Advertisement

Integrating Geographic and Meteorological Data for Storm Surge Planning

  • Jairo Pava
  • Fausto Fleites
  • Shu-Ching Chen
  • Keqi Zhang
Chapter

Abstract

In this chapter, we propose a system which integrates storm surge projection, meteorological, topographical, and road data to simulate storm surge conditions. The motivation behind the system is to serve local governments seeking to overcome difficulties in persuading residents to adhere to evacuation notices. The storm surge simulation system introduces an alternative to traditional evacuation advisories which are often superimposed over two-dimensional maps and distributed through television, newspaper, and other public outreach media. First, topographic data are used to construct virtual replicas of cities in the State of Florida. Storm surge data are then used to construct a virtual ocean positioned over the city models. Ambient details such as wind, vegetation, ocean waves, and traffic are animated based on up-to-date meteorological data. Videos of the storm surge visualizations are recorded and made available to coastal residents through a web-interface. The three-dimensional visualization of geographic and storm surge data provides a more visually compelling representation of the potential effects of storm surge than traditional two-dimensional models and is better able to prepare coastal residents to make potentially life-saving evacuation decisions.

Keywords

Storm Surge Digital Terrain Model LiDAR Data Simple Object Access Protocol Geography Markup Language 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This project was supported in part by a grant from NOAA. Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect those of NOAA.

