV, Veenhuis M (2005) Pexophagy: the selective autophagy of peroxisomes. Autophagy 1:75–83PubMedGoogle Scholar
  54. Edgington LE, Berger AB, Blum G, Albrow VE, Paulick MG, Lineberry N, Bogyo M (2009) Noninvasive optical imaging of apoptosis by caspase-targeted activity-based probes. Nat Med 15:967–973PubMedCentralPubMedGoogle Scholar
  55. Edgington LE, van Raam BJ, Verdoes M, Wierschem C, Salvesen GS, Bogyo M (2012) An optimized activity-based probe for the study of caspase-6 activation. Chem Biol 19:340–352PubMedCentralPubMedGoogle Scholar
  56. Elias JE, Gygi SP (2007) Target-decoy search strategy for increased confidence in large-scale protein identifications by mass spectrometry. Nat Methods 4:207–214PubMedGoogle Scholar
  57. Engelke R, Becker AC, Dengjel J (2012) The degradative inventory of the cell: proteomic insights. Antioxid Redox Signal 17:803–812PubMedGoogle Scholar
  58. Enoksson M, Li J, Ivancic MM, Timmer JC, Wildfang E, Eroshkin A, Salvesen GS, Tao WA (2007) Identification of proteolytic cleavage sites by quantitative proteomics. J Proteome Res 6:2850–2858PubMedGoogle Scholar
  59. Etlinger JD, Goldberg AL (1977) A soluble ATP-dependent proteolytic system responsible for the degradation of abnormal proteins in reticulocytes. Proc Natl Acad Sci U S A 74:54–58PubMedCentralPubMedGoogle Scholar
  60. Fenn JB, Mann M, Meng CK, Wong SF, Whitehouse CM (1989) Electrospray ionization for mass spectrometry of large biomolecules. Science 246:64–71PubMedGoogle Scholar
  61. Fonovic M, Bogyo M (2007) Activity based probes for proteases: applications to biomarker discovery, molecular imaging and drug screening. Curr Pharm Des 13:253–261PubMedGoogle Scholar
  62. Franch HA, Sooparb S, Du J, Brown NS (2001) A mechanism regulating proteolysis of specific proteins during renal tubular cell growth. J Biol Chem 276:19126–19131PubMedGoogle Scholar
  63. Gafni J, Ellerby LM (2002) Calpain activation in Huntington’s disease. J Neurosci 22:4842–4849PubMedGoogle Scholar
  64. Gafni J, Hermel E, Young JE, Wellington CL, Hayden MR, Ellerby LM (2004) Inhibition of calpain cleavage of huntingtin reduces toxicity: accumulation of calpain/caspase fragments in the nucleus. J Biol Chem 279:20211–20220PubMedGoogle Scholar
  65. Gallien S, Duriez E, Crone C, Kellmann M, Moehring T, Domon B (2012) Targeted proteomic quantification on quadrupole-orbitrap mass spectrometer. Mol Cell Proteomics 11(12):1709–1723PubMedGoogle Scholar
  66. Gao W, Kang JH, Liao Y, Ding WX, Gambotto AA, Watkins SC, Liu YJ, Stolz DB, Yin XM (2010) Biochemical isolation and characterization of the tubulovesicular LC3-positive autophagosomal compartment. J Biol Chem 285:1371–1383PubMedGoogle Scholar
  67. Garcia-Verdugo I, Descamps D, Chignard M, Touqui L, Sallenave JM (2010) Lung protease/anti-protease network and modulation of mucus production and surfactant activity. Biochimie 92:1608–1617PubMedGoogle Scholar
  68. Geng M, Zhang X, Bina M, Regnier F (2001) Proteomics of glycoproteins based on affinity selection of glycopeptides from tryptic digests. J Chromatogr B Biomed Sci Appl 752:293–306PubMedGoogle Scholar
  69. Gevaert K, Goethals M, Martens L, Van Damme J, Staes A, Thomas GR, Vandekerckhove J (2003) Exploring proteomes and analyzing protein processing by mass spectrometric identification of sorted N-terminal peptides. Nat Biotechnol 21:566–569PubMedGoogle Scholar
  70. Gevaert K, Van Damme P, Ghesquiere B, Impens F, Martens L, Helsens K, Vandekerckhove J (2007) A la carte proteomics with an emphasis on gel-free techniques. Proteomics 7:2698–2718PubMedGoogle Scholar
  71. Glondu M, Liaudet-Coopman E, Derocq D, Platet N, Rochefort H, Garcia M (2002) Down-regulation of cathepsin-D expression by antisense gene transfer inhibits tumor growth and experimental lung metastasis of human breast cancer cells. Oncogene 21:5127–5134PubMedGoogle Scholar
  72. Goldberg AL, Stein R, Adams J (1995) New insights into proteasome function: from archaebacteria to drug development. Chem Biol 2:503–508PubMedGoogle Scholar
  73. Goldberg YP, Nicholson DW, Rasper DM, Kalchman MA, Koide HB, Graham RK, Bromm M, Kazemi-Esfarjani P, Thornberry NA, Vaillancourt JP et al (1996) Cleavage of huntingtin by apopain, a proapoptotic cysteine protease, is modulated by the polyglutamine tract. Nat Genet 13:442–449PubMedGoogle Scholar
  74. Greenbaum D, Medzihradszky KF, Burlingame A, Bogyo M (2000) Epoxide electrophiles as activity-dependent cysteine protease profiling and discovery tools. Chem Biol 7:569–581PubMedGoogle Scholar
  75. Gygi SP, Rist B, Gerber SA, Turecek F, Gelb MH, Aebersold R (1999) Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat Biotechnol 17:994–999PubMedGoogle Scholar
  76. Hagel M, Niu D, St Martin T, Sheets MP, Qiao L, Bernard H, Karp RM, Zhu Z, Labenski MT, Chaturvedi P et al (2011) Selective irreversible inhibition of a protease by targeting a noncatalytic cysteine. Nat Chem Biol 7:22–24PubMedGoogle Scholar
