Advertisement

Multidisciplinary Approaches to Study O-Antigen: Antibody Recognition in Support of the Development of Synthetic Carbohydrate-Based Enteric Vaccines

  • François-Xavier Theillet
  • Pierre Chassagne
  • Muriel Delepierre
  • Armelle Phalipon
  • Laurence A. MulardEmail author
Chapter

Abstract

Enteric infections, including bacterium-induced diarrhoeal diseases, represent a major health burden worldwide. In developed countries, infectious diarrhoea contributes primarily to morbidity. It remains the second leading cause of death in children below 5 years of age living in the developing world (Cheng et al. 2005; You et al. 2010). It is anticipated that improved living conditions will contribute to diminish the transmission of enteric pathogens and lower the incidence of enteric diseases. In the meantime, the introduction of vaccines could play an active part in reducing the vulnerability of the target populations to the predominant enteric pathogens. Along this line, Shigella, ETEC, cholera, and typhoid fever were identified by WHO since the early 1990s as the highest bacterial disease priorities for the development of new or improved enteric vaccines. Substantial progress was made (Levine 2006). In this context, polysaccharide-based parenteral vaccines have been investigated with some success. The licensure of the purified capsular Vi polysaccharide against typhoid fever was an important achievement, especially since recent evidence of herd protection conferred by the vaccine has highlighted the benefit of large-scale use in endemic countries (Khan et al. 2010). Moreover, encouraging investigational studies on a Vi polysaccharide–protein conjugate vaccine, which could be introduced into the infant immunization schedule, were reported (Canh et al. 2004; Cui et al. 2010).

Keywords

Conjugate Vaccine Capsular Polysaccharide Immunodominant Epitope Glycoconjugate Vaccine Protein Conjugate Vaccine 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We wish to thank all the former and present collaborators who participated in our own V. cholerae and Shigella LPS-based vaccine programs. We warmly thank Prof. Philippe J. Sansonetti for his unfailing support and Dr. Marie-Aline Bloch for her trust in the SF2a project. L.M. is extremely grateful to Dr. Cornelis P.J. Glaudemans, Dr. Paul Kovac, Dr. John B. Robbins and Dr. Rachel Schneerson for their valuable role in instigating her interest for the field of synthetic OS-based vaccines.

Besides support from the Institut Pasteur, our work has been funded by the following agencies and fundations: NIH (to L.M.), Ministère Français de la Recherche, DGA, FRM, CANAM, KOSEF, ANR, Ms Frank Howard fellowship, Roux fellowship, Vasant & Kusum Joshi fellowship.

References

  1. Adams LB, Henk MC, Siebeling RJ (1988) Detection of Vibrio-cholerae with monoclonal-antibodies specific for serovar-O1 lipopolysaccharide. J Clin Microbiol 26:1801–1809PubMedGoogle Scholar
  2. Ahmed F, Andre-Leroux G, Haouz A, Boutonnier A, Delepierre M, Qadri F, Nato F, Fournier JM, Alzari PM (2008) Crystal structure of a monoclonal antibody directed against an antigenic determinant common to Ogawa and Inaba serotypes of Vibrio cholerae O1. Proteins 70:284–288PubMedCrossRefGoogle Scholar
  3. Allison GE, Verma NK (2000) Serotype-converting bacteriophages and O-antigen modification in Shigella flexneri. Trends Microbiol 8:17–23PubMedCrossRefGoogle Scholar
  4. Backinowsky LV, Gomtsyan AR, Byramova NE, Kochetkov NK, Yankina NF (1985) Synthesis of oligosaccharide fragments of Shigella-flexneri O-specific polysaccharide. 4. The synthesis of the trisaccharide Glc-α-1-3Rha-α-1-3Rha-α-OMe, and tetrasaccharides Rha-α-1-2(Glc-α-1-3)Rha-α-1-3Rha-α-OMe and GlcNAc-β-1-2Rha-α-1-2(Glc-α-1-3)Rha-α-OMe. Localization of the O-factor-V. Bioorg Khim 11:1562–1571Google Scholar
  5. Belot F, Guerreiro C, Baleux F, Mulard LA (2005) Synthesis of two linear PADRE conjugates bearing a deca- or pentadecasaccharide B epitope as potential synthetic vaccines against Shigella flexneri serotype 2a infection. Chem Eur J 11:1625–1635PubMedCrossRefGoogle Scholar
  6. Bock K, Josephson S, Bundle DR (1982) Lipopolysaccharide solution conformation – antigen shape inferred from high-resolution H-1 and C-13 nuclear magnetic-resonance spectroscopy and hard-sphere calculations. J Chem Soc Perkin Trans 2:59–70Google Scholar
  7. Borrelli S, Hossany RB, Pinto BM (2008) Immunological evidence for functional rather than structural mimicry by a Shigella flexneri Y polysaccharide-mimetic peptide. Clin Vaccine Immunol 15:1106–1114PubMedCrossRefGoogle Scholar