References

  1. 1.
  2. 2.
    Amira (Apr. 2010). http://www.amira.com/
  3. 3.
    Benger, W., Venkataraman, S., Long, A., Allen, G., Beck, S.D., Brodowicz, M., Maclaren, J., Seidel, E.: Visualizing katrina – merging computer simulations with observations. Springer Verlags Lecture Notes in Computer Science Series. pp. 340–350. Springer, Berlin (2007)Google Scholar
  4. 4.
  5. 5.
    Campbell, J.B.: Introduction to remote sensing, 3rd edn. Guilford Press, New York. (2002)Google Scholar
  6. 6.
    Digital weather markup language (Sep. 2010). http://www.weather.gov/forecasts/xml/dwmlgen/schema/dwml.xsd
  7. 7.
    Flaxman, M.: Using the virtual terrain project to plan real cities: alternative futures for hangzhou, china. In: ACM SIGGRAPH, pp. 340–350. San Antonio, TX, USA (2002)Google Scholar
  8. 8.
    Flowplayer (Apr. 2010). http://flowplayer.org/
  9. 9.
    Fournier, A., Reeves, W.T.: A simple model of ocean waves. In: SIGGRAPH, pp. 75–84 (1986)Google Scholar
  10. 10.
    Google Maps (Apr. 2010). http://maps.google.com
  11. 11.
    Google Maps API (Apr. 2010). http://code.google.com/apis/maps
  12. 12.
    Hurricane floyd impacts (Aug. 2010). http://www.erh.noaa.gov/mhx/floyd/impacts.php
  13. 13.
  14. 14.
  15. 15.
    Li, Y., Chatterjee, K., Chen, S.-C., Zhang, K.: A 3-d traffic animation system with storm surge response. In: ISM ’09: Proceedings of the 2009 11th IEEE International Symposium on Multimedia, pp. 257–262. IEEE Computer Society, Washington, DC, USA (2009)Google Scholar
  16. 16.
    Luo, J., Makwana, A.P., Liao, D., Kincaid, J.P.: Hurricane! – a simulation-based program for science education. In: WSC ’08: Proceedings of the 40th Conference on Winter Simulation, pp. 2543–2548. Winter Simulation Conference (2008)Google Scholar
  17. 17.
    NOAA SOAP service (Aug. 2010). http://mi.nws.noaa.gov/xml/
  18. 18.
    NOAA (Apr. 2010a). Coastal services center. http://www.csc.noaa.gov/
  19. 19.
  20. 20.
    OpenAL (Apr. 2010). http://connect.creativelabs.com
  21. 21.
    OpenGIS (Apr. 2010). http://www.opengeospatial.org
  22. 22.
    OpenGL (Apr. 2010). http://www.opengl.org
  23. 23.
    Pava, J., Fleites, F., Ruan, F., Chatterjee, K., Chen, S.-C., Zhang, K.: A three-dimensional geographic and storm surge data integration system for evacuation planning. In: 11th IEEE International Conference on Information Reuse and Integration, pp. 181–188. IEEE SMC Society, Las Vegas, NV, USA (2010)Google Scholar
  24. 24.
    Proj4 (Feb. 2010). http://trac.osgeo.org/proj/
  25. 25.
  26. 26.
    Saleem, K., Chen, S.-C., Zhang, K.: Animating tree branch breaking and flying effects for a 3d interactive visualization system for hurricanes and storm surge flooding. In: ISMW ’07: Proceedings of the Ninth IEEE International Symposium on Multimedia Workshops, pp. 335–341. IEEE Computer Society, Washington, DC, USA (2007)Google Scholar
  27. 27.
    Singh, P., Zhao, N., Chen, S.C., Zhang, K.: Tree animation for a 3d interactive visualization system for hurricane impacts. In: ICME 2005, pp. 598–601, IEEE International Conference on Multimedia and Expo. (2005)Google Scholar
  28. 28.
    United States Geological Survey (Apr. 2010). http://data.geocomm.com
  29. 29.
    Universal transverse mercator coordinate system (Apr. 2010). http://egsc.usgs.gov/isb/pubs/factsheets/fs07701.html
  30. 30.
    Venkataraman, S., Benger, W., Long, A., Jeong, B., Renambot, L.: Visualizing hurricane katrina: large data management, rendering and display challenges. In: GRAPHITE, pp. 209–212 (2006)Google Scholar
  31. 31.
    Virtual dub (Apr. 2010). http://www.virtualdub.org/
  32. 32.
    Virtual Terrain Project (Apr. 2010). http://vterrain.org
  33. 33.
  34. 34.
    Weather underground (Sep. 2010). http://www.wunderground.com/
  35. 35.
    Weather.com XML data feed (Sep. 2010). http://www.weather.com/services/xmloap.html
  36. 36.
    Xiao, C., Zhang, K., Shen, J.: A three-dimensional coastal and estuarine storm tide model. J. Coast. Res. p. 20 (2006)Google Scholar
  37. 37.
    Zhang, K., Chen, S.-C., Whitman, D., ling Shyu, M., Yan, J., Zhang, C., Member, S.: A progressive morphological filter for removing nonground measurements from airborne lidar data. IEEE Trans. Geosci. Rem. Sens. 41, 872–882 (2003)Google Scholar
  38. 38.
    Zhang, K., Chen, S.-C., Singh, P., Saleem, K., Zhao, N.: A 3d visualization system for hurricane storm-surge flooding. IEEE Comput. Graph. Appl. 26(1), 18–25 (2006a)CrossRefGoogle Scholar
  39. 39.
    Zhang, K., Yan, J., Chen, S.-C.: Automatic construction of building footprints from airborne lidar data. IEEE Trans. Geosci. Rem. Sens. 44(9), 2523–2533 (2006b)CrossRefGoogle Scholar
  40. 40.
    Zhang, K., Xiao, C., Shen, J.: Comparison of the cest and slosh models for storm surge flooding. J. Coast. Res. 24, 489–499 (2008)CrossRefGoogle Scholar
  41. 41.
    Zhang, K., Yan, J., Chen, S.-C.: Automatic 3d building representation from airborne lidar measurements. In: Joint Urban Remote Sensing Event, pp. 483–487. IEEE Computer Society, Shanghai, China (2009a)Google Scholar
  42. 42.
    Zhang, K., Yan, J., Chen, S.-C.: A framework for automated construction of building models from airborne lidar measurements. In: Shen, J., Toth, C. (eds.) Topographic Laser Ranging and Scanning: Principles and Processing, pp. 511–534. CRC Press, Boca Raton (2009b)Google Scholar

Copyright information

© Springer Vienna 2012

Authors and Affiliations

  • Jairo Pava
    • 1
  • Fausto Fleites
    • 1
  • Shu-Ching Chen
    • 1
  • Keqi Zhang
    • 2
  1. 1.Distributed Multimedia Information Systems LaboratoryFlorida International UniversityMiamiUSA
  2. 2.International Hurricane Research CenterFlorida International UniversityMiamiUSA

Personalised recommendations