  77. Hartig W, Goldhammer S, Bauer U, Wegner F, Wirths O, Bayer TA, Grosche J (2010) Concomitant detection of beta-amyloid peptides with N-terminal truncation and different C-terminal endings in cortical plaques from cases with Alzheimer’s disease, senile monkeys and triple transgenic mice. J Chem Neuroanat 40:82–92PubMedGoogle Scholar
  78. Hay RT (2005) SUMO: a history of modification. Mol Cell 18:1–12PubMedGoogle Scholar
  79. Hedrich J, Lottaz D, Meyer K, Yiallouros I, Jahnen-Dechent W, Stocker W, Becker-Pauly C (2010) Fetuin-A and cystatin C are endogenous inhibitors of human meprin metalloproteases. Biochemistry 49:8599–8607PubMedGoogle Scholar
  80. Helsens K, Timmerman E, Vandekerckhove J, Gevaert K, Martens L (2008) Peptizer, a tool for assessing false positive peptide identifications and manually validating selected results. Mol Cell Proteomics 7:2364–2372PubMedGoogle Scholar
  81. Helsens K, Martens L, Vandekerckhove J, Gevaert K (2011) Mass spectrometry-driven proteomics: an introduction. Methods Mol Biol 753:1–27PubMedGoogle Scholar
  82. Henriksen P, Wagner SA, Weinert BT, Sharma S, Bacinskaja G, Rehman M, Juffer AH, Walther TC, Lisby M, Choudhary C (2012) Proteome-wide analysis of lysine acetylation suggests its broad regulatory scope in Saccharomyces cerevisiae. Mol Cell Proteomics 11(11):1510–1522PubMedGoogle Scholar
  83. Herrmann JL, O’Gaora P, Gallagher A, Thole JE, Young DB (1996) Bacterial glycoproteins: a link between glycosylation and proteolytic cleavage of a 19 kDa antigen from Mycobacterium tuberculosis. EMBO J 15:3547–3554PubMedGoogle Scholar
  84. Higdon R, Kolker E (2007) A predictive model for identifying proteins by a single peptide match. Bioinformatics 23:277–280PubMedGoogle Scholar
  85. Hinkson IV, Elias JE (2011) The dynamic state of protein turnover: it’s about time. Trends Cell Biol 21:293–303PubMedGoogle Scholar
  86. Hock A, Vousden KH (2010) Regulation of the p53 pathway by ubiquitin and related proteins. Int J Biochem Cell Biol 42:1618–1621PubMedGoogle Scholar
  87. Hsiao CC, Cheng KF, Chen HY, Chou YH, Stacey M, Chang GW, Lin HH (2009) Site-specific N-glycosylation regulates the GPS auto-proteolysis of CD97. FEBS Lett 583:3285–3290PubMedGoogle Scholar
  88. Hu L, Roth JM, Brooks P, Luty J, Karpatkin S (2008) Thrombin up-regulates cathepsin D which enhances angiogenesis, growth, and metastasis. Cancer Res 68:4666–4673PubMedGoogle Scholar
  89. Huesgen PF, Overall CM (2012) N- and C-terminal degradomics: new approaches to reveal biological roles for plant proteases from substrate identification. Physiol Plant 145:5–17PubMedGoogle Scholar
  90. Impens F, Van Damme P, Demol H, Van Damme J, Vandekerckhove J, Gevaert K (2008) Mechanistic insight into taxol-induced cell death. Oncogene 27:4580–4591PubMedGoogle Scholar
  91. Impens F, Colaert N, Helsens K, Plasman K, Van Damme P, Vandekerckhove J, Gevaert K (2010) MS-driven protease substrate degradomics. Proteomics 10:1284–1296PubMedGoogle Scholar
  92. Imperiali B, O’Connor SE (1999) Effect of N-linked glycosylation on glycopeptide and glycoprotein structure. Curr Opin Chem Biol 3:643–649PubMedGoogle Scholar
  93. Jakoby T, van den Berg BH, Tholey A (2012) Quantitative protease cleavage site profiling using tandem-mass-tag labeling and LC-MALDI-TOF/TOF MS/MS analysis. J Proteome Res 11:1812–1820PubMedGoogle Scholar
  94. Jayakumar A, Kang Y, Mitsudo K, Henderson Y, Frederick MJ, Wang M, El-Naggar AK, Marx UC, Briggs K, Clayman GL (2004) Expression of LEKTI domains 6-9' in the baculovirus expression system: recombinant LEKTI domains 6-9' inhibit trypsin and subtilisin A. Protein Expr Purif 35:93–101PubMedGoogle Scholar
  95. Jayapal KP, Sui S, Philp RJ, Kok YJ, Yap MG, Griffin TJ, Hu WS (2010) Multitagging proteomic strategy to estimate protein turnover rates in dynamic systems. J Proteome Res 9:2087–2097PubMedGoogle Scholar
  96. Jefferson T, Causevic M, auf dem Keller U, Schilling O, Isbert S, Geyer R, Maier W, Tschickardt S, Jumpertz T, Weggen S et al (2011) Metalloprotease meprin beta generates nontoxic N-terminal amyloid precursor protein fragments in vivo. J Biol Chem 286:27741–27750PubMedGoogle Scholar
  97. Johansen T, Lamark T (2011) Selective autophagy mediated by autophagic adapter proteins. Autophagy 7:279–296PubMedGoogle Scholar
  98. Joyce JA, Baruch A, Chehade K, Meyer-Morse N, Giraudo E, Tsai FY, Greenbaum DC, Hager JH, Bogyo M, Hanahan D (2004) Cathepsin cysteine proteases are effectors of invasive growth and angiogenesis during multistage tumorigenesis. Cancer Cell 5:443–453PubMedGoogle Scholar
  99. Kalchman MA, Graham RK, Xia G, Koide HB, Hodgson JG, Graham KC, Goldberg YP, Gietz RD, Pickart CM, Hayden MR (1996) Huntingtin is ubiquitinated and interacts with a specific ubiquitin-conjugating enzyme. J Biol Chem 271:19385–19394PubMedGoogle Scholar
  100. Kamath KS, Vasavada MS, Srivastava S (2011) Proteomic databases and tools to decipher post-translational modifications. J Proteomics 75:127–144PubMedGoogle Scholar
  101. Keller A, Nesvizhskii AI, Kolker E, Aebersold R (2002) Empirical statistical model to estimate the accuracy of peptide identifications made by MS/MS and database search. Anal Chem 74:5383–5392PubMedGoogle Scholar