  8. Bougoudogo F, Vely F, Nato F, Boutonnier A, Gounon P, Mazie JC, Fournier JM (1995) Protective activities of serum immunoglobulin G on the mucosal surface to Vibrio cholerae O1. Bull Inst Pasteur 93:273–283CrossRefGoogle Scholar
  9. Boutet J, Mulard LA (2008) Synthesis of 2 tetra- and 4 pentasaccharide fragments of Shigella flexneri serotypes 3a and/or X O-antigens from a common tetrasaccharide intermediate. Eur J Org Chem 5526–5542CrossRefGoogle Scholar
  10. Boutet J, Guerreiro C, Mulard LA (2009) Efficient synthesis of six tri- to hexasaccharide fragments of Shigella flexneri serotypes 3a and/or X O-antigen, including a study on acceptors containing N-trichloroacetylglucosamine versus N-acetylglucosamine. J Org Chem 74:2651–2670PubMedCrossRefGoogle Scholar
  11. Boutonnier A, Villeneuve S, Nato F, Dassy B, Fournier JM (2001) Preparation, immunogenicity, and protective efficacy, in a murine model, of a conjugate vaccine composed of the polysaccharide moiety of the lipopolysaccharide of Vibrio cholerae O139 bound to tetanus toxoid. Infect Immun 69:3488–3493PubMedCrossRefGoogle Scholar
  12. Bundle DR (1989) Antibody combining sites and oligosaccharide determinants studied by competitive-binding, sequencing and X-ray crystallography. Pure Appl Chem 61:1171–1180CrossRefGoogle Scholar
  13. Bundle DR, Rich JR, Jacques S, Yu HN, Nitz M, Ling CC (2005) Thiooligosaccharide conjugate vaccines evoke antibodies specific for native antigens. Angew Chem Int Ed Engl 44:7725–7729PubMedCrossRefGoogle Scholar
  14. Bystricky S, Szu SC, Zhang J, Kovac P (1998) Conformational differences among mono- and oligosaccharide fragments of O-specific polysaccharides of Vibrio cholerae O1 revealed by circular dichroism. Carbohydr Res 314:135–139PubMedCrossRefGoogle Scholar
  15. Canh DG, Lin FY, Thiem VD, Trach DD, Trong ND, Mao ND, Hunt S, Schneerson R, Robbins JB, Chu C, Shiloach J, Bryla DA, Bonnet MC, Schulz D, Szu SC (2004) Effect of dosage on immunogenicity of a Vi conjugate vaccine injected twice into 2- to 5-year-old Vietnamese children. Infect Immun 72:6586–6588PubMedCrossRefGoogle Scholar
  16. Carlin NI, Lindberg AA (1983) Monoclonal antibodies specific for O-antigenic polysaccharides of Shigella flexneri: clones binding to II, II:3,4, and 7,8 epitopes. J Clin Microbiol 18:1183–1189PubMedGoogle Scholar
  17. Carlin NI, Gidney MA, Lindberg AA, Bundle DR (1986a) Characterization of Shigella flexneri-specific murine monoclonal antibodies by chemically defined glycoconjugates. J Immunol 137:2361–2366PubMedGoogle Scholar
  18. Carlin NI, Wehler T, Lindberg AA (1986b) Shigella flexneri O-antigen epitopes: chemical and immunochemical analyses reveal that epitopes of type III and group 6 antigens are identical. Infect Immun 53:110–115PubMedGoogle Scholar
  19. Carlin NI, Lindberg AA (1986c) Monoclonal antibodies specific for Shigella flexneri lipopolysaccharides: clones binding to type I and type III:6,7,8 antigens, group 6 antigen, and a core epitope. Infect Immun 53:103–109PubMedGoogle Scholar
  20. Carlin NI, Lindberg AA (1987a) Monoclonal antibodies specific for Shigella flexneri lipopolysaccharides: clones binding to type IV, V, and VI antigens, group 3,4 antigen, and an epitope common to all Shigella flexneri and Shigella dysenteriae type 1 strains. Infect Immun 55:1412–1420PubMedGoogle Scholar
  21. Carlin NI, Bundle DR, Lindberg AA (1987b) Characterization of five Shigella flexneri variant Y-specific monoclonal antibodies using defined saccharides and glycoconjugate antigens. J Immunol 138:4419–4427PubMedGoogle Scholar
  22. Chatterjee SN, Chaudhuri K (2003) Lipopolysaccharides of Vibrio cholerae. I. Physical and chemical characterization. Biochim Biophys Acta 1639:65–79PubMedCrossRefGoogle Scholar
  23. Chatterjee SN, Chaudhuri K (2006) Lipopolysaccharides of Vibrio cholerae: III. Biological functions. Biochim Biophys Acta 1762:1–16PubMedCrossRefGoogle Scholar
  24. Cheng AC, McDonald JR, Thielman NM (2005) Infectious diarrhea in developed and developing countries. J Clin Gastroenterol 39:757–773PubMedCrossRefGoogle Scholar
  25. Chernyak A, Kondo S, Wade TK, Meeks MD, Alzari PM, Fournier JM, Taylor RK, Kovac P, Wade WF (2002) Induction of protective immunity by synthetic Vibrio cholerae hexasaccharide derived from V. cholerae O1 Ogawa lipopolysaccharide bound to a protein carrier. J Infect Dis 185:950–962PubMedCrossRefGoogle Scholar
  26. Chowers Y, Kirschner J, Keller N, Barshack I, Bar-Meir S, Ashkenazi S, Schneerson R, Robbins J, Passwell JH (2007) O-specific polysaccharide conjugate vaccine-induced antibodies prevent invasion of Shigella into Caco-2 cells and may be curative. Proc Natl Acad Sci USA 104:2396–2401PubMedCrossRefGoogle Scholar