  102. Kessler BM, Tortorella D, Altun M, Kisselev AF, Fiebiger E, Hekking BG, Ploegh HL, Overkleeft HS (2001) Extended peptide-based inhibitors efficiently target the proteasome and reveal overlapping specificities of the catalytic beta-subunits. Chem Biol 8:913–929PubMedGoogle Scholar
  103. Kidd D, Liu Y, Cravatt BF (2001) Profiling serine hydrolase activities in complex proteomes. Biochemistry 40:4005–4015PubMedGoogle Scholar
  104. Kim YJ, Yi Y, Sapp E, Wang Y, Cuiffo B, Kegel KB, Qin ZH, Aronin N, DiFiglia M (2001) Caspase 3-cleaved N-terminal fragments of wild-type and mutant huntingtin are present in normal and Huntington’s disease brains, associate with membranes, and undergo calpain-dependent proteolysis. Proc Natl Acad Sci U S A 98:12784–12789PubMedCentralPubMedGoogle Scholar
  105. Kim I, Rodriguez-Enriquez S, Lemasters JJ (2007) Selective degradation of mitochondria by mitophagy. Arch Biochem Biophys 462:245–253PubMedCentralPubMedGoogle Scholar
  106. Kim W, Bennett EJ, Huttlin EL, Guo A, Li J, Possemato A, Sowa ME, Rad R, Rush J, Comb MJ et al (2011) Systematic and quantitative assessment of the ubiquitin-modified proteome. Mol Cell 44:325–340PubMedCentralPubMedGoogle Scholar
  107. King RW, Deshaies RJ, Peters JM, Kirschner MW (1996) How proteolysis drives the cell cycle. Science 274:1652–1659PubMedGoogle Scholar
  108. Kleifeld O, Doucet A, Prudova A, Schilling O, Kainthan RK, Starr AE, Foster LJ, Kizhakkedathu JN, Overall CM (2010) Isotopic labeling of terminal amines in complex samples identifies protein N-termini and protease cleavage products. Nat Biotechnol 28:281–288PubMedGoogle Scholar
  109. Klemencic I, Carmona AK, Cezari MH, Juliano MA, Juliano L, Guncar G, Turk D, Krizaj I, Turk V, Turk B (2000) Biochemical characterization of human cathepsin X revealed that the enzyme is an exopeptidase, acting as carboxymonopeptidase or carboxydipeptidase. Eur J Biochem 267:5404–5412PubMedGoogle Scholar
  110. Komander D, Rape M (2012) The ubiquitin code. Annu Rev Biochem 81:203–229PubMedGoogle Scholar
  111. Kraft C, Deplazes A, Sohrmann M, Peter M (2008) Mature ribosomes are selectively degraded upon starvation by an autophagy pathway requiring the Ubp3p/Bre5p ubiquitin protease. Nat Cell Biol 10:602–610PubMedGoogle Scholar
  112. Kristensen AR, Schandorff S, Hoyer-Hansen M, Nielsen MO, Jaattela M, Dengjel J, Andersen JS (2008) Ordered organelle degradation during starvation-induced autophagy. Mol Cell Proteomics 7:2419–2428PubMedGoogle Scholar
  113. Kumar S, Rezaei-Ghaleh N, Terwel D, Thal DR, Richard M, Hoch M, Mc Donald JM, Wullner U, Glebov K, Heneka MT et al (2011) Extracellular phosphorylation of the amyloid beta-peptide promotes formation of toxic aggregates during the pathogenesis of Alzheimer’s disease. EMBO J 30:2255–2265PubMedGoogle Scholar
  114. Kuo YM, Emmerling MR, Woods AS, Cotter RJ, Roher AE (1997) Isolation, chemical characterization, and quantitation of A beta 3-pyroglutamyl peptide from neuritic plaques and vascular amyloid deposits. Biochem Biophys Res Commun 237:188–191PubMedGoogle Scholar
  115. Kuo YM, Webster S, Emmerling MR, De Lima N, Roher AE (1998) Irreversible dimerization/tetramerization and post-translational modifications inhibit proteolytic degradation of A beta peptides of Alzheimer’s disease. Biochim Biophys Acta 1406:291–298PubMedGoogle Scholar
  116. Kurokawa M, Kornbluth S (2009) Caspases and kinases in a death grip. Cell 138:838–854PubMedCentralPubMedGoogle Scholar
  117. LaFevre-Bernt MA, Ellerby LM (2003) Kennedy’s disease. Phosphorylation of the polyglutamine-expanded form of androgen receptor regulates its cleavage by caspase-3 and enhances cell death. J Biol Chem 278:34918–34924PubMedGoogle Scholar
  118. Lange PF, Overall CM (2011) TopFIND, a knowledgebase linking protein termini with function. Nat Methods 8:703–704PubMedGoogle Scholar
  119. Lange PF, Huesgen PF, Overall CM (2012) TopFIND 2.0–linking protein termini with proteolytic processing and modifications altering protein function. Nucleic Acids Res 40:D351–D361PubMedCentralPubMedGoogle Scholar
  120. Langsford ML, Gilkes NR, Singh B, Moser B, Miller RC Jr, Warren RA, Kilburn DG (1987) Glycosylation of bacterial cellulases prevents proteolytic cleavage between functional domains. FEBS Lett 225:163–167PubMedGoogle Scholar
  121. Laurent-Matha V, Huesgen PF, Masson O, Derocq D, Prebois C, Gary-Bobo M, Lecaille F, Rebiere B, Meurice G, Orear C et al (2012) Proteolysis of cystatin C by cathepsin D in the breast cancer microenvironment. FASEB J 26(12):5172–5181PubMedGoogle Scholar
  122. Le Magueresse-Battistoni B (2007) Serine proteases and serine protease inhibitors in testicular physiology: the plasminogen activation system. Reproduction 134:721–729PubMedGoogle Scholar
  123. Lee MH, Lee SW, Lee EJ, Choi SJ, Chung SS, Lee JI, Cho JM, Seol JH, Baek SH, Kim KI et al (2006) SUMO-specific protease SUSP4 positively regulates p53 by promoting Mdm2 self-ubiquitination. Nat Cell Biol 8:1424–1431PubMedGoogle Scholar
  124. Li W, Ding F, Zhang L, Liu Z, Wu Y, Luo A, Wu M, Wang M, Zhan Q, Liu Z (2005) Overexpression of stefin A in human esophageal squamous cell carcinoma cells inhibits tumor cell growth, angiogenesis, invasion, and metastasis. Clin Cancer Res 11:8753–8762PubMedGoogle Scholar
  125. List K, Kosa P, Szabo R, Bey AL, Wang CB, Molinolo A, Bugge TH (2009) Epithelial integrity is maintained by a matriptase-dependent proteolytic pathway. Am J Pathol 175:1453–1463PubMedGoogle Scholar
  126. Liu Y, Patricelli MP, Cravatt BF (1999) Activity-based protein profiling: the serine hydrolases. Proc Natl Acad Sci U S A 96:14694–14699PubMedCentralPubMedGoogle Scholar
  127. Lopez-Otin C, Hunter T (2010) The regulatory crosstalk between kinases and proteases in cancer. Nat Rev Cancer 10:278–292PubMedGoogle Scholar
  128. Lopez-Otin C, Overall CM (2002) Protease degradomics: a new challenge for proteomics. Nat Rev Mol Cell Biol 3:509–519PubMedGoogle Scholar
  129. Lunkes A, Lindenberg KS, Ben-Haiem L, Weber C, Devys D, Landwehrmeyer GB, Mandel JL, Trottier Y (2002) Proteases acting on mutant huntingtin generate cleaved products that differentially build up cytoplasmic and nuclear inclusions. Mol Cell 10:259–269PubMedGoogle Scholar
  130. Luo S, Vacher C, Davies JE, Rubinsztein DC (2005) Cdk5 phosphorylation of huntingtin reduces its cleavage by caspases: implications for mutant huntingtin toxicity. J Cell Biol 169:647–656PubMedGoogle Scholar
  131. Magert HJ, Standker L, Kreutzmann P, Zucht HD, Reinecke M, Sommerhoff CP, Fritz H, Forssmann WG (1999) LEKTI, a novel 15-domain type of human serine proteinase inhibitor. J Biol Chem 274:21499–21502PubMedGoogle Scholar
  132. Mahrus S, Trinidad JC, Barkan DT, Sali A, Burlingame AL, Wells JA (2008) Global sequencing of proteolytic cleavage sites in apoptosis by specific labeling of protein N termini. Cell 134:866–876PubMedCentralPubMedGoogle Scholar
  133. Mann M (2006) Functional and quantitative proteomics using SILAC. Nat Rev Mol Cell Biol 7:952–958PubMedGoogle Scholar
  134. Martin L, Latypova X, Terro F (2011) Post-translational modifications of tau protein: implications for Alzheimer’s disease. Neurochem Int 58:458–471PubMedGoogle Scholar
  135. McNulty DE, Annan RS (2008) Hydrophilic interaction chromatography reduces the complexity of the phosphoproteome and improves global phosphopeptide isolation and detection. Mol Cell Proteomics 7:971–980PubMedGoogle Scholar
  136. Mester G, Hoffmann V, Stevanovic S (2011) Insights into MHC class I antigen processing gained from large-scale analysis of class I ligands. Cell Mol Life Sci 68:1521–1532PubMedGoogle Scholar
  137. Millucci L, Ghezzi L, Bernardini G, Santucci A (2010) Conformations and biological activities of amyloid beta peptide 25-35. Curr Protein Pept Sci 11:54–67PubMedGoogle Scholar
  138. Miravalle L, Calero M, Takao M, Roher AE, Ghetti B, Vidal R (2005) Amino-terminally truncated Abeta peptide species are the main component of cotton wool plaques. Biochemistry 44:10810–10821PubMedGoogle Scholar
  139. Mitsudo K, Jayakumar A, Henderson Y, Frederick MJ, Kang Y, Wang M, El-Naggar AK, Clayman GL (2003) Inhibition of serine proteinases plasmin, trypsin, subtilisin A, cathepsin G, and elastase by LEKTI: a kinetic analysis. Biochemistry 42:3874–3881PubMedGoogle Scholar
  140. Miyauchi Y, Yogosawa S, Honda R, Nishida T, Yasuda H (2002) Sumoylation of Mdm2 by protein inhibitor of activated STAT (PIAS) and RanBP2 enzymes. J Biol Chem 277:50131–50136PubMedGoogle Scholar
  141. Mommen GP, van de Waterbeemd B, Meiring HD, Kersten G, Heck AJ, de Jong AP (2012) Unbiased selective isolation of protein N-terminal peptides from complex proteome samples using phospho tagging (PTAG) and TiO2-based depletion. Mol Cell Proteomics 11:832–842PubMedGoogle Scholar
  142. Mori H, Ishii K, Tomiyama T, Furiya Y, Sahara N, Asano S, Endo N, Shirasawa T, Takio K (1994) Racemization: its biological significance on neuropathogenesis of Alzheimer’s disease. Tohoku J Exp Med 174:251–262PubMedGoogle Scholar
  143. Morrissey JH (2012) Polyphosphate: a link between platelets, coagulation and inflammation. Int J Hematol 95:346–352PubMedCentralPubMedGoogle Scholar
  144. Murakami K, Uno M, Masuda Y, Shimizu T, Shirasawa T, Irie K (2008) Isomerization and/or racemization at Asp23 of Abeta42 do not increase its aggregative ability, neurotoxicity, and radical productivity in vitro. Biochem Biophys Res Commun 366:745–751PubMedGoogle Scholar
  145. Murphy G (2011) Tissue inhibitors of metalloproteinases. Genome Biol 12:233PubMedCentralPubMedGoogle Scholar
  146. Mutero A, Fournier D (1992) Post-translational modifications of Drosophila acetylcholinesterase. In vitro mutagenesis and expression in Xenopus oocytes. J Biol Chem 267:1695–1700PubMedGoogle Scholar
  147. Nakagawa H, Wakabayashi-Nakao K, Tamura A, Toyoda Y, Koshiba S, Ishikawa T (2009) Disruption of N-linked glycosylation enhances ubiquitin-mediated proteasomal degradation of the human ATP-binding cassette transporter ABCG2. FEBS J 276:7237–7252PubMedGoogle Scholar