  27. Clement MJ, Imberty A, Phalipon A, Perez S, Simenel C, Mulard LA, Delepierre M (2003) Conformational studies of the O-specific polysaccharide of Shigella flexneri 5a and of four related synthetic pentasaccharide fragments using NMR and molecular modeling. J Biol Chem 278:47928–47936PubMedCrossRefGoogle Scholar
  28. Clement MJ, Fortune A, Phalipon A, Marcel-Peyre V, Simenel C, Imberty A, Delepierre M, Mulard LA (2006) Toward a better understanding of the basis of the molecular mimicry of polysaccharide antigens by peptides: the example of Shigella flexneri 5a. J Biol Chem 281:2317–2332PubMedCrossRefGoogle Scholar
  29. Cohen D, Green MS, Block C, Slepon R, Ofek I (1991) Prospective study of the association between serum antibodies to lipopolysaccharide O antigen and the attack rate of shigellosis. J Clin Microbiol 29:386–389PubMedGoogle Scholar
  30. Cohen D, Ashkenazi S, Green MS, Gdalevich M, Robin G, Slepon R, Yavzori M, Orr N, Block C, Ashkenazi I, Shemer J, Taylor DN, Hale TL, Sadoff JC, Pavliakova D, Schneerson R, Robbins JB (1997) Double-blind vaccine-controlled randomised efficacy trial of an investigational Shigella sonnei conjugate vaccine in young adults. Lancet 349:155–159PubMedCrossRefGoogle Scholar
  31. Coxon B, Sari N, Mulard LA, Kovac P, Pozsgay V, Glaudemans CPJ (1997) Investigation by NMR spectroscopy and molecular modeling of the conformations of some modified disaccharide antigens for Shigella dysenteriae type 1. J Carbohydr Chem 16:927–946CrossRefGoogle Scholar
  32. Coxon B, Sari N, Batta G, Pozsgay V (2000) NMR spectroscopy, molecular dynamics, and conformation of a synthetic octasaccharide fragment of the O-specific polysaccharide of Shigella dysenteriae type 1. Carbohydr Res 324:53–65PubMedCrossRefGoogle Scholar
  33. Cui C, Carbis R, An SJ, Jang H, Czerkinsky C, Szu SC, Clemens JD (2010) Physical and chemical characterization and immunologic properties of Salmonella enterica serovar typhi capsular polysaccharide–diphtheria toxoid conjugates. Clin Vaccine Immunol 17:73–79PubMedCrossRefGoogle Scholar
  34. Dijkstra J, Mellors JW, Ryan JL, Szoka FC (1987) Modulation of the biological activity of bacterial endotoxin by incorporation into liposomes. J Immunol 138:2663–2670PubMedGoogle Scholar
  35. Dmitriev BA, Knirel YA, Kochetkov NK, Hofman IL (1976) Somatic antigens of Shigella – structural investigation on O-specific polysaccharide chain of Shigella-dysenteriae type-1 lipopolysaccharide. Eur J Biochem 66:559–566PubMedCrossRefGoogle Scholar
  36. Ewing WH, Carpenter KJ (1966) Recommended designations for the subserotypes of Shigella flexneri serotypes. Int J Syst Bacteriol 16:145–149CrossRefGoogle Scholar
  37. Falt IC, Lindberg AA (1994) Epitope mapping of six monoclonal antibodies recognizing the Shigella dysenteriae type 1 O-antigenic repeating unit expressed in Escherichia coli K-12. Microb Pathog 16:27–41PubMedCrossRefGoogle Scholar
  38. Formal SB, Kent TH, May HC, Palmer A, Falkow S, LaBrec EH (1966) Protection of monkeys against experimental shigellosis with a living attenuated oral polyvalent dysentery vaccine. J Bacteriol 92:17–22PubMedGoogle Scholar
  39. Formal SB, Oaks EV, Olsen RE, Wingfield-Eggleston M, Snoy PJ, Cogan JP (1991) Effect of prior infection with virulent Shigella flexneri 2a on the resistance of monkeys to subsequent infection with Shigella sonnei. J Infect Dis 164:533–537PubMedCrossRefGoogle Scholar
  40. Fukazawa Y, Shinoda T, Tsuchiya T (1969) Response and specificity of antibodies for Shigella flexneri: demonstration of type-specific factors in immunoglobulin G fraction of antiserum. J Bacteriol 98:1128–1134PubMedGoogle Scholar
  41. Goebel WF (1939) Studies on antibacterial immunity induced by artificial antigens: I. Immunity to experimental pneumococcal infection with an antigen containing cellobiuronic acid. J Exp Med 69:353–364PubMedCrossRefGoogle Scholar
  42. Gonzalez L, Asensio JL, Ariosa-Alvarez A, Verez-Bencomo V, Jimenez-Barbero J (1999) Solution conformation and dynamics of the trisaccharide fragments of the O-antigen of Vibrio cholerae O1, serotypes Inaba and Ogawa. Carbohydr Res 321:88–95PubMedCrossRefGoogle Scholar
  43. Grandjean C, Boutonnier A, Dassy B, Fournier JM, Mulard LA (2009) Investigation towards bivalent chemically defined glycoconjugate immunogens prepared from acid-detoxified lipopolysaccharide of Vibrio cholerae O1, serotype Inaba. Glycoconj J 26:41–55PubMedCrossRefGoogle Scholar