  148. Nylandsted J, Becker AC, Bunkenborg J, Andersen JS, Dengjel J, Jaattela M (2011) ErbB2-associated changes in the lysosomal proteome. Proteomics 11:2830–2838PubMedGoogle Scholar
  149. Ong SE, Mann M (2005) Mass spectrometry-based proteomics turns quantitative. Nat Chem Biol 1:252–262PubMedGoogle Scholar
  150. Ong SE, Blagoev B, Kratchmarova I, Kristensen DB, Steen H, Pandey A, Mann M (2002) Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol Cell Proteomics 1:376–386PubMedGoogle Scholar
  151. Opdenakker G, Rudd PM, Ponting CP, Dwek RA (1993) Concepts and principles of glycobiology. FASEB J 7:1330–1337PubMedGoogle Scholar
  152. Ott I (2011) Inhibitors of the initiation of coagulation. Br J Clin Pharmacol 72:547–552PubMedGoogle Scholar
  153. Overall CM, Blobel CP (2007) In search of partners: linking extracellular proteases to substrates. Nat Rev Mol Cell Biol 8:245–257PubMedGoogle Scholar
  154. Overall CM, Dean RA (2006) Degradomics: systems biology of the protease web. Pleiotropic roles of MMPs in cancer. Cancer Metastasis Rev 25:69–75PubMedGoogle Scholar
  155. Pagano M, Tam SW, Theodoras AM, Beer-Romero P, Del Sal G, Chau V, Yew PR, Draetta GF, Rolfe M (1995) Role of the ubiquitin-proteasome pathway in regulating abundance of the cyclin-dependent kinase inhibitor p27. Science 269:682–685PubMedGoogle Scholar
  156. Paulick MG, Bogyo M (2008) Application of activity-based probes to the study of enzymes involved in cancer progression. Curr Opin Genet Dev 18:97–106PubMedCentralPubMedGoogle Scholar
  157. Peng J, Schwartz D, Elias JE, Thoreen CC, Cheng D, Marsischky G, Roelofs J, Finley D, Gygi SP (2003) A proteomics approach to understanding protein ubiquitination. Nat Biotechnol 21:921–926PubMedGoogle Scholar
  158. Picotti P, Aebersold R, Domon B (2007) The implications of proteolytic background for shotgun proteomics. Mol Cell Proteomics 6:1589–1598PubMedGoogle Scholar
  159. Picotti P, Bodenmiller B, Mueller LN, Domon B, Aebersold R (2009) Full dynamic range proteome analysis of S. cerevisiae by targeted proteomics. Cell 138:795–806PubMedCentralPubMedGoogle Scholar
  160. Poreba M, Drag M (2010) Current strategies for probing substrate specificity of proteases. Curr Med Chem 17:3968–3995PubMedGoogle Scholar
  161. Pratt JM, Petty J, Riba-Garcia I, Robertson DH, Gaskell SJ, Oliver SG, Beynon RJ (2002) Dynamics of protein turnover, a missing dimension in proteomics. Mol Cell Proteomics 1:579–591PubMedGoogle Scholar
  162. Price SR, Bailey JL, Wang X, Jurkovitz C, England BK, Ding X, Phillips LS, Mitch WE (1996) Muscle wasting in insulinopenic rats results from activation of the ATP-dependent, ubiquitin-proteasome proteolytic pathway by a mechanism including gene transcription. J Clin Invest 98:1703–1708PubMedCentralPubMedGoogle Scholar
  163. Prudova A, auf dem Keller U, Butler GS, Overall CM (2010) Multiplex N-terminome analysis of MMP-2 and MMP-9 substrate degradomes by iTRAQ-TAILS quantitative proteomics. Mol Cell Proteomics 9:894–911PubMedGoogle Scholar
  164. Puente XS, Sanchez LM, Overall CM, Lopez-Otin C (2003) Human and mouse proteases: a comparative genomic approach. Nat Rev Genet 4:544–558PubMedGoogle Scholar
  165. Puri AW, Bogyo M (2009) Using small molecules to dissect mechanisms of microbial pathogenesis. ACS Chem Biol 4:603–616PubMedCentralPubMedGoogle Scholar
  166. Quesada V, Ordonez GR, Sanchez LM, Puente XS, Lopez-Otin C (2009) The Degradome database: mammalian proteases and diseases of proteolysis. Nucleic Acids Res 37:D239–D243PubMedCentralPubMedGoogle Scholar
  167. Rawlings ND, Morton FR, Barrett AJ (2006) MEROPS: the peptidase database. Nucleic Acids Res 34:D270–D272PubMedCentralPubMedGoogle Scholar
  168. Rawlings ND, Barrett AJ, Bateman A (2010) MEROPS: the peptidase database. Nucleic Acids Res 38:D227–D233PubMedCentralPubMedGoogle Scholar
  169. Reiser J, Adair B, Reinheckel T (2010) Specialized roles for cysteine cathepsins in health and disease. J Clin Invest 120:3421–3431PubMedCentralPubMedGoogle Scholar
  170. Rock KL, Goldberg AL (1999) Degradation of cell proteins and the generation of MHC class I-presented peptides. Annu Rev Immunol 17:739–779PubMedGoogle Scholar
  171. Romao S, Munz C (2011) Autophagy of pathogens alarms the immune system and participates in its effector functions. Swiss Med Wkly 141:w13198PubMedGoogle Scholar
  172. Ross PL, Huang YN, Marchese JN, Williamson B, Parker K, Hattan S, Khainovski N, Pillai S, Dey S, Daniels S et al (2004) Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol Cell Proteomics 3:1154–1169PubMedGoogle Scholar
  173. Rubinsztein DC, Carmichael J (2003) Huntington’s disease: molecular basis of neurodegeneration. Expert Rev Mol Med 5:1–21PubMedGoogle Scholar
  174. Saghatelian A, Jessani N, Joseph A, Humphrey M, Cravatt BF (2004) Activity-based probes for the proteomic profiling of metalloproteases. Proc Natl Acad Sci U S A 101:10000–10005PubMedCentralPubMedGoogle Scholar
  175. Saido TC, Iwatsubo T, Mann DM, Shimada H, Ihara Y, Kawashima S (1995) Dominant and differential deposition of distinct beta-amyloid peptide species, A beta N3(pE), in senile plaques. Neuron 14:457–466PubMedGoogle Scholar
  176. Saido TC, Yamao-Harigaya W, Iwatsubo T, Kawashima S (1996) Amino- and carboxyl-terminal heterogeneity of beta-amyloid peptides deposited in human brain. Neurosci Lett 215:173–176PubMedGoogle Scholar
  177. Sales KU, Masedunskas A, Bey AL, Rasmussen AL, Weigert R, List K, Szabo R, Overbeek PA, Bugge TH (2010) Matriptase initiates activation of epidermal pro-kallikrein and disease onset in a mouse model of Netherton syndrome. Nat Genet 42:676–683PubMedCentralPubMedGoogle Scholar
  178. Scheller J, Chalaris A, Garbers C, Rose-John S (2011) ADAM17: a molecular switch to control inflammation and tissue regeneration. Trends Immunol 32:380–387PubMedGoogle Scholar
  179. Schilling O, Overall CM (2008) Proteome-derived, database-searchable peptide libraries for identifying protease cleavage sites. Nat Biotechnol 26:685–694PubMedGoogle Scholar
  180. Schilling B, Gafni J, Torcassi C, Cong X, Row RH, LaFevre-Bernt MA, Cusack MP, Ratovitski T, Hirschhorn R, Ross CA et al (2006a) Huntingtin phosphorylation sites mapped by mass spectrometry. Modulation of cleavage and toxicity. J Biol Chem 281:23686–23697PubMedGoogle Scholar
  181. Schilling S, Lauber T, Schaupp M, Manhart S, Scheel E, Bohm G, Demuth HU (2006b) On the seeding and oligomerization of pGlu-amyloid peptides (in vitro). Biochemistry 45:12393–12399PubMedGoogle Scholar
  182. Schilling S, Zeitschel U, Hoffmann T, Heiser U, Francke M, Kehlen A, Holzer M, Hutter-Paier B, Prokesch M, Windisch M et al (2008) Glutaminyl cyclase inhibition attenuates pyroglutamate Abeta and Alzheimer’s disease-like pathology. Nat Med 14:1106–1111PubMedGoogle Scholar
  183. Schilling O, Barre O, Huesgen PF, Overall CM (2010) Proteome-wide analysis of protein carboxy termini: C terminomics. Nat Methods 7:508–511PubMedGoogle Scholar
  184. Schilling O, auf dem Keller U, Overall CM (2011a) Factor Xa subsite mapping by proteome-derived peptide libraries improved using WebPICS, a resource for proteomic identification of cleavage sites. Biol Chem 392:1031–1037PubMedGoogle Scholar
  185. Schilling O, Huesgen PF, Barre O, auf dem Keller U, Overall CM (2011b) Characterization of the prime and non-prime active site specificities of proteases by proteome-derived peptide libraries and tandem mass spectrometry. Nat Protoc 6:111–120PubMedGoogle Scholar
  186. Schilling O, Huesgen PF, Barre O, Overall CM (2011c) Identification and relative quantification of native and proteolytically generated protein C-termini from complex proteomes: C-terminome analysis. Methods Mol Biol 781:59–69PubMedGoogle Scholar
  187. Schmidt M, Haas W, Crosas B, Santamaria PG, Gygi SP, Walz T, Finley D (2005) The HEAT repeat protein Blm10 regulates the yeast proteasome by capping the core particle. Nat Struct Mol Biol 12:294–303PubMedGoogle Scholar
  188. Schwanhausser B, Busse D, Li N, Dittmar G, Schuchhardt J, Wolf J, Chen W, Selbach M (2011) Global quantification of mammalian gene expression control. Nature 473:337–342PubMedGoogle Scholar
  189. Sergeant N, Bombois S, Ghestem A, Drobecq H, Kostanjevecki V, Missiaen C, Wattez A, David JP, Vanmechelen E, Sergheraert C et al (2003) Truncated beta-amyloid peptide species in pre-clinical Alzheimer’s disease as new targets for the vaccination approach. J Neurochem 85:1581–1591PubMedGoogle Scholar
  190. Sevenich L, Schurigt U, Sachse K, Gajda M, Werner F, Muller S, Vasiljeva O, Schwinde A, Klemm N, Deussing J et al (2010) Synergistic antitumor effects of combined cathepsin B and cathepsin Z deficiencies on breast cancer progression and metastasis in mice. Proc Natl Acad Sci U S A 107:2497–2502PubMedCentralPubMedGoogle Scholar
  191. Shen A (2010) Allosteric regulation of protease activity by small molecules. Mol Biosyst 6:1431–1443PubMedGoogle Scholar
  192. Shimizu T, Watanabe A, Ogawara M, Mori H, Shirasawa T (2000) Isoaspartate formation and neurodegeneration in Alzheimer’s disease. Arch Biochem Biophys 381:225–234PubMedGoogle Scholar
  193. Shrikhande GV, Scali ST, da Silva CG, Damrauer SM, Csizmadia E, Putheti P, Matthey M, Arjoon R, Patel R, Siracuse JJ et al (2010) O-glycosylation regulates ubiquitination and degradation of the anti-inflammatory protein A20 to accelerate atherosclerosis in diabetic ApoE-null mice. PLoS One 5:e14240PubMedCentralPubMedGoogle Scholar
  194. Sieber SA, Niessen S, Hoover HS, Cravatt BF (2006) Proteomic profiling of metalloprotease activities with cocktails of active-site probes. Nat Chem Biol 2:274–281PubMedCentralPubMedGoogle Scholar
  195. Smith R, Johansen HT, Nilsen H, Haugen MH, Pettersen SJ, Maelandsmo GM, Abrahamson M, Solberg R (2012) Intra- and extracellular regulation of activity and processing of legumain by cystatin E/M. Biochimie 94(12):2590–2599PubMedGoogle Scholar
  196. Sokol JP, Schiemann WP (2004) Cystatin C antagonizes transforming growth factor beta signaling in normal and cancer cells. Mol Cancer Res 2:183–195PubMedGoogle Scholar
  197. Sorimachi H, Ishiura S, Suzuki K (1997) Structure and physiological function of calpains. Biochem J 328(Pt 3):721–732PubMedGoogle Scholar