  44. Gupta RK, Szu SC, Finkelstein RA, Robbins JB (1992) Synthesis, characterization, and some immunological properties of conjugates composed of the detoxified lipopolysaccharide of Vibrio cholerae O1 serotype Inaba bound to cholera toxin. Infect Immun 60:3201–3208PubMedGoogle Scholar
  45. Gupta RK, Taylor DN, Bryla DA, Robbins JB, Szu SC (1998) Phase 1 evaluation of Vibrio cholerae O1, serotype Inaba, polysaccharide–cholera toxin conjugates in adult volunteers. Infect Immun 66:3095–3099PubMedGoogle Scholar
  46. Gustafsson B, Holme T (1985) Immunological characterization of Vibrio cholerae O:1 lipopolysaccharide, O-side chain, and core with monoclonal antibodies. Infect Immun 49:275–280PubMedGoogle Scholar
  47. Hanna HR, Bundle DR (1993) Antibody oligosaccharide interactions – the synthesis of 2-deoxy-alpha-l-rhamnose containing oligosaccharide haptens related to Shigella-flexneri variant-Y antigen. Can J Chem 71:125–134CrossRefGoogle Scholar
  48. Hartman AB, Van de Verg LL, Mainhart CR, Tall BD, Smith-Gill SJ (1996) Specificity of monoclonal antibodies elicited by mucosal infection of BALB/c mice with virulent Shigella flexneri 2a. Clin Diagn Lab Immunol 3:584–589PubMedGoogle Scholar
  49. Hisatsune K, Kondo S, Isshiki Y, Iguchi T, Haishima Y (1993) Occurrence of 2-O-methyl-N-(3-deoxy-l-glycero-tetronyl)-d-perosamine (4-amino-4,6-dideoxy-d-manno-pyranose) in lipopolysaccharide from Ogawa but not from Inaba O forms of O1 Vibrio cholerae. Biochem Biophys Res Commun 190:302–307PubMedCrossRefGoogle Scholar
  50. Hossany BR, Johnston BD, Wen X, Borrelli S, Yuan Y, Johnson MA, Pinto BM (2009) Design, synthesis, and immunochemical characterization of a chimeric glycopeptide corresponding to the Shigella flexneri Y O-polysaccharide and its peptide mimic MDWNMHAA. Carbohydr Res 344:1412–1427PubMedCrossRefGoogle Scholar
  51. Iredell JR, Stroeher UH, Ward HM, Manning PA (1998) Lipopolysaccharide O-antigen expression and the effect of its absence on virulence in rfb mutants of Vibrio cholerae O1. FEMS Immunol Med Microbiol 20:45–54PubMedCrossRefGoogle Scholar
  52. Islam D, Wretlind B, Ryd M, Lindberg AA, Christensson B (1995) Immunoglobulin subclass distribution and dynamics of Shigella-specific antibody responses in serum and stool samples in shigellosis. Infect Immun 63:2054–2061PubMedGoogle Scholar
  53. Ito T, Yokota T (1988) Monoclonal-antibodies to Vibrio-cholerae O1-serotype Inaba. J Clin Microbiol 26:2367–2370PubMedGoogle Scholar
  54. Kabat EA (1960) The upper limit for the size of the human antidextran combining site. J Immunol 84:82–85PubMedGoogle Scholar
  55. Kaminski RW, Oaks EV (2009) Inactivated and subunit vaccines to prevent shigellosis. Expert Rev Vaccines 8:1693–1704PubMedCrossRefGoogle Scholar
  56. Karnell A, Li A, Zhao CR, Karlsson K, Minh NB, Lindberg AA (1995) Safety and immunogenicity study of the auxotrophic Shigella-flexneri 2a vaccine Sfl1070 with a deleted Arod gene in adult swedish volunteers. Vaccine 13:88–99PubMedCrossRefGoogle Scholar
  57. Khan MI, Ochiai RL, Clemens JD (2010) Population impact of Vi capsular polysaccharide vaccine. Expert Rev Vaccines 9:485–496PubMedCrossRefGoogle Scholar
  58. Kosek M, Bern C, Guerrant RL (2003) The global burden of diarrhoeal disease, as estimated from studies published between 1992 and 2000. Bull World Health Organ 81:197–204PubMedGoogle Scholar
  59. Kosek M, Yori PP, Olortegui MP (2010) Shigellosis update: advancing antibiotic resistance, investment empowered vaccine development, and green bananas. Curr Opin Infect Dis 23:475–480PubMedCrossRefGoogle Scholar
  60. Kossaczka Z, Shiloach J, Johnson V, Taylor DN, Finkelstein RA, Robbins JB, Szu SC (2000) Vibrio cholerae O139 conjugate vaccines: synthesis and immunogenicity of V. cholerae O139 capsular polysaccharide conjugates with recombinant diphtheria toxin mutant in mice. Infect Immun 68:5037–5043PubMedCrossRefGoogle Scholar
  61. Kotloff KL, Winickoff JP, Ivanoff B, Clemens JD, Swerdlow DL, Sansonetti PJ, Adak GK, Levine MM (1999) Global burden of Shigella infections: implications for vaccine development and implementation of control strategies. Bull World Health Organ 77:651–666PubMedGoogle Scholar
  62. Kovac P (2006) Studies toward a rationally designed conjugate vaccine for cholera using synthetic carbohydrate antigens. In: Bewley C (ed) Protein–carbohydrate interactions in infectious diseases. Royal Society of Chemistry, Cambridge, pp 175–220Google Scholar
  63. Kreis UC, Varma V, Pinto BM (1997) Oligosaccharides corresponding to biological repeating units of Shigella flexneri variant Y polysaccharide. 5. Conformational analysis of a heptasaccharide hapten utilizing a combined molecular dynamics and NMR spectroscopic protocol. Theochem J Mol Struct 395:389–409CrossRefGoogle Scholar
  64. Kubler-Kielb J, Vinogradov E, Chu C, Schneerson R (2007) O-Acetylation in the O-specific polysaccharide isolated from Shigella flexneri serotype 2a. Carbohydr Res 342:643–647PubMedCrossRefGoogle Scholar
  65. Kubler-Kielb J, Vinogradov E, Mocca C, Pozsgay V, Coxon B, Robbins JB, Schneerson R (2010) Immunochemical studies of Shigella flexneri 2a and 6, and Shigella dysenteriae type 1 O-specific polysaccharide-core fragments and their protein conjugates as vaccine candidates. Carbohydr Res 345:1600–1608PubMedCrossRefGoogle Scholar
  66. Kweon MN (2008) Shigellosis: the current status of vaccine development. Curr Opin Infect Dis 21:313–318PubMedCrossRefGoogle Scholar
  67. Levine MM (2006) Enteric infections and the vaccines to counter them: future directions. Vaccine 24:3865–3873PubMedCrossRefGoogle Scholar
  68. Levine MM, Kotloff KL, Barry EM, Pasetti MF, Sztein MB (2007) Clinical trials of Shigella vaccines: two steps forward and one step back on a long, hard road. Nat Rev Microbiol 5:540–553PubMedCrossRefGoogle Scholar
  69. Liao X, Poirot E, Chang AH, Zhang X, Zhang J, Nato F, Fournier JM, Kovac P, Glaudemans CP (2002) The binding of synthetic analogs of the upstream, terminal residue of the O-polysaccharides (O-PS) of Vibrio cholerae O:1 serotypes Ogawa and Inaba to two murine monoclonal antibodies (MAbs) specific for the Ogawa lipopolysaccharide (LPS). Carbohydr Res 337:2437–2442PubMedCrossRefGoogle Scholar
  70. Lindberg AA, Wollin R, Bruse G, Ekwall E, Svenson SB (1983) Immunology and immunochemistry of synthetic and semisynthetic Salmonella O-antigen-specific glycoconjugates. ACS Symp. Ser 231:83–118CrossRefGoogle Scholar
  71. Liu B, Knirel YA, Feng L, Perepelov AV, Senchenkova SN, Wang Q, Reeves PR, Wang L (2008) Structure and genetics of Shigella O antigens. FEMS Microbiol Rev 32:627–653PubMedCrossRefGoogle Scholar
  72. Mage RG, Kabat EA (1963) Immunochemical studies on dextrans. Iii. The specificities of rabbit antidextrans. Further findings on antidextrans with 1,2- and 1,6-specificities. J Immunol 91:633–640PubMedGoogle Scholar
  73. McGavin RS, Bundle DR (2005) Developing high affinity oligosaccharide inhibitors: conformational pre-organization paired with functional group modification. Org Biomol Chem 3:2733–2740PubMedCrossRefGoogle Scholar
  74. McGavin RS, Gagne RA, Chervenak MC, Bundle DR (2005) The design, synthesis and evaluation of high affinity macrocyclic carbohydrate inhibitors. Org Biomol Chem 3:2723–2732PubMedCrossRefGoogle Scholar
  75. Meeks MD, Saksena R, Ma X, Wade TK, Taylor RK, Kovac P, Wade WF (2004) Synthetic fragments of Vibrio cholerae O1 Inaba O-specific polysaccharide bound to a protein carrier are immunogenic in mice but do not induce protective antibodies. Infect Immun 72:4090–4101PubMedCrossRefGoogle Scholar
  76. Mel DM, Terzin AL, Vuksic L (1965) Studies on vaccination against bacillary dysentery. 3. Effective oral immunization against Shigella flexneri 2a in a field trial. Bull World Health Organ 32:647–655PubMedGoogle Scholar
  77. Miller CE, Karpas A, Schneerson R, Huppi K, Kovac P, Pozsgay V, Glaudemans CPJ (1996) Of four murine, anti-Shigella dysenteriae type 1 O-polysaccharide antibodies, three employ V-genes that differ extensively from those of the fourth. Mol Immunol 33:1217–1222PubMedCrossRefGoogle Scholar
  78. Miller CE, Mulard LA, Padlan EA, Glaudemans CPJ (1998) Binding of modified fragments of the Shigella dysenteriae type 1 O-specific polysaccharide to monoclonal IgM 3707 E9 and docking of the immunodeterminant to its modeled Fv. Carbohydr Res 309:219–226PubMedCrossRefGoogle Scholar
  79. Moore SR, Lima NL, Soares AM, Oria RB, Pinkerton RC, Barrett LJ, Guerrant RL, Lima AAM (2010) Prolonged episodes of acute diarrhea reduce growth and increase risk of persistent diarrhea in children. Gastroenterology 139:1156–1164PubMedCrossRefGoogle Scholar
  80. Mulard LA, Phalipon A (2008) From epitope characterization to the design of semi-synthetic glycoconjugate vaccines against Shigella flexneri 2a infection. ACS Symp. Ser 989:105–136CrossRefGoogle Scholar
  81. Mulard LA, Gauthier C (2010) Novel O-acetylated decasaccharides. EP10 290 254.1, 12th May 2010Google Scholar
  82. Nagy G, Pal T (2008) Lipopolysaccharide: a tool and target in enterobacterial vaccine development. Biol Chem 389:513–520PubMedCrossRefGoogle Scholar