  198. Speers AE, Cravatt BF (2009) Activity-based protein profiling (ABPP) and click chemistry (CC)-ABPP by MudPIT mass spectrometry. Curr Protoc Chem Biol 1:29–41PubMedCentralPubMedGoogle Scholar
  199. Staes A, Van Damme P, Helsens K, Demol H, Vandekerckhove J, Gevaert K (2008) Improved recovery of proteome-informative, protein N-terminal peptides by combined fractional diagonal chromatography (COFRADIC). Proteomics 8:1362–1370PubMedGoogle Scholar
  200. Steffan JS, Agrawal N, Pallos J, Rockabrand E, Trotman LC, Slepko N, Illes K, Lukacsovich T, Zhu YZ, Cattaneo E et al (2004) SUMO modification of Huntingtin and Huntington’s disease pathology. Science 304:100–104PubMedGoogle Scholar
  201. Strongin AY, Marmer BL, Grant GA, Goldberg GI (1993) Plasma membrane-dependent activation of the 72-kDa type IV collagenase is prevented by complex formation with TIMP-2. J Biol Chem 268:14033–14039PubMedGoogle Scholar
  202. Tanaka K, Waki H, Ido Y, Akita S, Yoshida Y (1988) Protein and polymer analyses up to m/z 100,000 by laser ionization time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 2:151–153Google Scholar
  203. Taylor AK, Wall R (1988) Selective removal of alpha heavy-chain glycosylation sites causes immunoglobulin A degradation and reduced secretion. Mol Cell Biol 8:4197–4203PubMedCentralPubMedGoogle Scholar
  204. Taylor RC, Cullen SP, Martin SJ (2008) Apoptosis: controlled demolition at the cellular level. Nat Rev Mol Cell Biol 9:231–241PubMedGoogle Scholar
  205. Tekirian TL, Saido TC, Markesbery WR, Russell MJ, Wekstein DR, Patel E, Geddes JW (1998) N-terminal heterogeneity of parenchymal and cerebrovascular Abeta deposits. J Neuropathol Exp Neurol 57:76–94PubMedGoogle Scholar
  206. Tholen S, Biniossek ML, Gessler AL, Muller S, Weisser J, Kizhakkedathu JN, Reinheckel T, Schilling O (2011) Contribution of cathepsin L to secretome composition and cleavage pattern of mouse embryonic fibroblasts. Biol Chem 392:961–971PubMedGoogle Scholar
  207. Tholen S, Biniossek ML, Gansz M, Ahrens TD, Schlimpert M, Kizhakkedathu JN, Reinheckel T, Schilling O (2013a) Double deficiency of cathepsins B and L results in massive secretome alterations and suggests a degradative cathepsin-MMP axis. Cell Mol Life Sci. doi: 10.1007/s00018-013-1406-1 PubMedGoogle Scholar
  208. Tholen S, Biniossek ML, Gansz M, Gomez-Auli A, Bengsch F, Noel A, Kizhakkedathu JN, Boerries M, Busch H, Reinheckel T, Schilling O (2013b) Deletion of cysteine cathepsins B or L yields differential impacts on murine skin proteome and degradome. Mol Cell Proteomics 12:611–625PubMedGoogle Scholar
  209. Thornberry NA, Peterson EP, Zhao JJ, Howard AD, Griffin PR, Chapman KT (1994) Inactivation of interleukin-1 beta converting enzyme by peptide (acyloxy)methyl ketones. Biochemistry 33:3934–3940PubMedGoogle Scholar
  210. Timmer JC, Enoksson M, Wildfang E, Zhu W, Igarashi Y, Denault JB, Ma Y, Dummitt B, Chang YH, Mast AE et al (2007) Profiling constitutive proteolytic events in vivo. Biochem J 407:41–48PubMedGoogle Scholar
  211. Timmer JC, Zhu W, Pop C, Regan T, Snipas SJ, Eroshkin AM, Riedl SJ, Salvesen GS (2009) Structural and kinetic determinants of protease substrates. Nat Struct Mol Biol 16:1101–1108PubMedGoogle Scholar
  212. Tolkovsky AM (2009) Mitophagy. Biochim Biophys Acta 1793:1508–1515PubMedGoogle Scholar
  213. Tomiyama T, Asano S, Furiya Y, Shirasawa T, Endo N, Mori H (1994) Racemization of Asp23 residue affects the aggregation properties of Alzheimer amyloid beta protein analogues. J Biol Chem 269:10205–10208PubMedGoogle Scholar
  214. Tseng A, Inuzuka H, Gao D, Singh A, Wei W (2008) Experimental approaches to investigate the proteasomal degradation pathways involved in regulation of apoptosis. Methods Enzymol 446:205–223PubMedGoogle Scholar
  215. Turk B, du Turk SA, Turk V (2012) Protease signalling: the cutting edge. EMBO J 31:1630–1643PubMedGoogle Scholar
  216. Van Damme P, Staes A, Bronsoms S, Helsens K, Colaert N, Timmerman E, Aviles FX, Vandekerckhove J, Gevaert K (2010) Complementary positional proteomics for screening substrates of endo- and exoproteases. Nat Methods 7:512–515PubMedGoogle Scholar
  217. Vande Walle L, Van Damme P, Lamkanfi M, Saelens X, Vandekerckhove J, Gevaert K, Vandenabeele P (2007) Proteome-wide Identification of HtrA2/Omi Substrates. J Proteome Res 6:1006–1015PubMedGoogle Scholar
  218. Varki A (1993) Biological roles of oligosaccharides: all of the theories are correct. Glycobiology 3:97–130PubMedGoogle Scholar
  219. Vasiljeva O, Papazoglou A, Kruger A, Brodoefel H, Korovin M, Deussing J, Augustin N, Nielsen BS, Almholt K, Bogyo M et al (2006) Tumor cell-derived and macrophage-derived cathepsin B promotes progression and lung metastasis of mammary cancer. Cancer Res 66:5242–5250PubMedGoogle Scholar
  220. Vigneswaran N, Wu J, Nagaraj N, James R, Zeeuwen P, Zacharias W (2006) Silencing of cystatin M in metastatic oral cancer cell line MDA-686Ln by siRNA increases cysteine proteinases and legumain activities, cell proliferation and in vitro invasion. Life Sci 78:898–907PubMedGoogle Scholar