  83. Noriega FR, Liao FM, Maneval DR, Ren SX, Formal SB, Levine MM (1999) Strategy for cross-protection among Shigella flexneri serotypes. Infect Immun 67:782–788PubMedGoogle Scholar
  84. Nyholm PG, Mulard LA, Miller CE, Lew T, Olin R, Glaudemans CP (2001) Conformation of the O-specific polysaccharide of Shigella dysenteriae type 1: molecular modeling shows a helical structure with efficient exposure of the antigenic determinant α-l-Rhap-(1 → 2)-α-d-Galp. Glycobiology 11:945–955PubMedCrossRefGoogle Scholar
  85. Passwell JH, Ashkenazi S, Harlev E, Miron D, Ramon R, Farzam N, Lerner-Geva L, Levi Y, Chu C, Shiloach J, Robbins JB, Schneerson R (2003) Safety and immunogenicity of Shigella sonnei-CRM9 and Shigella flexneri type 2a-rEPAsucc conjugate vaccines in one- to four-year-old children. Pediatr Infect Dis J 22:701–706PubMedCrossRefGoogle Scholar
  86. Passwell JH, Ashkenzi S, Banet-Levi Y, Ramon-Saraf R, Farzam N, Lerner-Geva L, Even-Nir H, Yerushalmi B, Chu C, Shiloach J, Robbins JB, Schneerson R (2010) Age-related efficacy of Shigella O-specific polysaccharide conjugates in 1-4-year-old Israeli children. Vaccine 28:2231–2235PubMedCrossRefGoogle Scholar
  87. Paulovicova E, Machova E, Hostacka A, Bystricky S (2006) Immunological properties of complex conjugates based on Vibrio cholerae O1 Ogawa lipopolysaccharide antigen. Clin Exp Immunol 144:521–527PubMedCrossRefGoogle Scholar
  88. Paulovicova E, Kovacova E, Bystricky S (2010) Vibrio cholerae O1 Ogawa detoxified lipopolysaccharide structures as inducers of cytokines and oxidative species in macrophages. J Med Microbiol 59:158–164PubMedCrossRefGoogle Scholar
  89. Pavliak V, Nashed EM, Pozsgay V, Kovac P, Karpas A, Chu C, Schneerson R, Robbins JB, Glaudemans CP (1993) Binding of the O-antigen of Shigella dysenteriae type 1 and 26 related synthetic fragments to a monoclonal IgM antibody. J Biol Chem 268:25797–25802PubMedGoogle Scholar
  90. Perepelov AV, L’Vov VL, Liu B, Senchenkova SN, Shekht ME, Shashkov AS, Feng L, Aparin PG, Wang L, Knirel YA (2009) A similarity in the O-acetylation pattern of the O-antigens of Shigella flexneri types 1a, 1b, and 2a. Carbohydr Res 344:687–692PubMedCrossRefGoogle Scholar
  91. Perepelov AV, Shevelev SD, Liu B, Senchenkova SN, Shashkov AS, Feng L, Knirel YA, Wang L (2010) Structures of the O-antigens of Escherichia coli O13, O129, and O135 related to the O-antigens of Shigella flexneri. Carbohydr Res 345:1594–1599PubMedCrossRefGoogle Scholar
  92. Petri WA, Miller M, Binder HJ, Levine MM, Dillingham R, Guerrant RL (2008) Enteric infections, diarrhea, and their impact on function and development. J Clin Invest 118:1277–1290PubMedCrossRefGoogle Scholar
  93. Phalipon A, Kaufmann M, Michetti P, Cavaillon JM, Huerre M, Sansonetti P, Kraehenbuhl JP (1995) Monoclonal immunoglobulin A antibody directed against serotype-specific epitope of Shigella flexneri lipopolysaccharide protects against murine experimental shigellosis. J Exp Med 182:769–778PubMedCrossRefGoogle Scholar
  94. Phalipon A, Costachel C, Grandjean C, Thuizat A, Guerreiro C, Tanguy M, Nato F, Vulliez-Le Normand B, Belot F, Wright K, Marcel-Peyre V, Sansonetti PJ, Mulard LA (2006) Characterization of functional oligosaccharide mimics of the Shigella flexneri serotype 2a O-antigen: implications for the development of a chemically defined glycoconjugate vaccine. J Immunol 176:1686–1694PubMedGoogle Scholar
  95. Phalipon A, Mulard LA, Sansonetti PJ (2008) Vaccination against shigellosis: is it the path that is difficult or is it the difficult that is the path? Microbes Infect 10:1057–1062PubMedCrossRefGoogle Scholar
  96. Phalipon A, Tanguy M, Grandjean C, Guerreiro C, Belot F, Cohen D, Sansonetti PJ, Mulard LA (2009) A synthetic carbohydrate-protein conjugate vaccine candidate against Shigella flexneri 2a Infection. J Immunol 182:2241–2247PubMedCrossRefGoogle Scholar
  97. Pozsgay V, Coxon B, Yeh H (1993) Synthesis of di- to penta-saccharides related to the O-specific polysaccharide of Shigella dysenteriae type 1, and their nuclear magnetic resonance study. Bioorg Med Chem 1:237–257PubMedCrossRefGoogle Scholar
  98. Pozsgay V, Sari N, Coxon B (1998) Measurement of interglycosidic 3JCH coupling constants of selectively 13C labeled oligosaccharides by 2D J-resolved 1H NMR spectroscopy. Carbohydr Res 308:229–238PubMedCrossRefGoogle Scholar
  99. Pozsgay V, Chu C, Pannell L, Wolfe J, Robbins JB, Schneerson R (1999) Protein conjugates of synthetic saccharides elicit higher levels of serum IgG lipopolysaccharide antibodies in mice than do those of the O-specific polysaccharide from Shigella dysenteriae type 1. Proc Natl Acad Sci USA 96:5194–5197PubMedCrossRefGoogle Scholar
  100. Pozsgay V, Coxon B, Glaudemans CPJ, Schneerson R, Robbins JB (2003) Towards an oligosaccharide-based glycoconjugate vaccine against Shigella dysenteriae type 1. Synlett:743–767Google Scholar
  101. Pozsgay V, Kubler-Kielb J, Schneerson R, Robbins JB (2007) Effect of the nonreducing end of Shigella dysenteriae type 1 O-specific oligosaccharides on their immunogenicity as conjugates in mice. Proc Natl Acad Sci USA 104:14478–14482PubMedCrossRefGoogle Scholar
  102. Provenzano D, Kovac P, Wade WF (2006) The ABCs (Antibody, B cells, and Carbohydrate epitopes) of cholera immunity: considerations for an improved vaccine. Microbiol Immunol 50:899–927PubMedGoogle Scholar
  103. Raetz CR, Whitfield C (2002) Lipopolysaccharide endotoxins. Annu Rev Biochem 71:635–700PubMedCrossRefGoogle Scholar
  104. Rasolofo-Razanamparany V, Cassel-Beraud AM, Roux J, Sansonetti PJ, Phalipon A (2001) Predominance of serotype-specific mucosal antibody response in Shigella flexneri-infected humans living in an area of endemicity. Infect Immun 69:5230–5234PubMedCrossRefGoogle Scholar
  105. Reeves P (1995) Role of O-antigen variation in the immune response. Trends Microbiol 3:381–386PubMedCrossRefGoogle Scholar
  106. Robbins JB, Chu C, Schneerson R (1992) Hypothesis for vaccine development: protective immunity to enteric diseases caused by nontyphoidal Salmonellae and Shigellae may be conferred by serum IgG antibodies to the O-specific polysaccharide of their lipopolysaccharides. Clin Infect Dis 15:346–361PubMedCrossRefGoogle Scholar
  107. Robbins JB, Schneerson R, Szu SC (1995) Perspective: hypothesis: serum IgG antibody is sufficient to confer protection against infectious diseases by inactivating the inoculum. J Infect Dis 171:1387–1398PubMedCrossRefGoogle Scholar
  108. Robbins JB, Kubler-Kielb J, Vinogradov E, Mocca C, Pozsgay V, Shiloach J, Schneerson R (2009) Synthesis, characterization, and immunogenicity in mice of Shigella sonnei O-specific oligosaccharide-core-protein conjugates. Proc Natl Acad Sci USA 106:7974–7978PubMedCrossRefGoogle Scholar
  109. Sack DA, Sack RB, Nair GB, Siddique AK (2004) Cholera. Lancet 363:223–233PubMedCrossRefGoogle Scholar
  110. Safari D, Dekker HA, Joosten JA, Michalik D, de Souza AC, Adamo R, Lahmann M, Sundgren A, Oscarson S, Kamerling JP, Snippe H (2008) Identification of the smallest structure capable of evoking opsonophagocytic antibodies against Streptococcus pneumoniae type 14. Infect Immun 76:4615–4623PubMedCrossRefGoogle Scholar
  111. Said Hassane F, Phalipon A, Tanguy M, Guerreiro C, Belot F, Frisch B, Mulard LA, Schuber F (2009) Rational design and immunogenicity of liposome-based diepitope constructs: application to synthetic oligosaccharides mimicking the Shigella flexneri 2a O-antigen. Vaccine 27:5419–5426PubMedCrossRefGoogle Scholar
  112. Saksena R, Ma X, Wade TK, Kovac P, Wade WF (2005) Effect of saccharide length on the immunogenicity of neoglycoconjugates from synthetic fragments of the O-SP of Vibrio cholerae O1, serotype Ogawa. Carbohydr Res 340:2256–2269PubMedCrossRefGoogle Scholar
  113. Saksena R, Ma X, Wade TK, Kovac P, Wade WF (2006) Length of the linker and the interval between immunizations influences the efficacy of Vibrio cholerae O1, Ogawa hexasaccharide neoglycoconjugates. FEMS Immunol Med Microbiol 47:116–128PubMedCrossRefGoogle Scholar
  114. Sciortino CV, Yang ZS, Finkelstein RA (1985) Monoclonal-antibodies to outer-membrane antigens of Vibrio-cholerae. Infect Immun 49:122–131PubMedGoogle Scholar
  115. Simmons DA (1971) Immunochemistry of Shigella flexneri O-antigens: a study of structural and genetic aspects of the biosynthesis of cell-surface antigens. Bacteriol Rev 35:117–148PubMedGoogle Scholar
  116. Simmons DAR, Romanowska E (1987) Structure and biology of Shigella-flexneri O-antigens. J Med Microbiol 23:289–302PubMedCrossRefGoogle Scholar
  117. Svenson SB, Nurminen M, Lindberg AA (1979) Artificial Salmonella vaccines: O-antigenic oligosaccharide-protein conjugates induce protection against infection with Salmonella typhimurium. Infect Immun 25:863–872PubMedGoogle Scholar
  118. Svenson SB, Lindberg AA (1981) Artificial Salmonella vaccine: Salmonella typhimurium O-antigen-specific oligosaccharide–protein conjugates elicit protective antibodies in rabbits and mice. Infect Immun 32:490–496PubMedGoogle Scholar
  119. Szu SC, Li XR, Stone AL, Robbins JB (1991) Relation between structure and immunologic properties of the Vi capsular polysaccharide. Infect Immun 59:4555–4561PubMedGoogle Scholar