  221. Wang CC, Bozdech Z, Liu CL, Shipway A, Backes BJ, Harris JL, Bogyo M (2003) Biochemical analysis of the 20 S proteasome of Trypanosoma brucei. J Biol Chem 278:15800–15808PubMedGoogle Scholar
  222. Wang B, Sun J, Kitamoto S, Yang M, Grubb A, Chapman HA, Kalluri R, Shi GP (2006) Cathepsin S controls angiogenesis and tumor growth via matrix-derived angiogenic factors. J Biol Chem 281:6020–6029PubMedGoogle Scholar
  223. Wang X, Guerrero C, Kaiser P, Huang L (2007) Proteomics of proteasome complexes and ubiquitinated proteins. Expert Rev Proteomics 4:649–665PubMedGoogle Scholar
  224. Weissman AM (2001) Themes and variations on ubiquitylation. Nat Rev Mol Cell Biol 2:169–178PubMedGoogle Scholar
  225. Wellington CL, Singaraja R, Ellerby L, Savill J, Roy S, Leavitt B, Cattaneo E, Hackam A, Sharp A, Thornberry N et al (2000) Inhibiting caspase cleavage of huntingtin reduces toxicity and aggregate formation in neuronal and nonneuronal cells. J Biol Chem 275:19831–19838PubMedGoogle Scholar
  226. Wellington CL, Ellerby LM, Gutekunst CA, Rogers D, Warby S, Graham RK, Loubser O, van Raamsdonk J, Singaraja R, Yang YZ et al (2002) Caspase cleavage of mutant huntingtin precedes neurodegeneration in Huntington’s disease. J Neurosci 22:7862–7872PubMedGoogle Scholar
  227. Wickner S, Maurizi MR, Gottesman S (1999) Posttranslational quality control: folding, refolding, and degrading proteins. Science 286:1888–1893PubMedGoogle Scholar
  228. Wild P, Farhan H, McEwan DG, Wagner S, Rogov VV, Brady NR, Richter B, Korac J, Waidmann O, Choudhary C et al (2011) Phosphorylation of the autophagy receptor optineurin restricts Salmonella growth. Science 333:228–233PubMedCentralPubMedGoogle Scholar
  229. Williams EB, Krishnaswamy S, Mann KG (1989) Zymogen/enzyme discrimination using peptide chloromethyl ketones. J Biol Chem 264:7536–7545PubMedGoogle Scholar
  230. Witze ES, Old WM, Resing KA, Ahn NG (2007) Mapping protein post-translational modifications with mass spectrometry. Nat Methods 4:798–806PubMedGoogle Scholar
  231. Wyss DF, Choi JS, Li J, Knoppers MH, Willis KJ, Arulanandam AR, Smolyar A, Reinherz EL, Wagner G (1995) Conformation and function of the N-linked glycan in the adhesion domain of human CD2. Science 269:1273–1278PubMedGoogle Scholar
  232. Xu G, Shin SB, Jaffrey SR (2009a) Global profiling of protease cleavage sites by chemoselective labeling of protein N-termini. Proc Natl Acad Sci U S A 106:19310–19315PubMedCentralPubMedGoogle Scholar
  233. Xu P, Duong DM, Seyfried NT, Cheng D, Xie Y, Robert J, Rush J, Hochstrasser M, Finley D, Peng J (2009b) Quantitative proteomics reveals the function of unconventional ubiquitin chains in proteasomal degradation. Cell 137:133–145PubMedCentralPubMedGoogle Scholar
  234. Xu G, Paige JS, Jaffrey SR (2010) Global analysis of lysine ubiquitination by ubiquitin remnant immunoaffinity profiling. Nat Biotechnol 28:868–873PubMedCentralPubMedGoogle Scholar
  235. Yang Z, Klionsky DJ (2010) Mammalian autophagy: core molecular machinery and signaling regulation. Curr Opin Cell Biol 22:124–131PubMedCentralPubMedGoogle Scholar
  236. Yong VW, Krekoski CA, Forsyth PA, Bell R, Edwards DR (1998) Matrix metalloproteinases and diseases of the CNS. Trends Neurosci 21:75–80PubMedGoogle Scholar
  237. Zeeuwen PL, van Vlijmen-Willems IM, Cheng T, Rodijk-Olthuis D, Hitomi K, Hara-Nishimura I, John S, Smyth N, Reinheckel T, Hendriks WJ et al (2010) The cystatin M/E-cathepsin L balance is essential for tissue homeostasis in epidermis, hair follicles, and cornea. FASEB J 24:3744–3755PubMedGoogle Scholar
  238. Zhang J, Shridhar R, Dai Q, Song J, Barlow SC, Yin L, Sloane BF, Miller FR, Meschonat C, Li BD et al (2004) Cystatin m: a novel candidate tumor suppressor gene for breast cancer. Cancer Res 64:6957–6964PubMedGoogle Scholar
  239. Zimmermann AC, Zarei M, Eiselein S, Dengjel J (2010) Quantitative proteomics for the analysis of spatio-temporal protein dynamics during autophagy. Autophagy 6:1009–1016PubMedGoogle Scholar
  240. Zogg T, Brandstetter H (2009) Activation mechanisms of coagulation factor IX. Biol Chem 390:391–400PubMedGoogle Scholar

Copyright information

© Springer-Verlag Wien 2013

Authors and Affiliations

  • Stefan Tholen
    • 1
    • 2
  • Maria Magdalena Koczorowska
    • 1
  • Zon Weng Lai
    • 1
  • Joern Dengjel
    • 3
    • 4
    • 5
  • Oliver Schilling
    • 6
    • 7
    Email author
  1. 1.Institute for Molecular Medicine and Cell ResearchUniversity of FreiburgFreiburgGermany
  2. 2.Faculty of BiologyUniversity of FreiburgFreiburgGermany
  3. 3.Freiburg Institute for Advanced Studies (FRIAS), School of Life Science-LifeNetUniversity of FreiburgFreiburgGermany
  4. 4.ZBSA Center for Biological Systems AnalysisUniversity of FreiburgFreiburgGermany
  5. 5.BIOSS Centre for Biological Signaling StudiesUniversity of FreiburgFreiburgGermany
  6. 6.Institute for Molecular Medicine and Cell ResearchUniversity of FreiburgFreiburgGermany
  7. 7.BIOSS Centre for Biological Signaling StudiesUniversity of FreiburgFreiburgGermany

Personalised recommendations