  120. Theillet FX, Frank M, Vulliez-Le Normand B, Simenel C, Hoos C, Chaffotte A, Bélot F, Guerreiro C, Nato F, Phalipon A, Mulard LA, Delepierre M (2011a) Dynamic aspects of antibody: oligosaccharide complexes characterized by molecular dynamics simulations and STD-NMR. Glycobiology in pressGoogle Scholar
  121. Theillet FX, Simenel C, Guerreiro C, Phalipon A, Mulard LA, Delepierre M (2011b) Effects of backbone substitutions on the conformational behavior of Shigella flexneri O-antigens: implications for vaccine strategy. Glycobiology 21:109–121PubMedCrossRefGoogle Scholar
  122. Van de Verg LL, Bendiuk NO, Kotloff K, Marsh MM, Ruckert JL, Puryear JL, Taylor DN, Hartman AB (1996) Cross-reactivity of Shigella flexneri serotype 2a O antigen antibodies following immunization or infection. Vaccine 14:1062–1068CrossRefGoogle Scholar
  123. Verez-Bencomo V, Fernandez-Santana V, Hardy E, Toledo ME, Rodriguez MC, Heynngnezz L, Rodriguez A, Baly A, Herrera L, Izquierdo M, Villar A, Valdes Y, Cosme K, Deler ML, Montane M, Garcia E, Ramos A, Aguilar A, Medina E, Torano G, Sosa I, Hernandez I, Martinez R, Muzachio A, Carmenates A, Costa L, Cardoso F, Campa C, Diaz M, Roy R (2004) A synthetic conjugate polysaccharide vaccine against Haemophilus influenzae type b. Science 305:522–525PubMedCrossRefGoogle Scholar
  124. Villeneuve S, Boutonnier A, Mulard LA, Fournier JM (1999) Immunochemical characterization of an Ogawa-Inaba common antigenic determinant of Vibrio cholerae O1. Microbiology 145:2477–2484PubMedGoogle Scholar
  125. Villeneuve S, Souchon H, Riottot MM, Mazie JC, Lei P, Glaudemans CPJ, Kovac P, Fournier JM, Alzari PM (2000) Crystal structure of an anti-carbohydrate antibody directed against Vibrio cholerae O1 in complex with antigen: molecular basis for serotype specificity. Proc Natl Acad Sci USA 97:8433–8438PubMedCrossRefGoogle Scholar
  126. Vulliez-Le Normand B, Saul FA, Phalipon A, Belot F, Guerreiro C, Mulard LA, Bentley GA (2008) Structures of synthetic O-antigen fragments from serotype 2a Shigella flexneri in complex with a protective monoclonal antibody. Proc Natl Acad Sci USA 105:9976–9981PubMedCrossRefGoogle Scholar
  127. Vyas NK, Vyas MN, Chervenak MC, Johnson MA, Pinto BM, Bundle DR, Quiocho FA (2002) Molecular recognition of oligosaccharide epitopes by a monoclonal Fab specific for Shigella flexneri Y lipopolysaccharide: X-ray structures and thermodynamics. Biochemistry 41:13575–13586PubMedCrossRefGoogle Scholar
  128. Vyas NK, Vyas MN, Chervenak MC, Bundle DR, Pinto BM, Quiocho FA (2003) Structural basis of peptide-carbohydrate mimicry in an antibody-combining site. Proc Natl Acad Sci USA 100:15023–15028PubMedCrossRefGoogle Scholar
  129. Wade TK, Saksena R, Shiloach J, Kovac P, Wade WF (2006) Immunogenicity of synthetic saccharide fragments of Vibrio cholerae O1 (Ogawa and Inaba) bound to Exotoxin A. FEMS Immunol Med Microbiol 48:237–251PubMedCrossRefGoogle Scholar
  130. Wade TK, Wade WF (2008) Variable gene family usage of protective and non-protective anti-Vibrio cholerae O1 LPS antibody heavy chains. Microbiol Immunol 52:611–620PubMedCrossRefGoogle Scholar
  131. Wang J, Villeneuve S, Zhang J, Lei P, Miller CE, Lafaye P, Nato F, Szu SC, Karpas A, Bystricky S, Robbins JB, Kovac P, Fournier JM, Glaudemans CP (1998) On the antigenic determinants of the lipopolysaccharides of Vibrio cholerae O:1, serotypes Ogawa and Inaba. J Biol Chem 273:2777–2783PubMedCrossRefGoogle Scholar
  132. Ye C, Lan R, Xia S, Zhang J, Sun Q, Zhang S, Jing H, Wang L, Li Z, Zhou Z, Zhao A, Cui Z, Cao J, Jin D, Huang L, Wang Y, Luo X, Bai X, Wang P, Xu Q, Xu J (2010) Emergence of a new multidrug-resistant serotype X variant in an epidemic clone of Shigella flexneri. J Clin Microbiol 48:419–426PubMedCrossRefGoogle Scholar
  133. You D, Wardlaw T, Salama P, Jones G (2010) Levels and trends in under-5 mortality, 1990–2008. Lancet 375:100–103PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag/Wien 2012

Authors and Affiliations

  • François-Xavier Theillet
    • 1
    • 2
    • 3
  • Pierre Chassagne
    • 1
    • 4
  • Muriel Delepierre
    • 1
    • 2
  • Armelle Phalipon
    • 5
    • 6
  • Laurence A. Mulard
    • 1
    • 4
    Email author
  1. 1.Insitut Pasteur, Unité de Chimie des BiomoléculesParis Cedex 15France
  2. 2.CNRS URA 2185, Institut PasteurParisFrance
  3. 3.Leibniz-Institut für Molekulare Pharmakologie (FMP)BerlinGermany
  4. 4.Université Paris Descartes 12 rue de l’Ecole de MédecineParisFrance
  5. 5.Institut Pasteur, Unité de Pathogénie Microbienne MoléculaireParis Cedex 15France
  6. 6.INSERM U786, Institut PasteurParisFrance

Personalised recommendations